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A B S T R A C T

Although the role of fibrinogen-like protein 1 (FGL1) in tumorigenesis is well known, a pan-cancer analysis of
FGL1 lacks. We used bioinformatics techniques to analyze cancer data from publicly available datasets from The
Cancer Genome Atlas, UALCAN, TIMER, Gene Expression Profiling Interactive Analysis, cBioPortal, Search Tool
for the Retrieval of Interacting Genes, and DAVID. FGL1 expression was significantly regulated in various common
tumors than in normal tissues; it was increased in lung adenocarcinoma and decreased in colon adenocarcinoma.
Cox regression analysis demonstrated that the upregulation of FGL1 expression was correlated with poor overall
survival (OS) and disease-free survival (DFS) in stomach adenocarcinoma, brain low-grade glioma, cervical
squamous cell carcinoma, and endocervical adenocarcinoma. Decreased FGL1 methylation levels were observed
in majority of tumor types. FGL1 expression was significantly associated with the levels of immune cell subtypes
and immune checkpoint genes. Deep deletion was the most common genetic mutation in FGL1 that led to frame-
shift mutations, which was closely associated with poor progression-free interval, disease-specific survival, and OS
in patients with FGL1 mutations. Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that
FGL1-related genes participate in diverse pathways. Ubiquitin-mediated proteolysis is significantly correlated to
the function of FGL1, which was identified for the first time in the present study. This pan-cancer study provides a
deep understanding of the functions of FGL1 in progression of many tumors and demonstrates that FGL1 may be a
potential biomarker for the diagnosis, prognosis, and immune infiltration in cancer.
1. Introduction

Cancer has become a leading threat to global public health. In 2020,
there were 19.3 million newly diagnosed cases and nearly 10 million
cancer-related deaths [1], causing a significant economic burden on so-
ciety. Currently, cancer treatment and prevention are crucial research
directions [2]. Although great success has been achieved in the preven-
tion, screening, diagnosis, and treatment of various tumors, the clinical
outcomes of most cancers still need to be further studied [2,3]. A
pan-cancer analysis can clarify the common characteristics and
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heterogeneity of human malignant tumors by analyzing the molecular
abnormalities of various cancers [4]. This type of analysis is crucial for
identifying new diagnostic, prognostic biomarkers and thereby novel and
effective therapeutic targets. Therefore, pan-cancer analyses are consid-
ered highly important in cancer therapy and diagnosis, providing novel
insights into the therapy and prevention of tumors [5–7].

The expression of fibrinogen-like protein 1 (FGL1)—an acute in-
flammatory factor secreted by the liver, also known as liver fibrinogen-
related gene-1 (LFIRE-1)—is upregulated in various tumors, such as
liver, pancreas, melanoma, lung, breast, colorectal, and prostate tumors.
FGL1 is related to proliferation, metabolism, apoptosis, epithelial-to-
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Abbreviations

BLCA Bladder urothelial carcinoma
BRCA Breast invasive carcinoma
CESC Cervical squamous cell carcinoma
CNA Copy number alteration
COAD Colon adenocarcinoma
CPTAC Clinical Proteomic Tumor Analysis Consortium
DFS Disease-free survival
DLBCL Diffuse large B cell lymphoma
DSS Disease-specific survival
ESCA Esophageal carcinoma
GEPIA Gene Expression Profiling Interactive Analysis
GSEA Gene set enrichment analysis
HNSC Head and neck squamous cell carcinoma
KEGG Kyoto Encyclopedia of Genes and Genomes
KICH Kidney chromophobe

KIRC Kidney renal clear cell carcinoma
LGG Low-grade glioma
LIHC Liver hepatocellular carcinoma
LUAD Lung adenocarcinoma
LUSC Lung squamous cell carcinoma
OS Overall survival
PRAD Prostate adenocarcinoma
READ Rectum adenocarcinoma
SKCM Skin cutaneous melanoma
STAD Stomach adenocarcinoma
STRING Search Tool for the Retrieval of Interacting Genes
TCGA The Cancer Genome Atlas
TGCT Testicular germ cell tumor
THCA Thyroid carcinoma
UCEC Uterine corpus endometrial carcinoma
UCS Uterine carcinosarcoma
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mesenchymal transition, and immune infiltration [8,9]. FGL1 is a major
immune inhibitory ligand of lymphocyte activation gene-3 (LAG-3) [10].
Both FGL1 and LAG3 are regarded as immune checkpoints in cancer [10],
as the binding of FGL1 to LAG-3 can inhibit T cell activation and pro-
liferation, forming an immunosuppressive pathway, different from that
of PD-1/PD-L1 [9–11]. Specifically, FGL1 affects T cell function and
cytokine production when LAG3 expression is upregulated [9], thereby
playing an essential role in mediating tumor immunosuppression.
Additionally, FGL1 is considered to be the next most important immune
checkpoint target, which probably synergizes with PD-L1 to inhibit
tumor immunity [9]. Recent studies have suggested that FGL1 is closely
related with tumor progression and unfavorable prognosis in hepato-
cellular carcinoma [12–14], gastric cancer [15], clear cell renal cell
carcinoma [16] and lung adenocarcinoma [17–19].

Given the heterogeneity of tumor types, a pan-cancer analysis is
required to fully understand the possible role of FGL1 in cancer pro-
gression and development—an aspect not extensively studied. The pre-
sent study explored the regulation role and diagnostic value of FGL1 in
different tumors from various aspects, including gene expression, protein
expression, methylation level, prognosis, genetic alteration, immune
infiltration, and gene enrichment analysis, to determine the potential
molecular mechanism of FGL1 in tumors.

2. Materials and methods

2.1. Gene expression analysis

Gene Expression Profiling Interactive Analysis (GEPIA; http://1ge
pia.cancer-pku.cn/) [20] was used to investigate the mRNA expression
levels of FGL1 in tissues of 33 types of tumors and adjacent normal tissues
in the Genotypic-Tissue Expression (GTEx) and The Cancer Genome Atlas
(TCGA) databases. We used the UALCAN portal (http://ualcan.path
.uab.edu) [21] to conduct a pan-cancer analysis of FGL1 using TCGA
and the Clinical Proteomic Tumor Analysis Consortium (CPTAC). We also
investigated the differences in FGL1 protein expression levels between
tumor and normal tissues in various tumor datasets from CPTAC samples.
Furthermore, we obtained boxplots of FGL1 expression in various cancer
types at various pathological stages (including stages I, II, III, and IV)
from TCGA.

Pan-cancer analyses of FGL1 were conducted on the following 33
cancer types, data for which were retrieved from TCGA: adrenocortical
carcinoma (ACC), bladder urothelial carcinoma (BLCA), breast invasive
carcinoma (BRCA), cervical squamous cell carcinoma (CESC), chol-
angiocarcinoma (CHOL), colon adenocarcinoma (COAD), lymphoid
neoplasm diffuse large B cell lymphoma (DLBCL), esophageal carcinoma
2

(ESCA), glioblastoma (GBM), brain low-grade glioma (LGG), head and
neck squamous cell carcinoma (HNSC), kidney chromophobe (KICH),
kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell
carcinoma (KIRP), acute myeloid leukemia (LAML), liver hepatocellular
carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell
carcinoma (LUSC), mesothelioma (MESO), ovarian serous cystadeno
carcinoma (OV), pancreatic adenocarcinoma (PAAD), pheochromocy-
toma and paraganglioma (PCPG), prostate adenocarcinoma (PRAD),
rectum adenocarcinoma (READ), sarcoma (SARC), skin cutaneous mel-
anoma (SKCM), stomach adenocarcinoma (STAD), testicular germ cell
tumor (TGCT), thyroid carcinoma (THCA), thymoma (THYM), uterine
corpus endometrial carcinoma (UCEC), uterine carcinosarcoma (UCS),
and uveal melanoma (UVM).

2.2. Survival analysis

Forest plots were used to explore the correlation between FGL1
expression and prognosis, including overall survival (OS) and disease-
free survival (DFS), across cancers in TCGA dataset. Hazard ratios and
95% confidence intervals were calculated using a univariate survival
analysis. The survival package (version 2.41–1) [22] in R was used to
display the forest plots. P < 0.05 was considered a threshold.

In the GEPIA, we divided TCGA tumor samples into high- and low-
expression groups according to the median expression of FGL1 in each
cancer type. The OS and RFS of FGL1 in different cancers were analyzed
and displayed using Kaplan-Meier curves.

2.3. Methylation analysis

To assess the association between FGL1 methylation level and can-
cers, we used the UALCAN website to obtain boxplots for FGL1 methyl-
ation levels in BLCA, BRCA, COAD, ESCA, HNSC, KIPR, LUSC, PRAD,
READ, SARC, UCEC, and STAD from TCGA database.

2.4. Genetic alteration analysis

cBioPortal (https://www.cbioportal.org/) [23] is an online tool for
investigating gene mutation frequency, mutation type, and copy number
alterations (CNA). We used it to examine the genetic alterations of FGL1
and conduct a mutation-related survival analysis in the pan-cancer
cohort. We chose “TCGA Pan Cancer Atlas Studies” and entered “FGL1”
in the “Quick select” selection for queries of the genetic alteration
characteristics pan-cancer. We used the survival package in R 3.6.1 to
visualize the association among OS, disease-specific survival (DSS),
progression-free interval (PFI), DFI [24], and FGL1 expression in all

http://1gepia.cancer-pku.cn/
http://1gepia.cancer-pku.cn/
http://ualcan.path.uab.edu
http://ualcan.path.uab.edu
https://www.cbioportal.org/
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patients, using a Kaplan-Meier gram.

2.5. Gene set enrichment analysis

First, the pan-cancer analysis results (including gene expression,
protein expression, tumor-stage analysis, OS prognosis, DFS prognosis,
and methylation status) were compared and visualized using the UpSetR
1.4.0 package [25] in R. Next, PAAD, LIHC, LGG, LUAD, LUSC, and THCA
were selected for Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis according to the significance associated with FGL1 expression.
We used Gene set enrichment analysis (GSEA; http://software.broa
dinstitute.org/gsea/index.jsp) to screen the KEGG signaling pathways
associated with FGL1 expression in PAAD, LIHC, LGG, LUAD, LUSC, and
THCA. The criteria of significantly enriched pathways were normalized P
< 0.05. The resulting enrichment pathways were visualized using the
“ggplot2” package (version 3.3.5) in R-Studio.

2.6. Immune infiltration analysis

CIBERSORT (https://cibersort.stanford.edu/index.php) [26] and
TIMER (http://timer.cistrome.org/) [27] algorithms were used to
investigate the association between immune infiltrates and FGL1
expression across TCGA tumors. We then obtained heatmaps of Pearson's
correlations between FGL1 expression and the abundance of different
immune cell types. Subsequently, Pearson's method was used to deter-
mine the correlation between FGL1 expression and 23 common cancer
immune checkpoint genes retrieved from the literature. The correlations
were visualized in heatmaps using the “ggplot2” package (version 3.3.5)
in R-Studio.
Fig. 1. Expression level of the FGL1 gene in different tumors and pathological stages
from TCGA in TIMER. The red and blue boxes represent tumor tissues and normal tiss
corresponding normal tissues in the GTEx database are included as controls. The box
primary tissues of OV, RCC, UCEC, HNSC, PAAD, and LIHC examined using the CPTA
expression and main pathological stages, including stage I, stage II, stage III, and sta
data. The detailed P values were shown in Fig. 1D. (For interpretation of the refere
this article.)
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2.7. Protein–protein interaction network and enrichment analysis of FGL1

We used the Search Tool for the Retrieval of Interacting Genes
(STRING; https://string-db.org/) [28] to construct the protein–protein
interaction (PPI) network of FGL1-related genes. We considered an
interaction with a combined score >0.150 as statistically significant.
Visualization was performed using Cytoscape (version 3.6.1; http://
www.cytoscape.org/) [29]—an open-source website platform for visu-
alizing molecular interaction networks. We then conducted a KEGG
analysis of FGL1-associated genes using DAVID (version 6.8, http:
//david.ncifcrf.gov) [30,31] to identify associated functions and
pathways.

3. Results

3.1. Gene expression analysis

ThemRNA expression of FGL1was inconsistent in 33 common human
cancers, based on GEPIA results. The absolute expression of FGL1was the
highest in LIHC, followed by CHOL, LUAD, and PAAD (Fig. 1A). Addi-
tionally, FGL1 expression was significantly downregulated in tumors
compared with that in adjacent normal tissues in the LGG, LIHC, PAAD,
TGCT, and UCS datasets, whereas it was significantly upregulated in
LUAD (Fig. 1B). We further compared the protein expression of FGL1 in
the CPTAC database; FGL1 protein expression was significantly
decreased in tumors compared with that in normal tissues in the OV,
RCC, UCEC, HNSC, and PAA datasets, but was increased in the LIHC
dataset (Fig. 1C).
. (A) Expression levels of FGL1 in different cancer types. The data were retrieved
ues, respectively. (B) For LGG, LIHC, LUAD, PAAD, TGCT, and UCS in TCGA, the
plot data are provided. (C) FGL1 protein expression level in normal tissues and
C dataset. *P < 0.05, **P < 0.01, ***P < 0.001. (D) Relationship between FGL1
ge IV of BRCA, CESC, HNSC, PAAD, LIHC, and THCA examined based on TCGA
nces to color in this figure legend, the reader is referred to the Web version of

http://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/index.jsp
https://cibersort.stanford.edu/index.php
http://timer.cistrome.org/
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http://www.cytoscape.org/
http://www.cytoscape.org/
http://david.ncifcrf.gov
http://david.ncifcrf.gov
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3.2. Correlation between FGL1 expression and clinicopathology

To study the relationship between FGL1 expression and clinicopath-
ological features in various tumors, we assessed FGL1 expression at
different cancer stages (I–IV), using UALCAN. FGL1 expression was
significantly different at different tumor stages in BRCA, CESC, HNSC,
PAAD, LIHC, and THCA, suggesting its role in cancer occurrence and
development (Fig. 1D).

3.3. Survival analysis

We determined the prognostic effect of FGL1 expression pan-cancer.
First, the OS and DFS of FGL1 were analyzed by Cox regression anal-
ysis of the 33 tumor types in TCGA database. We constructed a forest plot
of prognosis, which indicated that FGL1 expression was significantly
related with OS in eight tumor types, namely, CESC, ESCA, KIRC, LGG,
MESO, STAD, UCEC, and UCS (Fig. 2A). Upregulated FGL1 expression
was a remarkable risk factor in patients with CESC, ESCA, KIRC, LGG,
STAD, and UCS. In addition, FGL1 expressionwas significantly associated
with the DFS for three tumor types: CESC, LGG, and STAD (Fig. 2B).

We performed OS analysis on the above data and obtained Kaplan-
Meier survival curves (Fig. 2C). Results showed that the high expres-
sion of FGL1 significantly associated with poor OS in CECS (P ¼ 0.023),
ESCA (P ¼ 0.025), KIRC (P ¼ 0.013), MESO (P ¼ 0.0079), and UCS (P ¼
0.023). In contrast, low expression of FGL1 significantly affected poor OS
in STAD (P ¼ 0.02), UCEC (P ¼ 0.0044), and LGG (P ¼ 0.0078). We also
examined the association between FGL1 expression and DFS of cancer
patients (Fig. 2D). Kaplan-Meier analysis demonstrated that increased
FGL1 expression significantly influenced unfavorable DFS in CESC (P ¼
0.0024) and LGG (P¼ 0.0017). However, decreased FGL1 expression was
associated with poor DFS in STAD (P ¼ 0.0036).

3.4. DNA methylation and genetic alterations

We examined the DNA methylation level of FGL1 in different tumors
using TCGA data on the UALCAN platform. The methylation level of
FGL1 was significantly decreased in BLCA, BRCA, COAD, ESCA, HNSC,
KIPR, PRAD, READ, SARC, UCEC, and STAD tissues and increased in
LUSC, compared with that in matched normal tissues (Fig. 3A).

Next, we examined the genetic alteration characteristics of FGL1 in
the pan-cancer cohort using the cBioPortal website (TCGA, Pan-Cancer
Atlas). We used the “Cancer Types Summary” module to observe the
mutation frequency, mutation type, and CNA of FGL1 in all TCGA tumors.
“Deep Deletion” was the most common type of genetic alteration, fol-
lowed by “Mutation,” “Amplification,” “Structural Variant,” and “Multi-
ple Alterations” (Fig. 3B). The highest alteration frequency of FGL1 was
approximately 6.72% in LIHC, in which “Deep Deletion” was the most
common genetic alteration type. Genetic alterations in FGL1 occurred
more frequently in patients with COAD and BLCA.

We also investigated the potential association between genetic al-
terations in FGL1 and the prognosis of different types of tumors. Kaplan-
Meier analysis (Fig. 3C) showed that patients with genetic alterations in
FGL1 had unfavorable OS, Progression-free survival (PFS), and Disease
specific survival (DSS) than patients without alterations. However, no
significant difference was observed in DFS between the genetic alter-
ations and control groups.

3.5. GSEA analysis

We performed GSEA and KEGG analyses to investigate the molecular
mechanisms underlying FGL1 regulation in diverse tumors. Briefly, GSEA
was performed to examine the FGL1-associated signaling pathways that
are differentially activated in cancer. We used gene expression, protein
expression, stage, OS, DFS, and methylation status and screened the most
4

significant tumors for KEGG analysis (PAAD, LIHC, LGG, LUAD, LUSC,
and THCA; Fig. 4A). GSEA results of KEGG analysis revealed that 7, 11,
15, 23, 17, and 17 significantly FGL1-involved KEGG signaling pathways
were obtained in PAAD, LIHC, LGG, LUAD, LUSC, and THCA, respec-
tively (Fig. 4B and C). For example, in LGG, glycosaminoglycan biosyn-
thesis keratan sulfate, complement and coagulation cascades,
phenylalanine metabolism, pantothenate and CoA biosynthesis, O-glycan
biosynthesis, cell adhesion molecules, starch and sucrose metabolism,
retinol metabolism, leukocyte transendothelial migration, Fc gamma R-
mediated phagocytosis, natural killer cell-mediated cytotoxicity, and
PPAR signaling pathway were associated with FGL1. In LUAD, FGL1 was
found involved in various pathways, such as protein export, glyoxylate
and dicarboxylate metabolism, aminoacyl-tRNA biosynthesis, riboflavin
metabolism, ascorbate and aldarate metabolism, maturity-onset diabetes
of the young, arginine and proline metabolism, nitrogen metabolism,
porphyrin and chlorophyll metabolism, N-glycan biosynthesis, alanine
aspartate and glutamate metabolism, pyruvate metabolism, cysteine and
methionine metabolism, and adipocytokine signaling pathways.
Furthermore, in LIHC, FGL1 expressionwas correlatedwith several KEGG
terms, such as complement and coagulation cascades, retinol meta-
bolism, linoleic acid metabolism, ascorbate and aldarate metabolism,
propanoate metabolism, steroid hormone biosynthesis, alanine aspartate
and glutamate metabolism, arachidonic acid metabolism, and arginine
and proline metabolism. The above results show that FGL1-associated
signaling pathways are mainly involved in metabolic- and immune-
associated pathways in these cancers, suggesting that FGL1 plays an
important role in cancer metabolism and immunity.
3.6. Analysis of immune cell infiltration and immune checkpoint genes

We used the TIMER database (including two methods: CIBERSORT
and TIMER) to explore the relationship between FGL1 expression and
immune infiltration level in different tumors. FGL1 expression was
significantly associated with the abundance of infiltrating immune cells.
Based on the TIMER algorithm analysis (Fig. 5A), we noted that FGL1 had
the highest positive correlation with neutrophils in ACC and the highest
negative correlation with myeloid dendritic cells in DLBC. In addition,
FGL1 expression was negatively and significantly correlated with CD8þ T
cells, neutrophils, macrophages, and myeloid dendritic cells in LUAD
patients. FGL1 expression was positively correlated only with macro-
phages in LUSC. The expression of FGL1 was positively correlated with
neutrophils and myeloid dendritic cells in THCA, but negatively corre-
lated with B cells.

We also used the CIBERSORT algorithm to investigate the association
between FGL1 expression and infiltration of different immune cell sub-
types. FGL1 expression was significantly positively or negatively corre-
lated with many immune cell subtypes in cancer (Fig. 5B). In LUAD, the
expression of FGL1 was positively correlated with B cell plasma,
neutrophil, macrophage M0, Tregs, NK cell resting, and T cell follicular
helper cells, while it was negatively correlated with macrophage M1, M2,
monocyte, myeloid dendritic cell resting, and mast cell activated. In
LUSC, CD4þ T cell memory resting, CD4þ T cell naïve, neutrophil,
monocyte, and mast cell activated were positively associated with FGL1
expression. In THCA, FGL1 expression was positively associated with
Tregs andmyeloid dendritic cell resting, while negatively correlated with
B cell plasma.

Furthermore, we examined the relationship between FGL expression
and 23 genes of common immune checkpoints in a pan-cancer dataset.
FGL1 expression was correlated with 14 immune checkpoint genes in
ACC, 13 in UVM, 20 in LUAD, 13 in THYM, and 17 in TGCT, and all P
values were shown in Fig. 5C. The immune checkpoint geneHAVCR2was
positively correlated with FGL1 expression in ACC, and the immune
checkpoint gene IDO1was negatively correlated with FGL1 expression in
UVM. These results suggest FGL1's significant role in tumor immunity.



Fig. 2. Correlation between FGL1 gene expression and survival prognosis of cancers in TCGA. Forest plot of (A) OS and (B) DFS in different cancers. The red squares
indicate the tumor types that have a significant correlation with prognosis. (C) Kaplan-Meier survival curves of OS for patients stratified by the differential expression
of FGL1 in CESC, ESCA, KIRC, LGG, MESO, STAD, UCEC, and UCS. (D) Kaplan-Meier survival curves of DFS for patients stratified by the differential expression of FGL1
in CESC, LGG, and STAD. The red and blue lines represent high and low expression, respectively. All P values were shown in Figure. (For interpretation of the
references to color in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 3. DNA methylation and mutation feature of
FGL1 in different tumors of TCGA. (A) DNA methyl-
ation level of FGL1 in BLCA, BRCA, COAD, ESCA,
HNSC, KIPR, LUSC, PRAD, READ, SARC, UCEC, and
STAD. The data were obtained from the UALCAN
database. *P < 0.05, **P < 0.01, ***P < 0.001. (B)
Alteration frequency with different mutations in
FGL1. The results are displayed using the cBioPortal
tool. (C) Effect of FGL1 mutational status on overall,
disease-specific, disease-free, and progression-free
survivals of cancer patients assessed using the cBio-
Portal database. The detailed P values were shown in
Fig. 3C.
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Fig. 4. Enrichment analysis for FGL1 ob-
tained from KEGG. (A) Comparison of re-
sults with significance in different analysis
of various tumors. (B) FGL1 signaling
pathway analysis in PAAD, LIHC, LGG,
LUAD, LUSC, and THCA. The horizontal
axis represents the enrichment score, and
the vertical axis represents the KEGG
terms. The color of the column represents
the significance; the closer to red, the
higher the significance. (C) Top three
KEGG pathways in which FGL1 is enriched
in PAAD, LIHC, LGG, LUAD, LUSC, and
THCA. (For interpretation of the refer-
ences to color in this figure legend, the
reader is referred to the Web version of
this article.)
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Fig. 5. Correlation of FGL1 expression with immune infiltration. (A) FGL1 expression is significantly correlated with the infiltration levels of various immune cells
according to TIMER algorithm. *P < 0.05, **P < 0.01, ***P < 0.005. (B) FGL1 expression is significantly correlated with the infiltration levels of various immune cells
based on the CIBERSORT algorithm. *P < 0.05, **P < 0.01, ***P < 0.005. (C) Correlation analysis of FGL1 expression and 23 common immune checkpoint genes in
different cancers. *P < 0.05, **P < 0.01, ***P < 0.005.
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3.7. Functional enrichment analysis

Analyzing the functional interactions between proteins can provide a
deeper understanding of the mechanisms of tumor formation and
8

progression. We used the STRING tool to obtain 50 FGL1-related proteins
and constructed a PPI network (Fig. 6A) and then conducted KEGG
analysis for all related genes in the PPI network. The significant enriched
pathways obtained in the KEGG pathway analysis (Table 1) were



Fig. 6. Enrichment analysis of FGL1-related genes. (A) PPI network of top 50 genes related to the expression of FGL1. (B) Network diagram of the KEGG signaling
pathways of the FGL1-interacting genes.

Table 1
KEGG classification terms of the FGL1-interacting genes.

Term Count Genes

hsa03420: Nucleotide excision repair 3 ERCC3, GTF2H2, DDB2
hsa03022: Basal transcription factors 2 ERCC3, GTF2H2
hsa04120: Ubiquitin mediated proteolysis 2 PPIL2, DDB2
hsa04621: NOD-like receptor signaling
pathway

2 TRIP6, DNM1L

hsa05202: Transcriptional misregulation
in cancer

2 PLAT, DDB2

hsa01100: Metabolic pathways 4 CMAS, ALDH5A1, NDUFS6,
ETHE1

hsa05200: Pathways in cancer 2 COL4A2, DDB2
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“nucleotide excision repair,” “basal transcription factors,” “ubiquitin-
mediated proteolysis,” “NOD-like receptor signaling pathway,” “tran-
scriptional misregulation in cancer,” “metabolic pathways”, and
9

“pathways in cancer.” Additionally, as shown in Fig. 6B, functional
interaction network analysis demonstrated that FGL1 interacted with
eleven other genes and participated in seven functional pathways: For
example, FGL1 interacts with ALDH5A1 and participates in “metabolic
pathways”; interacts with CMAS and also participates in “metabolic
pathways”; interacts with COL4A2 and participates in “pathways in
cancer”; interacts with DDB2 and participates in “nuclear exercise
repair,” “ubiquitin-mediated proteolysis,” “pathways in cancer” and
“transcriptional misregulation in cancer”; interacts with DMN1L and
participates in “NOD-like receiver signaling pathway”; interacts with
ERCC3/GTF2H2 and participates in “Basel transcription factors” and
“nuclear accident repair”; interacts with NDUFS6 and participates in
“metabolic pathways”; interacts with plat to participate in “transcrip-
tional misregulation in cancer”; interacts with PPIL2 and participate in
“ubiquitin-mediated proteolysis”; and interacts with TRIP6 and partici-
pates in “NOD-like receiver signaling pathway.”
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4. Discussion

Cancer is a serious threat to human health owing to its high incidence
and mortality rates [1]. Currently, the most common treatments for tu-
mors are surgical resection, chemoradiotherapy, and immunotherapy;
however, their efficacy remains limited [2]. Early prevention and effec-
tive treatment of cancer are critical for improving prognoses [3].
Pan-cancer analysis is an important bioinformatics approach that can
provide novel and deeper insights into tumor prevention and personal-
ized therapeutic strategies [5–7]. An increasing number of studies have
strongly suggested that FGL1 is highly expressed in various tumor tissues
and may serve as a pan-cancer prognostic biomarker [8,12,17]. Recent
studies have shown that targeting FGL1 may serve as a new strategy for
tumor immunotherapy [18,32–35]. However, the molecular mechanisms
of FGL1 in different cancer types remain unclear and require further
investigation. After a comprehensive literature search, we found no
report on the pan-cancer analysis of FGL1. To our knowledge, this is the
first study to comprehensively investigate FGL1 expression in a
pan-cancer dataset. We found that FGL1 plays important roles in the
progression and prognosis of many tumors.

The results of pan-cancer analysis showed that FGL1 was highly
expressed in LUAD tissues as against their adjacent normal counterparts
but the expression level decreased in LGG, LIHC, PAAD, TGCT, and UCS.
Previous studies have shown that FGL1 not only promotes the invasion
and metastasis of gastric [15] and liver cancer [13] but also inhibits
tumor progression in LKB1-mutant LUAD [17], demonstrating that FGL1
has both pro-tumor and anti-tumor effects, which may due to the func-
tion and levels of different substrates. In addition, the overexpression of
FGL1 was related to worse prognosis (OS and DFS) in multiple tumors,
such as CECS, ESCA, KIRC, and UCS, and the low expression of FGL1 was
correlated with poor OS in UCEC and MESO, suggesting that FGL1
worked differently in different tumors. Notably, the expression of FGL1
was closely related to immune infiltration and immune checkpoint
markers in human cancers, especially ACC, UVM, and THYM, among
others. Together, these results strongly indicate that FGL1 is a potential
prognostic pan-cancer biomarker and plays a key role in tumor
immunity.

Gene mutations can enhance the biological resistance of tumor cells
to surrounding normal cells and are therefore a serious risk factor for
tumorigenesis and progression [36]. Thus, genetic alteration of FGL1 is
likely to influence the expression levels of substrates. There are few
studies on FGL1mutations in tumor tissues. In the present study, we used
the cBioPortal tool to explore the mutation pattern and amplification
frequency of FGL1 in different tumors and found that the most common
mutation of FGL1 pan-cancer was deep deletion, manifesting as missense
mutations at the protein level. Moreover, we investigated the potential
relationship between genetic changes in FGL1 and four prognosis out-
comes and found that FGL1 mutations had a significant impact on PFS,
DSS, and OS of patients with malignant tumors. These findings suggest
that genetic changes in FGL1 play a significant role in tumorigenesis and
unfavorable prognoses. We believe that both changes in FGL1 expression
levels alone and genetic alterations in FGL1 affect tumor progression.
DNA methylation is one of the earliest discovered and most well-studied
epigenetic modifications in mammals, and it plays an important role in
tumorigenesis and progression [37]. DNAmethylation typically represses
gene expression by altering chromatin structure, stability, and confor-
mation [38]. Restoring key tumor suppressor genes through demethy-
lation is essential for tumor prevention and treatment [39]. The findings
of UALCAN illustrated that the methylation level of FGL1 promoter was
significantly decreased in multiple tumor tissues versus normal tissues,
which may explain the altered regulation of FGL1 expression in various
cancers. Therefore, our study suggests a potential correlation between
FGL1 expression and DNA methylation. We did not retrieve the available
literature on the methylation status of FGL1. However, the association
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between FGL1 expression and DNA methylation levels requires further
investigation.

The tumor microenvironment plays a dominant role in tumor initia-
tion and progression, potentially accelerating tumor progression [40,41].
Although immunotherapy has made breakthroughs in tumor therapy
[42–44], its clinical application and drug resistance (such as
anti-PD-1/PD-L1 therapy) continue to face many challenges. Therefore,
identifying new therapeutic targets and biomarkers is key to further
improving the efficacy of immunotherapy and improving tumor resis-
tance [45–47]. Recent studies have reported that the FGL1/LAG3
pathway is a promising immune checkpoint pathway [9–11], similar to
PD-1/PD-L1, which plays an essential role in tumor immune escape
mechanisms. Therefore, FGL1 is regarded as the next most important
immune checkpoint and a promising novel therapeutic target for cancer
[9]. Studies have demonstrated that FGL1 promotes cell proliferation in
LUAD by regulating MYC target genes and can serve as an immune
checkpoint [19]. In addition, it has been reported that FGL1 expression
correlates with poor prognosis in HCC [13], plays an important role in
immune microenvironment regulation, and results in PD-1/PD-L1
immunotherapy tolerance [9]. We observed that FGL1 expression was
closely associated with multiple immune cells and immune checkpoint
genes in various cancers, which is consistent with previous studies,
strongly suggesting that FGL1 regulates or recruits immune cells to
modulate tumor immunity and thus plays a complex role in tumor
regulation. In present study, the analysis of immune cells and immune
cell subsets based on TIMER and CIBERSORT shows a complex result,
which needs further study. In addition, though TIMER and CIBERSORT
are convenient and widely used methods to determine the level of im-
mune infiltration, there are some inconsistent results between these two
methods because of different algorithm. Therefore, further wet experi-
ments, such as immunohistochemistry and flow cytometry are still war-
ranted. Overall, the expression of FGL1 is significantly related to various
immune cells, which may indicate its role in immune regulation leading
to the development of various tumors.

To further explore the role of FGL1 in tumors, we performed
enrichment analysis of FGL1-related genes and proteins. FGL1-associated
genes were found involved in “ubiquitin-mediated proteolysis” for the
first time. Enrichment analyses also revealed that FGL1 is involved in
some cancer-regulating processes, including “Nucleotide excision
repair,” “Basal transcription factors,” “NOD-like receptor signaling
pathway,” “Transcriptional misregulation in cancer,” “Metabolic path-
ways” and “Pathways in cancer,” all of which are important in the
occurrence and progression of cancer as well as in tumor cell prolifera-
tion. Our study is the first to show that FGL1, via its associated genes,
probably plays an essential role in tumorigenesis by modulating ubiq-
uitination. We also conducted KEGG analysis to investigate the function
of FGL1 in specific cancers, including PAAD, LIHC, LGG, LUAD, LUSC,
and THCA, and found that FGL1 participated in many signaling path-
ways, mainly associated with immune pathways and metabolic
pathways.

Although we explored and analyzed the expression, survival prog-
nosis, genetic alterations, DNA methylation status, immune infiltration,
and KEGG enrichment analysis concerning FGL1, some limitations of this
study should be acknowledged. First, we did not perform any wet-lab
experiments on FGL1 expression in tumor tissues. Second, our study
did not explore the cellular mechanisms of FGL1 in cancer. In the future,
in vivo and in vitro experiments are required to validate our findings and
further investigate the functional mechanisms of FGL1 expression in
tumors.

5. Conclusions and perspectives

In conclusion, this pan-cancer study comprehensively and systemat-
ically explored the role of FGL1 in tumors and demonstrated the effect of
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FGL1 in progression of most cancer types. We speculate that FGL1 pro-
motes tumorigenesis and subsequent progression of diverse cancers via
DNA methylation, genetic alterations, and the tumor microenvironment.
The findings of this study support the position that FGL1 is an important
biomarker for the diagnosis, prognosis, and treatment target of several
tumors. Our study provides insights into and directions for experimental
studies on FGL1 expression in tumor immune research and therapeutic
strategies targeting FGL1.
Table S1
The roles of FGL1 in different cancers

Tumor
type

Gene expression Protein
expression

Survival

ACC NS NS NS

BLCA NS NS NS

BRCA NS NS NS

CESC NS NS Overexpression of FGL1 was
associated with poor OS and
unfavorable DFS

CHOL NS NS NS

COAD NS NS NS

DLBC NS NS NS

ESCA NS NS High expression of FGL1 was
associated with poor OS

GBM NS NS NS

HNSC NS Downregulation NS

KICH NS NS NS

KIRC NS Downregulation High expression of FGL1 was
associated with poor OS

KIRP NS NS NS

LGG Downregulation NS Low expression of FGL1 was
associated with poor OS; increased
FGL1 expression significantly
influenced unfavorable DFS

LIHC Downregulation Upregulation NS
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DNA
methylation

Genetic alteration Immune infiltration

NS NS Positive correlated with neutrophils (TIMER
and CIBERSORT) and macrophage (TIMER)

Decreased Deep deletion,
mutation

Positive correlated with neutrophil (TIMER)

Decreased Deep deletion,
amplification,
mutation

Positive correlated with macrophage M2
(CIBERSORT)

NS Deep deletion,
mutation

Negative correlated with B cell and CD8þ T cell
(TIMER)Positive correlated with B cell plasma,
neutrophil, Macrophage M0, NK cell resting,
and Mast cell resting; negative correlated with
B cell memory, CD8þ T cell, Macrophage M1,
myeloid dendritic cell resting, T cell follicular
helper and T cell gamma delta (CIBERSORT)

NS Deep deletion Negative correlated with B cell plasma and T
cell follicular helper (CIBERSORT)

Decreased Deep deletion,
amplification,
mutation

Positive correlated with myeloid dendritic cell
(TIMER)
Positive correlated with NK cell activated;
negative correlated with B cell plasma, CD4þ T
cell memory activated and NK cell resting
(CIBERSORT)

NS Deep deletion Negative correlated with myeloid dendritic
cells (TIMER)

Decreased Deep deletion,
amplification,
mutation

Positive correlated with CD4þ T cell memory
resting, and mast cell resting; negative
correlated with myeloid dendritic cell resting
and NK cell activated (CIBERSORT)

NS Mutation Negative correlated with T cell gamma delta
(CIBERSORT)

Decreased Deep deletion,
structural variant,
mutation

Positive correlated with CD8þ T cell,
neutrophil and myeloid dendritic cell (TIMER)
Positive correlated with macrophage M1, M2,
and mast cell resting; negative correlated with
B cell memory, B cell plasma, CD8þ T cell,
Tregs, mast cell activated and T cell follicular
helper (CIBERSORT)

NS NS Positive correlated with CD4þ naïve T cell,
neutrophil and macrophage M0

NS Deep deletion Negative correlated with CD8þ T cell (TIMER)
Positive correlated with neutrophil,
macrophage M0, and Tregs; negative
correlated with macrophage M1 and CD8þ T
cell (CIBERSORT)

Decreased Deep deletion Positive correlated with CD8þ T cell,
neutrophil and myeloid dendritic cell (TIMER)
Positive correlated with B cell naïve
(CIBERSORT)

NS Deep deletion,
mutation

Positive correlated with CD8þ T cell,
neutrophil and myeloid dendritic cell (TIMER)
Positive correlated with myeloid dendritic cell
activated, neutrophil, macrophage, and T cell
follicular helper; negative correlated with
macrophage M2 (CIBERSORT)

NS Deep deletion,
structural variant,
mutation

Positive correlated with B cell naïve, CD4þ T
cell memory resting, and macrophage M2;
negative correlated with B cell memory, mast
cell activated, eosinophil and T cell follicular
helper (CIBERSORT)

(continued on next page)



Table S1 (continued )

Tumor
type

Gene expression Protein
expression

Survival DNA
methylation

Genetic alteration Immune infiltration

LUAD Upregulation NS NS NS Deep deletion,
structural variant,
mutation

Negative correlated with CD8þ T cell,
neutrophil, macrophage and myeloid dendritic
cell (TIMER)
Positive correlated with B cell plasma,
neutrophil, macrophage M0, Tregs, NK cell
resting, and T cell follicular helper; negative
correlated with macrophage M1, M2,
monocyte, myeloid dendritic cell resting, and
mast cell activated (CIBERSORT)

LUSC NS NS NS Increased Deep deletion Positive correlated with macrophage (TIMER)
Positive correlated with CD4þ T cell memory
resting, CD4þ T cell naïve, neutrophil,
monocyte, mast cell activated; negative
correlated with B cell plasma, CD8þ T cell,
macrophage M1, and T cell follicular helper
(CIBERSORT)

MESO NS NS High expression of FGL1 was
associated with poor OS

NS Amplification NS

OV NS Downregulation NS NS Deep deletion,
amplification

Positive correlated with neutrophil and
macrophage (TIMER)
Positive correlated with monocyte
(CIBERSORT)

PAAD Downregulation Downregulation NS NS Deep deletion,
mutation

Negative correlated with B cell, neutrophil and
myeloid dendritic cell (TIMER)
Positive correlated with mast cell activated;
negative correlated with myeloid dendritic cell
activated (CIBERSORT)

PCPG NS NS NS NS Amplification Positive correlated with CD4þ T cell memory
activated, macrophage M0, and NK cell resting;
negative correlated with myeloid dendritic cell
resting, and NK cell activated (CIBERSORT)

PRAD NS NS NS Decreased Deep deletion,
amplification

Positive correlated with neutrophil and
macrophage (TIMER)
Positive correlated with neutrophil,
macrophage M0, macrophage M1, monocyte,
myeloid dendritic cell resting, and NK cell
resting; negative correlated with NK cell
activated, T cell follicular helper and T cell
gamma delta (CIBERSORT)

READ NS NS NS Decreased
SARC NS NS NS Decreased Deep deletion,

structural variant
Positive correlated with CD8þ T cell and
macrophage (TIMER)
Positive correlated with CD4þ T cell memory
activated and neutrophil (CIBERSORT)

SKCM NS NS NS NS Deep deletion,
amplification,
mutation

Positive correlated with macrophage (TIMER)
Positive correlated with macrophage M0, and
NK cell resting; negative correlated with
neutrophil, myeloid dendritic cell resting, and
NK cell activated (CIBERSORT)

STAD NS NS Low expression of FGL1 was
associated with poor OS and poor
DFS

Decreased Deep deletion,
amplification,
mutation

Positive correlated with macrophage (TIMER)
Positive correlated with B cell naïve, and B cell
plasma, neutrophil; negative correlated with
CD8þ T cell and CD4þ T cell memory activated
(CIBERSORT)

TGCT Downregulation NS NS NS Deep deletion Negative correlated with CD4þ T cell and
neutrophil (TIMER)
Positive correlated with macrophage M2, NK
cell activated, and T cell follicular helper;
negative correlated with CD4þ T cell memory
resting, and macrophage M0 (CIBERSORT)

THCA NS NS NS NS Mutation Positive correlated with CD4þ T cell,
neutrophil, and myeloid dendritic cell;
negative correlated with B cell (TIMER)
Positive associated with Tregs and myeloid
dendritic cell resting; negative correlated with
B cell plasma (CIBERSORT)

THYM NS NS NS NS Amplification Negative correlated with B cell and CD8þ T cell
(TIMER)
Positive correlated with macrophage M1, M2,
and T cell gamma delta; negative correlated
with CD4þ T cell naïve, Tregs, and T cell
follicular helper (CIBERSORT)

UCEC NS Downregulation Low expression of FGL1 was
associated with poor OS

Decreased Deep deletion,
amplification,
mutation

Positive correlated with CD8þ T cell (TIMER)
Negative correlated with B cell memory
(CIBERSORT)

(continued on next page)
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Table S1 (continued )

Tumor
type

Gene expression Protein
expression

Survival DNA
methylation

Genetic alteration Immune infiltration

UCS Downregulation NS High expression of FGL1 was
associated with poor OS

NS Deep deletion,
amplification

Positive correlated with myeloid dendritic cell
(TIMER)
Positive correlated with NK cell resting;
negative correlated with CD8þ T cell,
macrophage M1, NK cell activated and T cell
follicular helper (CIBERSORT)

UVM NS NS NS NS Deep deletion

ACC, Adrenocortical carcinoma; BLCA, Bladder Urothelial Carcinoma; BRCA, Breast invasive carcinoma; CESC, Cervical squamous cell carcinoma and endocervical
adenocarcinoma; CHOL, Cholangio carcinoma; COAD, Colon adenocarcinoma; DLBC, Lymphoid Neoplasm Diffuse Large B-cell Lymphoma; ESCA, Esophageal carci-
noma; GBM, Glioblastoma multiforme; HNSC, Head and Neck squamous cell carcinoma; KICH, Kidney Chromophobe; KIRC, Kidney renal clear cell carcinoma; KIRP,
Kidney renal papillary cell carcinoma; LGG, Brain Lower Grade Glioma; LIHC, Liver hepatocellular carcinoma; LUAD, Lung adenocarcinoma; LUSC, Lung squamous cell
carcinoma; MESO, Mesothelioma; OV, Ovarian serous cystadenocarcinoma; PAAD, Pancreatic adenocarcinoma; PCPG, Pheochromocytoma and Paraganglioma; PRAD,
Prostate adenocarcinoma; READ, Rectum adenocarcinoma; SARC, Sarcoma; SKCM, Skin Cutaneous Melanoma; STAD, Stomach adenocarcinoma; TGCT, Testicular Germ
Cell Tumors; THCA, Thyroid carcinoma; THYM, Thymoma; UCEC, Uterine Corpus Endometrial Carcinoma; UCS, Uterine Carcinosarcoma; UVM, Uveal Melanoma; NS,
not significant; OS, overall survival; DFS, disease-free survival.
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