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 Background: The potential roles of alternative splicing (AS) in HCC remain unknown. This study aimed to identify AS signa-
tures associated with the prognosis that influence the immune microenvironment of HCC.

 Material/Methods: The SpliceSeq tool was employed for genome-wide profiling of 7 AS events in 361 HCC patients from The 
Cancer Genome Atlas (TCGA). A prognostic signature was built by integrating Cox regression and the least ab-
solute shrinkage and selection operator (LASSO). The support vector machine (SVM) and receiver operating 
characteristic curve (ROC) were employed to analyze the AS events in the signatures to discriminate the im-
mune microenvironment.

 Results: There were 3546 AS events highly linked to the survival of patients with HCC. The AS signature could effec-
tively stratify HCC patients. Clustering analysis revealed 3 different immune clusters characterized with sig-
nificantly different prognoses and were significantly correlated with AS signatures. The AS events in the final 
prognostic signature classified the immune cluster with an average AUC of the ROC (0.88). Moreover, a poten-
tial regulatory network of splicing events in HCC is presented.

 Conclusions: We established the prognostic signature based on AS, which can effectively stratify HCC patients and predict 
the immune subtypes. Moreover, novel RNA splicing patterns and splicing-regulatory networks involved in HCC 
were discovered.
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Background

Protein-coding genes are finite. Hence, they cannot create huge 
protein diversities that are essential for the complex functional 
and regulatory processes in eukaryotic cells. Alternative splic-
ing (AS) of pre-mRNA is one of the pathways that lead to pro-
tein diversity. It does so by creating mRNA isoforms from the 
same set of genes. In the process, exons and introns are re-
moved from the human multi-exon/introns genes [1,2]. AS also 
down-regulates the translation of mRNA isoforms by introduc-
ing a premature stop codon [3]. Under normal physiological 
circumstances, alternative mRNA splicing is a well-regulated 
process, orchestrated by a small number of splicing factors 
(SFs). However, abrupt disruption in the AS process or muta-
tion in genes encoding for SFs may occur and lead to cancer [4]. 
High-throughput sequencing technologies have brought im-
mense excitement to cancer genome research, and the link be-
tween splicing defects in oncogenic protein isoforms has been 
the focus of extensive research during the last decade [5,6]. 
Indeed, AS events influence immune escape, proliferation, hy-
poxia, apoptosis, angiogenesis, and metastasis of tumor cells. 
Furthermore, diagnostic and prognostic values of AS in cancer 
are becoming more evident form recent research [7].

Liver cancers are highly prevalent globally. The most common 
among them is hepatocellular carcinoma (HCC), which consti-
tutes 90% of all primary liver cancers [8]. HCC recurrence after 
surgery is a commonly encountered problem in clinical prac-
tice [9,10]. Prognostic biomarkers, overall survival, and recur-
rence-free survival are some of the indicators of its aggres-
siveness. However, no clear-cut molecular predictive biomarker 
is available. With recent progress in the use of high-through-
put sequencing technologies, bioinformatics, and online avail-
ability of wide cancer genome data, systematic genome-wide 
analysis of different cancers has become possible [11]. Several 
studies have been carried out recently to identify cancer-as-
sociated AS events using The Cancer Genome Atlas (TCGA). 
Moreover, these data have been further utilized to construct 
prognostic signatures [12,13].

Several studies have been conducted to study AS events in 
HCC, suggesting that alteration of AS is a significant process 
involved in oncogenesis and could be used as a key prognostic 
biomarker in HCC [15-18]. In the present study, an AS sequence 
database of 361 HCC patients was extracted from TCGA, and 
several prognosis-associated AS events were systematically 
uncovered. The AS events associated with the immune micro-
environment were investigated first in HCC. We used machine 
learning methods to construct an AS-based model for prog-
nosis (LASSO Cox) and to discriminate the immune microen-
vironment (SVM). The in silico design of regulatory networks 
between AS events and SFs was also performed.

Material and Methods

Data	Acquisition	from	TCGA

TCGA SpliceSeq is an online data resource that provides AS 
profiles of 33 different tumors [19]. mRNA splicing patterns 
of TCGA samples were analyzed using the SpliceSeq applica-
tion [20]. RNAseq and clinical data of 361 HCC patients were 
downloaded from TCGA data domain (https://portal.gdc.can-
cer.gov/). SpliceSeq tool, a java program application, was used 
to analyze the mRNA splicing patterns of TCGA samples [21]. 
Seven AS types with a percent spliced in (PSI) value of more 
than 75% (value range from 0% to 100%) in HCC were retrieved 
from the TCGA SpliceSeq database. The PSI value indicates the 
efficiency of splicing a specific exon into the transcript popu-
lation of a gene. It is the ratio between reads including or ex-
cluding exons [20]. The 7 AS events were: alternate acceptor 
site (AA), alternate donor site (AD), alternate terminator (AT), 
alternate promoter (AP), retained intron (RI), mutually exclu-
sive exon (ME), and exon skip (ES).

Survival-Associated AS Events in HCC

The correlation of AS events to RFS and OS was explored us-
ing univariate Cox regression analysis. The UpSet plot visu-
alization technique was utilized to quantitatively analyze in-
teractive sets and intersections between the 7 types of AS 
events. Prognostic signatures were created with the LASSO 
tool, which was also used for Cox regression survival analy-
sis, given that it is fit for high-dimensional data [22]. The top 
50 key AS events in RI, ME, ES, AA, AT, AD, and AP that were 
linked to survival were selected to construct the prognostic 
signatures by LASSO Cox based on the minimum criteria. They 
were then combined to construct the final prognostic signature 
using the same method. “Glmnet” package in R was utilized 
to estimate the coefficients and partial likelihood deviance.

Bioinformatics

The immune and non-immune cell populations were quanti-
fied from bulk gene expression data of HCC tumors. Immune 
cell types in the tumor microenvironment were identified us-
ing single-sample gene set enrichment analysis (ssGSEA) as 
described by Charoentong [23]. Specific cell-type transcriptom-
ic signatures were used as reported previously [23-25]. The 
average score of the cell was used in cases where there were 
common cell types among different methods. Cluster testing 
was performed to determine the optimal number of stable HCC 
microenvironment subtypes, then silhouette analysis was con-
ducted to validate the stability of the clustering. Unsupervised 
cluster analysis was then performed to cluster samples based 
on the constituent pattern of all the cell types. The k-means 
clustering result was utilized to reorder the samples and scale 
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the original cell scores before heatmap plotting. The AS events 
in the final signatures were used to construct the model to 
discriminate the different immune clusters by SVM. The risk 
scores were calculated from the final prognostic signatures 
and separated into the high and low groups using the medi-
an. The clinical parameters of patients were then integrated 
into the multivariable Cox regression analysis to create a fi-
nal signature with the potential to serve as an independent 
prognostic predictor.

SF-AS Regulatory Network

Expression data of SF genes in HCC were derived from the 
TCGA database. Spearman tests were carried out to explore 
the association between the PSI values of survival-associated 
AS and expression of SF genes. The “Benjamini & Hochberg” 
method was employed to adjust P values. Correlation plots 
were established using Cytoscape software (version 3.4.0). 
P<0.05 was considered statistically significant.

Statistical Analysis

The R version 3.6.2. software was employed for data analysis. 
Kaplan-Meier curves of survival probability were compared with 
the log-rank test using “survminer”. The LASSO Cox regression 
model was employed to assess ideal coefficient for each vari-
able and to estimate the deviance likelihood via 1-standard 
error criteria using “glmnet”. All tests were two-sided, and P 
values <0.05 were considered statistically significant.

Results

Integrated AS Events Profiles in HCC Patients

Integrated mRNA splicing events profiles of 361 HCC patients 
were explored using the data obtained from TCGA. We detect-
ed 34 163 mRNA splicing events in 7196 genes. This indicat-
ed that the average number of AS events per gene was 4 to 5. 
Of note, ES was the most frequent splice signature, followed 
by AP and AT, respectively. We found 6965 ESs in 2954 genes, 
2263 RIs in 1561 genes, 5346 APs in 2167 genes, 4892 ATs in 
2148 genes, 2331 ADs in 1663 genes, 2666 AAs in 1937 genes, 
and 137 MEs in 135 genes. The genes and AS events of each 
AS type are shown in Figure 1.

The survival-associated AS events in HCC patients were then 
investigated. One survival-associated gene had 2 or more AS 
events. The UpSet plots further revealed that 1 gene had up 
to 4 types of AS events, which were correlated with overall 
survival and recurrence-free survival (Figure 2), with ES being 
the most frequent survival-associated AS event.

AS Prognostic Signatures for HCC Patients

LASSO Cox analyses of overall survival were used to assess the 
prognostic significance of AS events in HCC patients following 
the univariate Cox analysis. The top 50 most significant sur-
vival-associated AS events in AA, AD, AP, AT, ES, and RI were 
used to develop prognostic signatures by LASSO Cox based on 
the minimum criteria (Figures 3, 4). Finally, the top 50 most 
significant survival-associated AS events in the 7 types were 
used to construct the final prognostic signature. LASSO Cox 
analysis failed for ME because of lack of enough ME events 
in HCC patients. A risk score was then obtained using coeffi-
cients from the LASSO algorithm. The HCC patients were clas-
sified into high- and low-risk groups on the basis of their me-
dian risk scores to further investigate the prognostic role of 
the risk signatures. Significant differences in overall surviv-
al (Figure 5) and in recurrence-free survival (Supplementary 
Figure 1) were observed. The final prognostic signature had 
excellent ability to distinguish HCC patients with different clin-
ical outcomes (Figure 5G). The sets of genes and splice events 
for each type of AS are submitted as the supplementary data 
file (Supplementary Table 1).

AS Associated with the Immune Microenvironment

To query the relationship between AS events and the tumor 
immune microenvironment, several immune and non-immune 
cell populations were quantified from the bulk gene expression 
data of HCC patients. A total of 43 cell populations grouped 
into adaptive immune cells, innate immune cells, and stromal 
cells were identified. The immune cell types and the proportion-
al value are shown in Supplementary Table 2. Unsupervised 
cluster analysis using all the 43 cell populations showed 3 dif-
ferent patterns of microenvironment cell types in HCC patients 
(Figure 6A). Three was the optimal and stable clustering num-
ber (Supplementary Figure 2). Cluster 1 (immune-high sub-
type, “hot tumor”) was characterized by increased B cells, T 
cells, and other immune and non-immune cell types. Cluster 2 
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Figure 1.  AS events and corresponding genes in this study.
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(Immune-mid subtype) showed moderately increased innate im-
mune cell infiltration, with lesser adaptive immune cell infiltra-
tion. Cluster 3 (Immune-low subtype, “immune-desert tumor”) 
showed low immune and non-immune cell infiltration. The as-
sociation between different type prognostic signatures and im-
mune clusters was then explored. All the AS signatures were 
found to be significantly correlated with the immune clusters. 
In addition, the immune-high subtype was found to capture 
2 distinct subtypes: active (cluster 1A) and exhausted (cluster 

1B) subtypes. The exhausted subtype had increased Treg and 
Th2 cells, which confirmed their diverse roles in immune ex-
haustion. Moreover, there were significant differences in RFS 
(Figure 6B) and OS (Supplementary Figure 3) between the dif-
ferent immune-cluster subtypes. The ability of the AS events 
to predict the immune clusters in the final prognostic signa-
tures was further confirmed using the ROC curves (Figure 7). 
The AUC of the average ROC reached 0.88.
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Figure 2.  Prognosis-related AS events in HCC patients. (A) UpSet plot of interactions among the 7 types of recurrence-free survival-
associated AS events. (B) UpSet plot showing interactions among the 7 types of AS events associated overall survival.
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Figure 3.  Establishment of prognostic signatures based on LASSO Cox analysis. The coefficients obtained from the LASSO algorithm: 
(A) AA, (B) DA, (C) AP, (D) AT, (E) ES, (F) RI, and (G) ALL AS types.
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Figure 5.  Kaplan-Meier plot of prognostic predictors in HCC patients. (A-F) Kaplan-Meier plot showing the overall survival probability 
over time for prognosis prediction of 6 types of AS events with low (green) risk group and high (red). (G) Kaplan-Meier plot 
showing the survival probability over time for the final prognostic predictor with low-risk group (green) and high-risk group 
(red).
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Figure 6.  The relationship between AS events and the tumor immune microenvironment. (A) Clustering of HCC microenvironment 
phenotypes based on the estimated scores of 43 cell subsets. The average score of the cell type was used as indicated by 
Aran, Bindea, or Charoentong in cases where there were common cell types among the different methods (Aran, Bindea, and 
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Figure 7.  ROC curves of immune clusters predicted by AS events. 
Micro and macro methods for average ROC were used.

Univariate Cox analysis was then performed to assess the 
effect of clinical characteristics, the risk score, and immune 
clusters on RFS and OS. The univariate analyses of RFS and 
OS are shown in Supplementary Tables 3 and 4, respective-
ly. Multivariate Cox analysis was then further performed for 
RFS (Figure 8A) and OS (Figure 8B). The risk score calculated 
from the final prognostic signature, the immune clusters, and 
stage were found to be independent prognostic indicators.

Survival-Associated SF-AS Network

SFs regulate RNA splicing by binding to the cis-regulatory ele-
ments in pre-mRNA [26]. A splicing-regulatory network of key 
AS events related to the survival in HCC patients was there-
fore constructed to determine whether SFs with altered ex-
pression were potential regulators of significant AS events. We 
identified 49 SFs as having a significant association with OS 
in HCC patients based on their expression levels. Spearman 
correlation analyses comparing gene expression of surviv-
al-associated SFs and PSI values of survival-associated AS 
events were further performed. Only significant correlations 
(P<0.001) are presented in Figure 9A. In the correlation net-
work, 26 survival-associated SFs (purple dots) were significant-
ly related to 91 survival-associated AS events. Among these 
91, 48 (green dots) were notably linked to favorable survival 
while 43 (red dots) were markedly correlated with poor surviv-
al in HCC patients (Figure 9A). The network further revealed 
a positive correlation (represented with red lines) between 
the red and purple dots (ie, the poorest survival prognostic 
AS events). Of note, a negative relationship was observed be-
tween the best survival-associated AS events and the expres-
sion of SFs. Specifically, splicing factor SRSF2 was markedly 
correlated with poor overall survival and disease-free surviv-
al (Figure 9B). Correlations between AP PSI values of CAPRIN1 

and ES PSI values of SULT1A2 and splicing factor SRSF2 are 
shown in dot plots (Figure 9C).

Discussion

AS is an essential mechanism for creating huge protein diver-
sity in eukaryotic cells. Although it is a well-regulated mech-
anism, disturbances in the mRNA AS process can occur and 
promote tumorigenesis [27]. Dysregulation in AS can lead to 
the formation of cancer-promoting protein isoforms associ-
ated with proliferation, metastasis, and drug resistance. For 
example, CD44 isoforms are critical in colorectal cancer ini-
tiation [28]. Several aspects of AS abnormalities such as the 
production of cancer-specific isoform of certain genes, inac-
tivation of tumor suppressor genes, activation of oncogenes, 
disturbance of cell regulatory pathways, and mutation of SFs 
promote tumorigenesis. Recent genome-wide data analysis us-
ing bioinformatics tools have revealed hundreds of aberrant 
AS events strongly related to the prognosis of NSCLC and thy-
roid cancer [29,30].

Liver cancers are highly prevalent globally. The most common 
among them is HCC, which constitutes 90% of all primary liv-
er cancers [8]. Predictive molecular biomarkers such as AFP, 
micro RNAs, Wnt5a, and human carbonyl reductase 2, among 
others, are supplemented by imaging techniques to diagnose 
and predict the likelihood of HCC occurrence [31]. However, 
the predictive capability of these biomarkers is limited [32]. 
Owing to its global burden, the development of new methods 
to identify more diagnostic and predictive biomarkers for HCC 
is thus crucial. Recent advances in high-throughput sequenc-
ing technologies and bioinformatics tools have enabled com-
prehensive analysis and characterization of genetic aberrations 
of the spliceosome and splice sites to be possible [33]. The 
prognostic and diagnostic values of AS signatures have been 
previously revealed in different studies. Variation in AS signa-
tures and cancer-specific AS events could be used as prognos-
tic, predictive, and diagnostic biomarkers for different types 
of cancers. SpliceSeq analyses have been previously done to 
generate alterative splicing profiles for different cancers and 
to identify significant splicing events that can predict cancer 
prognosis [26,34]. Genome-wide analysis to generate AS pro-
files of HCC patients followed by identification of significant 
AS events to predict prognosis has also been done in sever-
al studies [15-18]. Compared with these previous, the major 
original features of the present study are: we associated the 
AS events with the immune microenvironment of HCC, and 
we used machine learning methods to construct an AS-based 
model for prognosis (LASSO Cox) and to discriminate the im-
mune microenvironment (SVM). The final prognostic signatures 
had excellent ability to distinguish HCC patients with different 
clinical outcomes. The relationship between AS events and the 
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tumor immune microenvironment was explored, and significant 
correlations between AS signature and immune clusters were 
identified. An AS to SF correlation network was constructed to 
give further insights into the regulatory role of SF in AS events 
in HCC patients. High expression of SRSF2 was found to be 
strongly related to poor overall survival disease-free survival. 
This indicated that there was a positive correlation between 

poor prognostic-related AS events and SFs. The SRSF2 gene 
encodes for the serine/arginine rich family of pre-mRNA SFs, 
and they constitute part of the spliceosome and are critical in 
mRNA spicing [35]. These SFs have an RNA recognition mo-
tif that binds RNA and an RS motif that bind other proteins. 
SRSF2 acts as a splicing activator; it stabilizes the RNA and 
takes part in translation. Mutation in SRSF2 is associated with 

Hazard ratio

AFP

Stage AJCC

Vascular invasion

Risk

Cluster

<20 (N=142)

≥20 (N=127)

Stage I (N=166)

Stage II&III&IV (N=165)

No (N=199)

Macro+Micro (N=102)

Low (N=178)

High (N=177)

Cluser1 (N=102)

Cluser2 (N=114)

Cluser3 (N=139)

Reference

1.5 (1.02-2.3)

Reference

1.8 (1.17-2.9)

Reference

1.2 (0.78-2.0)

Reference

2.4 (1.61-3.6)

Reference

1.8 (1.03-3.0)

2.0 (1.22-3.4)

# Events: 107; Global p-value (Log-Rank): 1.0791e-08
AIC: 963.18; Concordence Index: 0.71 1.5 2.0 4.03.02.5 2.5

0.04*

0.008**

0.357

<0.001***

0.04*

0.007**

AFP

Stage AJCC

Risk

Cluster

<20 (N=142)

≥20 (N=127)

Stage I (N=166)

Stage II&III&IV (N=165)

Low (N=178)

High (N=177)

Cluser1 (N=102)

Cluser2 (N=114)

Cluser3 (N=139)

Reference

1.10 (0.68-1.8)

Reference

0.94 (0.58-1.5)

Reference

10.5 (5.34-18.9)

Reference

1.74 (0.92-3.3)

2.48 (1.31-4.7)

# Events: 72; Global p-value (Log-Rank): 9.375e-16
AIC: 622.78; Concordence Index: 0.79 1 2 5 2010

0.703

0.802

<0.001***

0.87

0.006**

A

B

Figure 8.  Multivariate analyses of the association between clinical factors, immune clusters and the risk score for recurrence-free 
survival (A) and overall survival (B) of HCC patients. The data are presented as hazard ratios (HR) with 95% confidence 
intervals.
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Figure 9.  Survival-associated SFs and splicing correlation network in HCC patients. (A) Splicing correlation network. AS events with 
PSI values negatively/positively associated with survival are shown in red/green dots, respectively. SFs related to survival 
are presented as purple dots. Green/red lines represent negative/positive between SFs expression and PSI values of AS, 
respectively. (B) High expression (red line) of splicing factor SRSF2 is strongly related to poor disease-free survival (left panel) 
and poor overall survival (right panel). (C) Dot plot of correlation between expression of SRSF2 and AP PSI values of CAPRIN1 
(left panel), and the correlation between ES PSI values of SULT1A2 and expression of SRSF2 (right panel).
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worse prognosis in hematopoietic disease [36]. The findings 
of the present study also suggest that several poor progno-
sis-related AS events were highly related to high levels of tu-
mor-promoting SFs.

Conclusionss

The prognosis of HCC patients based on aberrant variation 
in AS and SFs was comprehensively evaluated. Although the 
predictive value of AS events was not validated, this study 

demonstrates that AS and SFs are potential therapeutic tar-
gets and biomarkers of HCC. However, more effective AS-based 
genome-wide analyses are needed for better prognosis pre-
diction and identification of therapeutic biomarkers of HCC. 
Indeed, this and other studies advance the prognosis predic-
tion of HCC and the design of novel therapeutic strategies.
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Supplementary Figure 1.  Kaplan-Meier of prognostic predictors in HCC cohort. (A-F) Kaplan-Meier plot depicting the recurrence free 
survival probability over time for prognostic predictor of six types of AS events with high (red) and low 
(green) risk group, respectively. (G) Kaplan-Meier plot depicting the survival probability over time for the final 
prognostic predictor with high (red) and low (green) risk group.
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Supplementary Figure 2.  Silhouette analysis to confirm the 
stability of the clustering. Three was 
the optimal and stable clustering 
number.

AS events Coef Symbol Splice type Exons From exon To	exon

ID_10810 20 FRMD4A AT 5 NA NA

ID_802 -20 SZRD1 RI 5.2 5.1 5.3

ID_9861 -20 BPNT1 RI 11.2 11.1 11.3

ID_1226 15.56266 STMN1 AT 8 NA NA

ID_878 12.04112 UBR4 AT 107 NA NA

ID_8610 9.8799 APOA2 AA 3.1 2 3.2

ID_10091 -9.48728 MRPL55 ES 2.4:2.5:2.6:2.8 2.2 2.9

ID_1139 5.239645 SYF2 ES 3 2 4

ID_10185 -5.02065 GUK1 ES 11.1:11.2 9.2 12

ID_8038 -3.74553 MTX1 ES 4 3 5

ID_10792 2.987497 PHYH AD 7.2 7.1 8

ID_7826 2.829212 HAX1 AA 2.1 1 2.2

ID_7792 2.169698 TPM3 ES 12 11 15

ID_2694 2.080928 PRDX1 AD 1.2 1.1 2.1

ID_3360 -1.47288 WLS AT 3.3 NA NA

ID_3605 1.388312 GNG5 ES 2 1.3 3

ID_1730 0.619389 CLSPN AT 25 NA NA

ID_7490 -0.47828 ENSA AP 1 NA NA

ID_2784 -0.34839 POMGNT1 RI 22.2 22.1 22.3

ID_1679 0.291427 ZSCAN20 AT 8 NA NA

ID_3232 0.204242 TM2D1 AT 8 NA NA

ID_11238 0.131221 CREM AT 10.2 NA NA

ID_879 -0.11346 UBR4 AT 78.6 NA NA

ID_1689 0.108126 CSMD2 AT 78 NA NA

ID_3941 0.032857 FAM102B AT 11 NA NA

ID_3940 -0.02144 FAM102B AT 12 NA NA

ID_7491 0.004879 ENSA AP 2 NA NA

Supplementary Table 1.  Sets of gene and splice event for each type of AS associated with OS.

e930052-14
Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System]  
[ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica]  
[Chemical Abstracts/CAS]

Liu Z. et al: 
Genome-wide profiling of alternative splicing signatures

© Med Sci Monit, 2021; 27: e930052

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

DATABASE ANALYSIS



1.00

0.75

0.50

0.25

0.00

Strata Clusters=Cluster 1

Cluster 1
Cluster 2
Cluster 3

Clusters=Cluster 2 Clusters=Cluster 3

Su
rv

iva
l p

ro
ba

bil
ity

St
ra

ta

Cluster 1A
Cluster 1B

Cluster 2
Cluster 3

Time
300 60 90 120

Time
300 60 90 120

Time
300 60 90 120

Number at risk

p=0.0024

p=0.0071

2

1

0n.
 ce

ns
or

Number at censoring

1.00

0.75

0.50

0.25

0.00

Strata Clusters=Cluster 1A Clusters=Cluster 1B Clusters=Cluster 3Clusters=Cluster 2

Su
rv

iva
l p

ro
ba

bil
ity

St
ra

ta

Time
300 60 90 120

Time
300 60 90 120

Time
300 60 90 120

Number at risk

2

1

0n.
 ce

ns
or

Number at censoring

A

B

Supplementary Figure 3.  Overall survival analyses for the different immune subtypes. Survival difference among three immune 
clusters (A) and four immune subtypes (B).
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Supplementary Table 2.  A total of 43 cell populations grouped into adaptive immune cells, innate immune cells, and stromal cells.

Supplementary Table 2 available from the corresponding author on request.

Gene HR HRL HRU z p Value

AFP 1.390524915 0.978021476 1.977011329 1.836187514 0.066329929

Age 1.014730874 0.748808106 1.375090279 0.094313179 0.924860381

Stage AJCC 2.462564044 1.778316607 3.41009112 5.425900986 5.77E-08

Histologic grade 1.1159185 0.815391573 1.527209919 0.685114137 0.4932719

Gender 0.898447567 0.650983214 1.239982866 -0.651448262 0.514757165

Vascular invasion 1.871740209 1.31309223 2.668061946 3.465997653 0.000528268

Margin resection 
status

1.690756072 0.89015302 3.211420994 1.604466361 0.108611294

Risk 2.664870571 1.951169754 3.639629586 6.162677632 7.15E-10

Clusters 1.384500013 0.926179904 2.069619818 1.586099147 0.11271682

Clusters 2.142740551 1.460186979 3.144348727 3.894597278 9.84E-05

Supplementary Table 3.  Univariate Cox analysis of clinical characteristics, the risk score (calculated from the final prognostic 
signatures) and immune clusters on RFS.

Gene HR HRL HRU z p Value

AFP 1.653993774 1.056434456 2.589555265 2.199987808 0.02780776

Age 1.271770756 0.889443854 1.818440646 1.317774264 0.187579226

Stage AJCC 2.107983211 1.430332369 3.10668577 3.768730419 0.00016408

Histologic grade 1.059471958 0.732110869 1.533211537 0.306358796 0.759331477

Gender 0.865133606 0.601082437 1.245180546 -0.779736726 0.435545857

Vascular invasion 1.328948406 0.86835282 2.033855165 1.309826185 0.190254643

Margin resection 
status

1.745645112 0.882323759 3.453694662 1.600338101 0.109523599

Risk 9.152315299 5.69349323 14.71238692 9.141626433 6.15E-20

Clusters 1.300562624 0.806020468 2.09853621 1.076559725 0.281677005

Clusters 2.106204802 1.33911337 3.312713298 3.223708751 0.00126542

Supplementary Table 4.  Univariate Cox analysis of clinical characteristics, the risk score (calculated from the final prognostic 
signatures), and immune clusters on OS.
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