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Abstract: During the last three decades the extent of life-threatening fungal infections has increased
remarkably worldwide. Synthesis and structure elucidation of certain imidazole-semicarbazone
conjugates 5a–o are reported. Single crystal X-ray analysis of compound 5e unequivocally confirmed
its assigned chemical structure and the (E)-configuration of its imine double bond. Compound 5e
crystallized in the triclinic system, P-1, a = 6.3561 (3) Å, b = 12.5095 (8) Å, c = 14.5411 (9) Å, α = 67.073
(4)◦, β = 79.989 (4)◦, γ =84.370 (4)◦, V = 1048.05 (11) Å3, Z = 2. In addition, DIZ and MIC assays were
used to examine the in vitro antifungal activity of the title conjugates 5a–o against four fungal strains.
Compound 5e, bearing a 4-ethoxyphenyl fragment, showed the best MIC value (0.304 µmol/mL)
against both C. tropicalis and C. parapsilosis species, while compounds 5c (MIC = 0.311 µmol/mL), 5k,
and 5l (MIC = 0.287 µmol/mL) exhibited the best anti-C. albicans activity.
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1. Introduction

The extent of life-threatening fungal infections has increased remarkably during the last three
decades. Drug-resistance to the available antifungal agents and increasing morbidity due to
life-threatening fungal infections have become a global health burden, particularly among individuals
with organ transplants, AIDS, autoimmune diseases or those receiving anticancer chemotherapeutic
agents [1–4]. Therefore, there is an urgent therapeutic need to develop new broad spectrum safe
antifungal candidates with excellent activity toward various pathogenic fungi.

Azoles are the mainstay of antifungal therapy against different invasive fungal species owing to
their broad antifungal spectrum and good pharmacokinetic profile [5]. Imidazole and 1,3,4-triazole
moieties are the most common azole fragments in the therapeutically used antifungal azoles [6]. Azoles
inhibit the fungal biosynthesis of ergosterol through inhibiting lanosterol 14α-demethylase (CYP51)
which leads to accumulation of lanosterol and depletion of ergosterol along with the inability for
normal growth of the fungi [7]. A two-carbon bridge separating the imidazole pharmacophore moiety
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and the aromatic portion of the molecule is prevalent in the available antifungal agents, while a
three-carbon bridge is present in few antifungal candidates [8–10]. Thus, it was of interest to focus on
the design of new imidazole-bearing compounds having a three-carbon bridge between the imidazole
fragment and the aromatic moiety to examine their antifungal potential.

Semicarbazones are the products of an addition–elimination reaction between aldehydes or
ketones with certain semicarbazides. In the solid state, semicarbazones principally exist in the keto-like
form, while they manifest a keto-enol like tautomerism in the solution state giving rise to an effective
electron delocalization along the semicarbazone fragment [11]. The presence of nitrogen and oxygen
atoms as donor atoms in the core structure of semicarbazones gave them a special importance in
both organic and medicinal chemistry due to their ability to coordinate with many metal ions [12].
Therefore, the research has recently focused on the biological importance of this type of compounds.
An extensive literature review revealed that semicarbazones have exhibited a prominent antibacterial,
anticonvulsant, antitumor, antioxidant, and antifungal activities [13–16].

The abovementioned premises persuaded us to design a series of imidazole-semicarbazone
conjugates bearing 1,3-benzodioxole fragments. The incorporation of 1,3-benzodioxole moiety as
an aromatic pharmacophore part in the title compounds 5a–o could potentiate their antifungal
potential [17,18]. Compounds 5a–o feature a three-carbon spacer separating the imidazole
pharmacophore and the aromatic 1,3-benzodioxole pharmacophore part. The assigned chemical
structures of the target compounds 5a–o were assured with the aid of various spectroscopic approaches.
In addition, single crystal X-ray analysis of compound 5e confirmed unequivocally the assigned
chemical structures of the title compounds 5a–o and established the (E)-configuration of their
imine functionality.

2. Results and Discussion

2.1. Chemistry

Scheme 1 presents the pathway which was adopted to prepare the target compounds 5a–o.
The reaction sequence commenced using the commercially available acetophenone derivative 1
to afford the ketone 3 according to the previously reported procedure [19]. The appropriate
semicarbazides 4a–o were added to the ketone 3 with water elimination under mild conditions to
furnish the respective semicarbazones 5a–o in moderate yields. The mild synthetic conditions used to
obtain the target semicarbazones 5a–o plays the pivotal role to get the pure geometrical (E)-isomers of
compounds 5a–o as confirmed by the single crystal X-ray analysis of compound 5e as a representative
example of this type of compounds. The assigned chemical structures of the title compounds 5a–o
were assured via different spectroscopic tools. Thus, they displayed IR bands in the range of 3390–3209,
1793–1645, 1664–1506 cm−1, corresponding to NH, C=O, and C=N, respectively. The 1H-NMR spectra
of compounds 5a–o showed triplets in the δ = 3.19–3.53 ppm range which were assigned to the two
protons of the methylenes of (CH2–CH2–N) and other triplets appeared at δ = 4.02–4.30 ppm for
the protons of the other methylenes (CH2–CH2–N). The benzodioxole protons (–O–CH2–O–) were
observed as singlets in the range of δ = 6.05–6.09 (ppm). The imidazole protons (–N–CH=CH–N=)
were noticed as singlet signals in the range of δ = 6.85–6.97 ppm, another singlet signals appeared in
the range of δ = 7.17–7.37 ppm for the imidazole protons (–N–CH=CH–N=), while the third imidazole
protons (–N–CH=N–) were noted as singlet signals in the range of δ = 7.61–7.86 ppm. The aromatic
protons appeared in the region of δ = 6.61–8.25 ppm. Additionally, two singlet signals in the range of δ
= 7.44–9.73 and 9.76–10.63 ppm were assigned for the two protons of the semicarbazone (NH) groups.
The amine protons (NH2) of compound 5o were observed as a singlet at δ = 6.56 ppm.

The 13C-NMR spectra of the semicarbazones 5a–o exhibited signals in the δ = 28.5–28.9,
42.6–43.1, 101.7–101.9, 119.9–120.8, 131.4–136.8, and 137.3–137.8 ppm range indicating (CH2-CH2-N),
(CH2-CH2-N), (O–CH2–O–), (-N–CH=CH–N=), (–N–CH=CH–N=), and (–N–CH=N–) carbons,
respectively. While the aromatic carbons appeared in the δ = 106.3–148.3 ppm range, the carbonyl
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(C=O) carbons were noted in the range of δ = 148.2–152.1 ppm and the (C=N) carbons were observed
in the δ = 148.8–155.7 ppm range.

The mass (ESI) spectra of compounds 5a–o displayed their anticipated molecular ion peaks in the
protonated forms [M + 1]+, except for compounds 5a, 5k, 5m, and 5o which showed their anticipated
molecular ion peaks in the deprotonated forms [M − 1]− due to their measurement in the negative
(ESI) mode.
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Scheme 1. Synthesis of the target semicarbazones 5a–o. Reagents and conditions: (i) HN(CH3)2·HCl,
(CH2O)n, conc. HCl, ethanol, reflux, 2 h; (ii) Imidazole, water, reflux, 5 h; (iii) Appropriate
semicarbazide 4a–n, ethanol, acetic acid, rt, 18 h or semicarbazide hydrochloride (4o), anhydrous
sodium acetate, ethanol, rt, 18 h for 5o.

2.2. Crystal Structure of Compound 5e

The crystallographic data and refinement information of compound 5e (C22H23N5O4,) are
summarized in Table S1. The selected bond lengths and bond angles are listed in Table 1.
The asymmetric unit is containing one independent molecule as shown in Figure 1.
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Table 1. Selected geometric parameters (Å, ◦) of compound 5e.

O1—C1 1.362 (7) N1—C13 1.366 (14)
O1—C7 1.425 (7) N2—C12 1.399 (18)
O2—C6 1.376 (7) N2—C13 1.293 (17)
O2—C7 1.427 (6) N3—N4 1.380 (7)
O3—C14 1.229 (8) N3—C8 1.294 (7)
O4—C18 1.372 (7) N4—C14 1.372 (8)
O4—C21 1.430 (7) N5—C14 1.345 (9)
N1—C10 1.443 (11) N5—C15 1.431 (8)
N1—C11 1.366 (14)
C1—O1—C7 105.0 (4) N3—C8—C3 115.0 (4)
C6—O2—C7 105.1 (4) N3—C8—C9 125.8 (5)
C18—O4—C21 118.5 (4) N1—C10—C9 112.8 (5)
C10—N1—C11 126.2 (8) N1—C11—C12 107.5 (10)
C10—N1—C13 128.4 (8) N2—C12—C11 109.4 (12)
C11—N1—C13 105.2 (9) N1—C13—N2 113.3 (11)
C12—N2—C13 104.5 (11) N4—C14—N5 116.4 (6)
N4—N3—C8 118.3 (4) O3—C14—N4 119.5 (6)
N3—N4—C14 117.6 (5) O3—C14—N5 124.1 (6)
C14—N5—C15 125.7 (6) N5—C15—C20 117.9 (5)
O1—C1—C6 110.4 (5) N5—C15—C16 122.4 (6)
O1—C1—C2 128.1 (4) O4—C18—C17 126.2 (5)
O2—C6—C5 129.5 (4) O4—C18—C19 114.6 (5)
O2—C6—C1 109.0 (4) O4—C21—C22 106.5 (5)
O1—C7—O2 107.8 (5)

All the bond lengths and angles are within normal ranges [20]. Compound 5e was found in the
(E)-configuration regarding its imine double bond C8=N3 as shown in Figure 1. The molecules
are packed together in the crystal structure along the b axis by one classical hydrogen bond
between N4-H1N1.....O3 and three non-classical hydrogen bonds, where C5, C9 and C21 atoms act as
H-donors and O1, O3 and N2 act as H- acceptors. In addition, one intra-molecular hydrogen bond
between N5-H1NB.....N3 which stabilizes the configuration of the molecule (Figure S1 and Table 2).
The 1,3-benzodioxole plane forms dihedral angles of 64.76◦ and 23.43◦ with the ethoxyphenyl ring and
imidazole ring, respectively.

Table 2. The geometry of hydrogen-bonding (Å, ◦) of compound 5e.

D—H···A D—H H···A D···A D—H···A

N4—H1NA···O3 i 1.01(6) 1.87(6) 2.857(6) 167(5)
N5—H1NB···N3 0.68(7) 2.21(7) 2.611(7) 120(7)
C5—H5A···O1 ii 0.9300 2.5500 3.454(6) 164.00
C9—H9A···O3 i 0.9700 2.4200 3.182(7) 135.00
C21—H21A···N2 iii 0.9700 2.5700 3.500(13) 160.00

Symmetry codes: (i) −x, −y + 2, −z; (ii) x − 1, y, z; (iii) x + 1, y − 1, z.

2.3. Antifungal Activity of the Target Semicarbazones 5a–o

Table 3 presents the antifungal potential of the target semicarbazones 5a–o against the four
tested fungal strains measured as the diameter of the inhibition zone (DIZ) and minimum inhibitory
concentration (MIC) assay results. Compounds 5a–o manifested moderate to good activity in the
DIZ assay toward the four tested fungi, with DIZ values in the range of 11–23 mm. Compound
5e, bearing a 4-ethoxyphenyl fragment, showed the best MIC value (0.304 µmol/mL) against both
C. tropicalis and C. parapsilosis species. Moreover, compound 5b, bearing a 4-bromophenyl moiety,
is the most active congener among the synthesized semicarbazones 5a–o toward A. niger, with a
MIC value of 0.561 µmol/mL, followed by the equipotent dichlorinated compounds 5l and 5m with
MIC values of 0.574 µmol/mL. Compounds 5b and 5f are the weakest compounds among the tested
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semicarbazones 5a–o against both C. albicans and C. tropicalis, with MIC values of more than 1.12 and
1.30 µmol/mL, respectively, whereas, compound 5d is the weakest one against both C. parapsilosis
and A. niger with a MIC value of more than 1.12 µmol/mL. It seems that the antifungal activity of
the semicarbazones 5a–o was not favorable in the cyclohexane-bearing semicarbazone, compound 5n,
or in the unsubstituted semicarbazone, compound 5o. Moreover, the para-substitution with halogen,
methyl, or alkoxy groups (compounds 5b, 5d–g and 5j) did not give good anti-C. albicans activity
in the synthesized semicarbazones 5a–o, whereas, the meta-substitution with electron withdrawing
groups (compounds 5c and 5k) or the dichlorinated analogue (compound 5l) displayed the best
anti-C. albicans activity.

Table 3. Antifungal potential of the target semicarbazones 5a–o against C. albicans, C. tropicalis,
C. parapsilosis, and A. niger.

Compound
No.

Candida albicans Candida tropicalis Candida parapsilosis Asperagillus niger

DIZ ± SD *
(mm)

MIC
(µmol/mL)

DIZ ± SD *
(mm)

MIC
(µmol/mL)

DIZ ± SD *
(mm)

MIC
(µmol/mL)

DIZ ± SD *
(mm)

MIC
(µmol/mL)

5a 14 ± 0.60 0.678 20 ± 0.90 0.339 11 ± 0.80 0.678 15 ± 0.50 0.678
5b 12 ± 0.70 > 1.12 18 ± 0.50 > 1.12 15 ± 0.58 >1.12 14 ± 0.40 0.561
5c 14 ± 0.58 0.311 20 ± 0.90 0.311 16 ± 1.10 0.622 15 ± 0.50 0.622
5d 14 ± 0.60 0.622 17 ± 0.50 > 1.24 14 ± 0.40 >1.24 0.0 ± 0.0 >1.24
5e 13 ± 0.40 0.607 22 ± 0.80 0.304 16 ± 0.12 0.304 13 ± 1.00 0.607
5f 14 ± 0.60 0.648 17 ± 1.00 > 1.30 14 ± 0.60 0.648 16 ± 1.10 0.648
5g 14 ± 0.58 0.628 22 ± 0.50 0.314 12 ± 1.20 0.628 15 ± 0.50 0.628
5h 14 ± 1.00 0.654 19 ± 0.50 0.654 18 ± 0.90 0.327 14 ± 1.00 0.654
5i 13 ± 0.40 0.654 21 ± 1.00 0.327 17 ± 0.58 0.654 13 ± 0.40 0.654
5j 13 ± 1.00 0.654 22 ± 1.00 0.327 17 ± 0.90 0.327 15 ± 0.58 0.654
5k 12 ± 0.43 0.287 23 ± 0.50 0.287 15 ± 0.60 0.575 14 ± 0.80 0.575
5l 14 ± 0.58 0.287 21 ± 1.00 0.574 14 ± 0.60 0.574 13 ± 0.40 0.574

5m 11 ± 0.30 0.574 17 ± 0.80 >1.15 16 ± 0.58 >1.15 16 ± 0.80 0.574
5n 14 ± 0.40 0.668 19 ± 1.00 1.34 19 ± 0.50 >1.24 13 ± 1.00 0.668
5o 14 ± 0.58 0.850 20 ± 0.90 0.850 15 ± 0.90 0.850 14 ± 0.10 0.850

Fluconazole 18 ± 1.10 0.051 19 ± 1.00 0.045 19 ± 0.90 0.047 ND ND
Ketoconazole ND ND ND ND ND ND 29 ± 0.60 0.02

* The arithmetic mean of the inhibition zone diameters in mean ± standard deviation; ND: not determined.

3. Experimental

3.1. General Information

Melting points were measured using Gallenkamp melting point device, and are uncorrected.
A Perkin Elmer BX FT-IR spectrometer (Perkin Elmer, Shelton, CT, USA) was used to record the
infrared (IR) spectra from KBr disks. A Bruker NMR spectrometer (Bruker, Reinstetten, Germany)
was used to carry out the NMR measurements of the prepared samples in DMSO-d6 at 500 MHz
for 1H and 125.76 MHz for 13C. Chemical shifts are indicated in δ-values (ppm) in relation to TMS
used as an internal standard. Elemental analyses of the target compounds were obtained using a
Vario EL III analyzer (Langenselbold, Darmstadt, Germany) and the results agreed favorably with the
proposed structures within ± 0.4% of the theoretical values. Mass spectra were obtained using an
Agilent Quadrupole 6120 LC/MS (Agilent Technologies, Palo Alto, CA, USA) with an ESI (electrospray
ionization) source. Silica gel TLC (thin layer chromatography) fluorescent plates were secured from
Merck (Darmstadt, Germany) and visualization was achieved by illumination with a UV light source
(254 nm).

3.2. Synthesis

3.2.1. General Procedure for the Synthesis of Semicarbazones 5a–n

A reaction mixture containing the appropriate semicarbazide 4a–n [21,22] (10 mmol), the ketone 3
(0.24 g, 10 mmol), and few drops of glacial acetic acid in absolute ethanol (15 mL) was stirred at room
temperature for 18 h. The reaction mixture was evaporated under reduced pressure and the residue
was purified by re-crystallization from ethanol to furnish the corresponding semicarbazones 5a–n.
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(2E)-2-[1-(1,3-Benzodioxol-5-yl)-3-(1H-imidazol-1-yl)propylidene]-N-phenylhydrazinecarboxamide (5a). Yield
0.26 g (26%); white powder m.p. 162–164 ◦C; IR (KBr): ν (cm−1) 3385 (NH), 3198, 2968, 1793 (C=O),
1621 (C=N), 1521, 1262, 756; 1H-NMR (DMSO-d6): δ (ppm) 3.29 (s, 2H, –CH2–CH2–N), 4.14 (s, 2H,
–CH2–CH2–N), 6.07 (s, 2H, –O–CH2–O–), 6.90 (d, J = 8.0 Hz, 1H, Ar–H), 6.97 (s, 1H, –N–CH=CH–N=),
7.04 (t, J =6.5 Hz, 1H, Ar–H), 7.27–7.33 (m, 3H, Ar–H, –N–CH=CH–N=), 7.38 (s, 1H, Ar–H), 7.61–7.63
(m, 3H, Ar–H), 7.86 (s, 1H, –N–CH=N–), 8.98 (s, 1H, NH), 10.18 (s, 1H, NH); 13C-NMR (DMSO-d6):
δ (ppm) 28.6 (–CH2–CH2–N), 43.1 (–CH2–CH2–N), 101.7 (–O–CH2–O–), 107.1, 108.3 (Ar-CH), 120.4
(–N–CH=CH–N=), 120.6, 121.2, 123.0, 127.5, 128.9, 131.6 (Ar-CH, Ar–C, –N–CH=CH–N=), 137.6
(–N–CH=N–), 139.5, 145.1, 148.2, 148.5, 154.0 (Ar–C, C=O, C=N); MS m/z (ESI): 376.0 [M − H]−.

(2E)-2-[1-(1,3-Benzodioxol-5-yl)-3-(1H-imidazol-1-yl)propylidene]-N-(4-bromophenyl)hydrazine carboxamide
(5b). Yield 0.37 g (37%); white powder m.p. 193–195 ◦C; IR (KBr): ν (cm−1) 3342 (NH), 3211, 2968, 1751
(C=O), 1664 (C=N), 1442, 1251, 755; 1H-NMR (DMSO-d6): δ (ppm) 3.28 (t, J = 7.0 Hz, 2H, –CH2–CH2–N),
4.09 (t, J = 7.0 Hz, 2H, –CH2–CH2–N), 6.07 (s, 2H, -O-CH2-O-), 6.86 (s, 1H, –N–CH=CH–N=), 6.90
(d, J = 8.5 Hz, 1H, Ar–H), 7.26 (d, J = 1.5 Hz, 1H, Ar-H), 7.27 (s, 1H, –N–CH=CH–N=), 7.44 (d, J =
3.5 Hz, 1H, Ar–H), 7.47 (d, J = 8.5 Hz, 2H, Ar-H), 7.62 (s, 1H, –N–CH=N–), 7.65 (d, J = 8.5 Hz, 2H,
Ar-H), 9.01 (s, 1H, NH), 10.20 (s, 1H, NH); 13C-NMR (DMSO-d6): δ (ppm) 28.7 (–CH2–CH2–N), 42.7
(–CH2–CH2–N), 101.7 (-O-CH2-O-), 107.3, 108.2 (Ar-CH), 119.9 (–N–CH=CH–N=), 120.7, 121.4, 122.6,
128.7, 131.5, 132.0 (Ar-CH, Ar–C, –N–CH=CH–N=), 137.8 (–N–CH=N–), 140.0, 145.7, 148.1, 148.5, 154.0
(Ar–C, C=O, C=N); MS m/z (ESI): 456.0 [M + H]+, 457.0 [(M + 1) + H]+, 458.0 [(M + 2) + H]+, 459.0 [(M
+ 3) + H]+, 478.0 [M + 23]+, 494.0 [M + 39]+.

(2E)-2-[1-(1,3-Benzodioxol-5-yl)-3-(1H-imidazol-1-yl)propylidene]-N-(3-chlorophenyl)hydrazine carboxamide
(5c). Yield 0.36 g (36%); white powder m.p. 182–184 ◦C; IR (KBr): ν (cm−1) 3367 (NH), 3086, 2935, 1676
(C=O), 1525 (C=N), 1448, 1236, 750; 1H-NMR (DMSO-d6): δ (ppm) 3.35 (t, J = 7.0 Hz, 2H, –CH2–CH2–N),
4.10 (t, J = 7.0 Hz, 2H, –CH2–CH2–N), 6.07 (s, 2H, –O–CH2–O–), 6.86 (s, 1H, –N–CH=CH–N=), 6.90 (d,
J = 8.0 Hz, 1H, Ar–H), 7.08 (d, J = 6.5 Hz, 1H, Ar–H), 7.27 (br.s, 2H, –N–CH=CH–N=, Ar-H), 7.33 (t,
J = 8.0 Hz, 1H, Ar–H), 7.63 (s, 3H, Ar-H, –N–CH=N–), 7.85 (s, 1H, Ar-H), 9.05 (s, 1H, NH), 10.23 (s,
1H, NH); 13C-NMR (DMSO-d6): δ (ppm) 28.7 (–CH2–CH2–N), 42.7 (–CH2–CH2–N), 101.7 (-O-CH2-O-),
107.3, 108.2, 119.0 (Ar-CH), 119.9 (–N–CH=CH–N=), 121.4, 122.6, 128.7, 130.5, 131.5, 133.3 (Ar-CH,
Ar–C, –N–CH=CH–N=), 137.8 (–N–CH=N–), 141.1, 145.9, 148.1, 148.5, 154.0 (Ar-C, C=O, C=N); MS
m/z (ESI): 412.0 [M + H]+, 413.0 [(M + 1) + H]+, 414.1 [(M + 2) + H]+, 434.1 [M + 23]+, 450.1 [M + 39]+.

(2E)-2-[1-(1,3-Benzodioxol-5-yl)-3-(1H-imidazol-1-yl)propylidene]-N-(4-chlorophenyl)hydrazine carboxamide
(5d). Yield 0.21 g (21%); white powder m.p. 198–200 ◦C; IR (KBr): ν (cm−1) 3344 (NH), 3209, 2904, 1676
(C=O), 1533 (C=N), 1490, 1232, 753; 1H-NMR (DMSO-d6): δ (ppm) 3.27 (t, J = 7.0 Hz, 2H, –CH2–CH2–N),
4.09 (t, J = 6.5 Hz, 2H, –CH2–CH2–N), 6.07 (s, 2H, –O–CH2–O–), 6.86 (s, 1H, –N–CH=CH–N=), 6.90
(d, J = 8.0 Hz, 1H, Ar–H), 7.26–7.27 (m, 2H, Ar–H, –N–CH=CH–N=), 7.36 (d, J = 9.0 Hz, 2H, Ar–H),
7.62 (br.s, 2H, Ar–H, –N–CH=N–), 7.70 (d, J = 8.5 Hz, 2H, Ar-H ), 9.01 (s, 1H, NH), 10.20 (s, 1H,
NH); 13C-NMR (DMSO-d6): δ (ppm) 28.7 (–CH2–CH2–N), 42.7 (–CH2–CH2–N), 101.7 (-O-CH2-O-),
107.3, 108.2 (Ar-CH), 119.9 (–N–CH=CH–N=), 121.4, 122.1, 122.2, 126.7, 128.7, 131.5 (Ar-CH, Ar–C,
–N–CH=CH–N=), 137.8 (–N–CH=N–), 138.5, 145.7, 148.1, 148.5, 154.1 (Ar-C, C=O, C=N); MS m/z (ESI):
412.1 [M + H]+, 413.0 [(M + 1) + H]+, 414.1 [(M + 2) + H]+.

(2E)-2-[1-(1,3-Benzodioxol-5-yl)-3-(1H-imidazol-1-yl)propylidene]-N-(4-ethoxyphenyl)hydrazine carboxamide
(5e). Yield 0.42 g (42%); white powder m.p. 135–140 ◦C; IR (KBr): ν (cm−1) 3367 (NH), 3086, 2889, 1676
(C=O), 1525 (C=N), 1448, 1236, 754; 1H-NMR (DMSO-d6): δ (ppm) 1.33 (t, J = 6.9 Hz, 3H, CH2-CH3),
3.26 (t, J = 6.9 Hz, 2H, –CH2–CH2–N), 4.09 (q, J = 6.9 Hz, 2H, CH2–CH3), 4.30 (t, J = 6.6 Hz, 2H,
–CH2–CH2–N), 6.06 (s, 2H, -O-CH2-O-), 6.86 (s, 1H, –N–CH=CH–N=), 6.89–6.91 (m, 3H, Ar–H), 7.26 (d,
J = 8.1 Hz, 1H, Ar–H), 7.28 (s, 1H, –N–CH=CH–N=), 7.49 (d, J = 8.9 Hz, 2H, Ar–H), 7.63–7.65 (m, 2H,
Ar-H, –N–CH=N–), 8.76 (s, 1H, NH), 10.05 (s, 1H, NH); 13C-NMR (DMSO-d6): δ (ppm) 15.2 (-CH2-CH3),
28.7 (–CH2–CH2–N), 42.7 (–CH2–CH2–N), 63.6 (–CH2–CH3), 101.7 (–O–CH2–O–), 107.8, 108.6, 114.6
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(Ar-CH), 119.9 (–N–CH=CH–N=), 121.2, 122.9, 128.7, 131.7, 132.3 (Ar–CH, Ar–C, –N–CH=CH–N=),
137.8 (–N–CH=N–), 144.9, 148.2, 148.3, 152.1, 154.8 (Ar–C, C=O, C=N); MS m/z (ESI): 422.2 [M + H]+.

(2E)-2-[1-(1,3-Benzodioxol-5-yl)-3-(1H-imidazol-1-yl)propylidene]-N-(4-fluorophenyl)hydrazine carboxamide
(5f). Yield 0.51 g (51%); white powder m.p. 172–174 ◦C; IR (KBr): ν (cm−1) 3390 (NH), 3194, 2904, 1683
(C=O), 1517 (C=N), 1442, 1211, 750; 1H-NMR (DMSO-d6): δ (ppm) 3.27 (t, J = 6.8 Hz, 2H, –CH2–CH2–N),
4.09 (t, J = 6.9 Hz, 2H, –CH2–CH2–N), 6.09 (s, 2H, –O–CH2–O–), 6.86 (s, 1H, –N–CH=CH–N=), 6.91 (d,
J = 8.2 Hz, 1H, Ar–H), 7.13–7.17 (m, 2H, Ar–H, –N–CH=CH–N=), 7.62–7.27 (m, 2H, Ar–H), 7.63–7.66
(m, 4H, Ar–H, –N–CH=N–), 8.95 (s, 1H, NH), 10.14 (s, 1H, NH); 13C-NMR (DMSO-d6): δ (ppm) 28.7
(–CH2–CH2–N), 42.7 (–CH2–CH2–N), 101.7 (–O–CH2–O–), 107.3, 108.2 (Ar–CH), 115.4 (d, JC-3′ , F& C-5′ , F
= 21.6 Hz, C-3′ and C-5′), 119.9 (–N–CH=CH–N=), 121.3, 128.7, 131.6 (Ar–CH, Ar–C, –N–CH=CH–N=),
122.8 (d, JC-2′ , F& C-6′ , F = 7.8 Hz, C-2′ and C-6′), 135.8 (d, JC-1′ , F = 2.3 Hz, C-1′), 137.8 (–N–CH=N–),
145.3, 148.2, 148.5, 154.3 (–N–CH=N–, Ar-C, C=O, C=N), 158.4 (d, JC-4′ , F = 238.7 Hz, C-4′); MS m/z
(ESI): 396.2 [M + H]+, 397.1 [(M + 1) + H]+.

(2E)-2-[1-(1,3-Benzodioxol-5-yl)-3-(1H-imidazol-1-yl)propylidene]-N-(4-methoxyphenyl)hydrazine
carboxamide (5g). Yield 0.51 g (51%); white powder m.p. 161–163 ◦C. The spectral data of
compound 5g are consistent with previously reported data [23].

(2E)-2-[1-(1,3-Benzodioxol-5-yl)-3-(1H-imidazol-1-yl)propylidene]-N-(2-methylphenyl)hydrazine carboxamide
(5h). Yield 0.65 g (65%); white powder m.p. 177–179 ◦C; IR (KBr): ν (cm−1) 3257 (NH), 2939, 2827,
1645 (C=O), 1562 (C=N), 1450, 1236, 751; 1H-NMR (DMSO-d6): δ (ppm) 2.28 (s, 3H, CH3), 3.28 (t, J =
7.0 Hz, 2H, –CH2–CH2–N), 4.11 (t, J = 7.0 Hz, 2H, –CH2–CH2–N), 6.07 (s, 2H, –O–CH2–O–), 6.87 (s, 1H,
–N–CH=CH–N=), 6.91 (d, J = 8.0 Hz, 1H, Ar–H), 7.03–7.06 (m, 1H, Ar–H ), 7.20–7.26 (m, 3H, Ar–H), 7.29
(s, 1H, –N–CH=CH–N=), 7.55 (s, 1H, Ar–H), 7.64 (s, 1H, –N–CH=N–), 7.74 (d, J = 7.5 Hz, 1H, Ar–H),
8.63 (s, 1H, NH), 10.25 (s, 1H, NH); 13C-NMR (DMSO-d6): δ (ppm) 17.9 (–CH3), 28.8 (–CH2–CH2–N),
42.7 (–CH2–CH2–N), 101.8 (–O–CH2–O–), 106.7, 108.3 (Ar-CH), 119.9 (–N–CH=CH–N=), 121.1, 123.2,
124.2, 126.6, 128.7, 130.2, 130.6, 131.6 (Ar-CH, Ar–C, –N–CH=CH–N=), 137.3 (–N–CH=N–), 137.8, 144.8,
148.3, 148.5, 154.2 ( Ar–C, C=O, C=N); MS m/z (ESI): 392.2 [M + H]+.

(2E)-2-[1-(1,3-Benzodioxol-5-yl)-3-(1H-imidazol-1-yl)propylidene]-N-(3-methylphenyl)hydrazine carboxamide
(5i). Yield 0.54 g (54%); white powder m.p. 176–179 ◦C; IR (KBr): ν (cm−1) 3367 (NH), 3099, 2893,
1687 (C=O), 1546 (C=N), 1433, 1236, 750; 1H-NMR (DMSO-d6): δ (ppm) 2.31 (s, 3H, CH3), 3.27 (t, J
= 7.0 Hz, 2H, –CH2–CH2–N), 4.10 (t, J = 7.0 Hz, 2H, –CH2–CH2–N), 6.07 (s, 2H, -O-CH2-O-), 6.86
(s, 2H, –N–CH=CH–N=, Ar–H), 6.91 (d, J = 8.5 Hz, 1H, Ar–H), 7.17–7.21 (m, 1H, Ar–H), 7.25 (d, J =
1.5 Hz, 1H, Ar-H), 7.28 (s, 1H, –N–CH=CH–N=), 7.45 (s, 2H, Ar–H ), 7.60 (d, J = 1.5 Hz, 1H, Ar–H),
7.63 (s, 1H, –N–CH=N–), 8.80 (s, 1H, NH), 10.11 (s, 1H, NH); 13C-NMR (DMSO-d6): δ (ppm) 21.6
(CH3), 28.7 (–CH2–CH2–N), 42.7 (–CH2–CH2–N), 101.7 (–O–CH2–O–), 107.2, 108.3, 117.8 (Ar–CH),
119.9 (–N–CH=CH–N=), 121.1, 121.3, 123.8, 128.7, 128.8, 131.6 (Ar-CH, Ar–C, –N–CH=CH–N=), 137.8
(–N–CH=N–), 138.1, 139.3, 145.3, 148.1, 148.5, 154.0 (Ar–C, C=O, C=N); MS m/z (ESI): 392.2 [M + H]+.

(2E)-2-[1-(1,3-Benzodioxol-5-yl)-3-(1H-imidazol-1-yl)propylidene]-N-(4-methylphenyl)hydrazine carboxamide
(5j). Yield 0.43 g (43%); white powder m.p. 149–151 ◦C; IR (KBr): ν (cm−1) 3219 (NH), 3105, 2904,
1664 (C=O), 1506 (C=N), 1446, 1307, 752; 1H-NMR (DMSO-d6): δ (ppm) 2.28 (s, 3H, CH3) 3.27 (t, J =
7.0 Hz, 2H, –CH2–CH2–N), 4.09 (t, J = 7.0 Hz, 2H, –CH2–CH2–N), 6.07 (s, 2H, –O–CH2–O–), 6.86 (s,
1H, –N–CH=CH–N=), 6.90 (d, J = 8.5 Hz, 1H, Ar–H), 7.12 (d, J = 8.0 Hz, 2H, Ar–H), 7.26 (d, J = 8.5 Hz,
1H, Ar–H), 7.28 (s, 1H, –N–CH=CH–N=), 7.51 (d, J = 8.0 Hz, 2H, Ar–H), 7.61 (s, 1H, Ar-H), 7.63 ( s,
1H, –N–CH=N–), 8.79 (s, 1H, NH), 10.07 (s, 1H, NH); 13C-NMR (DMSO-d6): δ (ppm) 20.9 (CH3), 28.7
(–CH2–CH2–N), 42.7 (–CH2–CH2–N), 101.7 (-O-CH2-O-), 107.2, 108.3 (Ar-CH), 119.9 (–N–CH=CH–N=),
120.8, 121.2, 128.7, 129.3, 131.6, 131.9, 136.8 (Ar-CH, Ar–C, –N–CH=CH–N=), 137.8 (–N–CH=N–), 145.1,
148.2, 148.4, 154.1 (Ar-C, C=O, C=N); MS m/z (ESI): 392.2 [M + H]+, 414.1 [M + 23]+, 430.1 [M + 39]+.

(2E)-2-[1-(1,3-Benzodioxol-5-yl)-3-(1H-imidazol-1-yl)propylidene]-N-(3-(trifluoromethyl)phenyl)
hydrazinecarboxamide (5k). Yield 0.51 g (51%); white powder m.p. 192–194 ◦C; IR (KBr): ν
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(cm−1) 3209 (NH), 3088, 2904, 1670 (C=O), 1543 (C=N), 1448, 1236, 750; 1H-NMR (DMSO-d6): δ

(ppm) 3.31 (t, J = 6.6 Hz, 2H, –CH2–CH2–N), 4.13 (t, J = 6.5 Hz, 2H, –CH2–CH2–N), 6.07 (s, 2H,
-O-CH2-O-), 6.92 (d, J = 8.2 Hz, 1H, Ar–H), 6.94 (s, 1H, –N–CH=CH–N=), 7.29 (dd, J = 1.2, 8.5 Hz, 1H,
Ar–H), 7.35–7.37 (m, 2H, Ar–H, –N–CH=CH–N=), 7.53–7.56 (m, 1H, Ar–H), 7.64 (s, 1H, –N–CH=N–),
7.80 (s, 1H, Ar-H), 7.96 (d, J = 7.4 Hz, 1H, Ar–H), 8.12 (s, 1H, Ar-H), 9.30 (s, 1H, NH), 10.31 (s, 1H,
NH); 13C-NMR (DMSO-d6): δ (ppm) 28.7 (–CH2–CH2–N), 43.0 (–CH2–CH2–N), 101.8 (-O-CH2-O-),
107.3, 108.3 (Ar-CH), 116.5, 119.2 120.3, 121.4, 123.7, 124.1, 125.8, 127.8, 129.9, 131.5 (Ar-CH, Ar–C,
–N–CH=CH–N=, –N–CH=CH–N=), 137.7 (–N–CH=N–), 140.5, 145.9, 148.1, 148.6, 154.1 (Ar-C, C=O,
C=N); MS m/z (ESI): 444.0 [M − H]−, 445.0 [(M + 1) − H]−.

(2E)-2-[1-(1,3-Benzodioxol-5-yl)-3-(1H-imidazol-1-yl)propylidene]-N-(2,4-dichlorophenyl)hydrazine
carboxamide (5l). Yield 0.52 g (52%); white powder m.p. 215–217 ◦C; IR (KBr): ν (cm−1) 3338 (NH),
3089, 2910, 1691 (C=O), 1523 (C=N), 1440, 1232, 751; 1H-NMR (DMSO-d6): δ (ppm) 3.36 (t, J =
7.0 Hz, 2H, –CH2–CH2–N), 4.09 (t, J = 7.5 Hz, 2H, –CH2–CH2–N), 6.08 (s, 2H, –O–CH2–O–), 6.85
(s, 1H, –N–CH=CH–N=), 6.94 (d, J = 8.0 Hz, 1H, Ar–H), 7.24 (d, J = 8.0 Hz, 1H, Ar–H), 7.27 (s, 1H,
–N–CH=CH–N=), 7.40 (s, 1H, Ar–H), 7.44 (dd, J = 2.0, 9.0 Hz, 1H, Ar-H), 7.62 (s, 1H, –N–CH=N–),
7.70 (d, J = 2.0 Hz, 1H, Ar–H), 8.24 (d, J = 9.0 Hz, 1H, Ar–H), 9.13 (s, 1H, NH), 10.63 (s, 1H, NH);
13C-NMR (DMSO-d6): δ (ppm) 28.9 (–CH2–CH2–N), 42.8 (–CH2–CH2–N), 101.9 (-O-CH2-O-), 106.3,
108.5 (Ar-CH), 119.9 (–N–CH=CH–N=), 121.2, 122.4, 123.9, 127.3, 128.4, 128.7, 129.0, 131.3, 134.9
(Ar-CH, Ar–C, –N–CH=CH–N=), 137.8 (–N–CH=N–), 146.3, 148.3, 148.8, 153.5 (Ar–C, C=O, C=N); MS
m/z (ESI): 446.0 [M + H]+, 447.0 [(M + 1) + H]+, 448.1 [(M + 2) + H]+.

(2E)-2-[1-(1,3-Benzodioxol-5-yl)-3-(1H-imidazol-1-yl)propylidene]-N-(3,4-dichlorophenyl)hydrazine
carboxamide (5m). Yield 0.37 g (37%); white powder m.p. 174–176 ◦C; IR (KBr): ν (cm−1) 3365 (NH),
3197, 3082, 1685 (C=O), 1521 (C=N), 1475, 1238, 750; 1H-NMR (DMSO-d6): δ (ppm) 3.30 (s, 2H,
–CH2–CH2–N), 4.13 (s, 2H, –CH2–CH2–N), 6.07 (s, 2H, –O–CH2−O−), 6.90 (d, J = 8.0 Hz, 1H, Ar–H),
6.97 (s, 1H, –N–CH=CH–N=), 7.28 (dd, J = 1.5, 8.0 Hz, 1H, Ar–H), 7.29 (s, 1H, –N–CH=CH–N=), 7.53
(d, J = 9.0 Hz, 1H, Ar–H), 7.62 (s, 1H, –N–CH=N–), 7.68 (d, J = 7.5 Hz, 1H, Ar–H), 7.85–7.86 (m, 1H,
Ar–H), 8.04 (d, J = 1.5 Hz, 1H, Ar–H), 9.25 (s, 1H, NH), 10.33 (s, 1H, NH); 13C-NMR (DMSO-d6): δ

(ppm) 28.6 (–CH2–CH2–N), 43.1 (–CH2–CH2–N), 101.7 (–O–CH2–O–), 107.3, 108.2 (Ar–CH), 120.4,
120.5, 121.4, 124.3, 127.3, 127.4, 130.7, 131.1, 131.4 (Ar–CH, Ar–C, –N–CH=CH–N=, –N–CH=CH–N=),
137.6 (–N–CH=N–), 139.9, 145.9, 148.1, 148.6, 153.9 (Ar–C, C=O, C=N); MS m/z (ESI): 444.0 [M − H]−,
445.0 [(M + 1) − H]−, 446.0 [(M + 2) − H]−.

(2E)-2-[1-(1,3-Benzodioxol-5-yl)-3-(1H-imidazol-1-yl)propylidene]-N-cyclohexylhydrazine carboxamide (5n).
Yield 0.33 g (33%); white powder m.p. 174–176 ◦C; IR (KBr): ν (cm−1) 3402 (NH), 3203, 2933, 1672
(C=O), 1527 (C=N), 1460, 1251, 752; 1H-NMR (DMSO-d6): δ (ppm) 1.16–1.40 (m, 5 H, cyclohexyl),
1.58–1.99 (m, 5 H, cyclohexyl), 3.19 (t, J = 7.0 Hz, 2H, –CH2–CH2–N), 3.56–3.57 (m, 1H, cyclohexyl),
4.02 (t, J = 7.0 Hz, 2H, –CH2–CH2–N), 6.05 (s, 2H, –O–CH2–O–), 6.61 (d, J = 8.0 Hz, 1H, Ar–H), 6.85
(s, 1H, –N–CH=CH–N=), 6.88 (d, J = 8.0 Hz, 1H, Ar–H), 7.18 (dd, J = 1.0, 8.0 Hz, 1H, Ar–H), 7.26
(s, 1H, –N–CH=CH–N=), 7.44 (s, 1H, NH), 7.61 (s, 1H, –N–CH=N–), 9.76 (s, 1H, NH); 13C-NMR
(DMSO-d6): δ (ppm) 25.4 (–CH2–CH2–), 25.7 (–CH2–CH2–), 28.5 (–CH2–CH2–N), 33.3 (–CH2–CH2–),
42.6 (–CH2–CH2–N), 48.6 (–CH2–CH–CH2), 101.7 (-O-CH2-O-), 106.8, 108.3, 119.9 (Ar-CH), 120.8
(–N–CH=CH–N=), 128.7 (Ar–CH), 131.9 ( –N–CH=CH–N=), 137.8 (–N–CH=N–), 143.6, 148.1, 148.2,
155.7 (Ar–C, C=O, C=N); MS m/z (ESI): 384.2 [M + H]+, 406.2 [M + 23]+, 422.2 [M + 39]+.

3.2.2. Synthesis of (2E)-2-[1-(1,3-benzodioxol-5-yl)-3-(1H-imidazol-1-yl)propylidene]hydrazine
Carboxamide (5o)

A reaction mixture containing the ketone 3 (0.49 g, 2.0 mmol), semicarbazide hydrochloride
(4o, 0.22 g, 2.0 mmol) and anhydrous sodium acetate (0.16 g, 2.0 mmol) in absolute ethanol (15 mL)
was stirred at ambient temperature for 18 hrs. The reaction mixture was filtered and the filtrate was
evaporated under vacuum. The residue was crystallized from ethanol to give 0.5 g (50%) of the
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semicarbazone 5o as a white solid m.p. 177–179 ◦C. IR (KBr): ν (cm−1) 3442 (NH2), 3215 (NH), 3105,
2914, 1695 (C=O), 1593 (C=N) 1499, 1269, 757; 1H-NMR (DMSO-d6): δ (ppm) 3.53 (t, J = 6.5 Hz, 2H,
–CH2–CH2–N), 4.06 (t, J = 7.0 Hz, 2H, –CH2–CH2–N), 6.04 (s, 2H, –O–CH2–O–), 6.56 (br.s, 2H, NH2),
6.86 (d, J = 8.0 Hz, 1H, Ar–H), 6.92 (s, 1H, –N–CH=CH–N=), 7.20 (dd, J = 1.5, 8.0 Hz, 1H, Ar–H), 7.32
(s, 1H, –N–CH=CH–N=), 7.54 (d, J = 1.5 Hz, 1H, Ar-H), 7.75 (s, 1H, –N–CH=N–), 9.73 (s, 1H, NH);
13C-NMR (DMSO-d6): δ (ppm) 28.2 (–CH2–CH2–N), 42.8 (–CH2–CH2–N), 101.6 (–O–CH2–O–), 106.8,
108.2 (Ar–CH), 120.2 (–N–CH=CH–N=),120.8, 127.9, 131.8 (Ar-CH, Ar–C, –N–CH=CH–N=), 137.6
(–N–CH=N–), 143.2, 148.1, 148.2, 157.8 ( Ar–C, C=O, C=N); MS m/z (ESI): 300.7 [M − H]−.

3.3. Crystal Structure Determination of Compound 5e

Compound 5e was obtained as single crystals by slow evaporation from the ethanolic solution of
the pure compound at room temperature. Data were collected on a Bruker APEX-II D8 Venture area
diffractometer, equipped with graphite monochromatic Cu Kα radiation, λ = 1.542 Å at 293 (2) K. Cell
refinement and data reduction were carried out by Bruker SAINT. SHELXT [24] was used to solve
structure. The final refinement was carried out by full-matrix least-squares techniques with anisotropic
thermal data for non-hydrogen atoms on F. CCDC 1879726 contains the supplementary crystallographic
data for this compound can be obtained free of charge from the Cambridge Crystallographic Data
Centre via www.ccdc.cam.ac.uk/data_request/cif.

3.4. Antifungal Activity of the Title Semicarbazones 5a–o

The title compounds 5a–o were evaluated for their in vitro antifungal activity using diameter of
the inhibition zone (DIZ) and minimum inhibitory concentration (MIC) assays against Candida albicans,
Candida tropicalis and Aspergillus niger according to the literature protocols [25].

4. Conclusions

The synthesis of certain new imidazole-semicarbazone conjugates 5a–o bearing benzodioxole
moieties is reported. The assigned chemical structures of the title semicarbazones 5a–o have been
verified with the aid of several spectroscopic approaches. The X-ray crystal structure of compound
5e confirmed the designated chemical structure of the target compounds 5a–o and confirmed
the (E)-configuration of their imine fragments. The antifungal potential of the conjugates 5a–o
was assessed against four fungal strains with the aid of DIZ and MIC assays. It seems that the
antifungal activity was not favored in the cyclohexane-bearing semicarbazone, compound 5n, or
in the unsubstituted semicarbazone, compound 5o. The meta-substitution (compounds 5c and 5k)
with electron withdrawing groups or the dichlorinated analogue (compound 5l) showed the best
anti-C. albicans activity. Our efforts are continued aiming to get new potent, broad spectrum and safe
azole-bearing antifungal drug-like candidates.

Supplementary Materials: The following are available online, Figure S1: Molecular packing of compound 5e
viewed hydrogen bonds which are drawn as dashed lines along b axis, Table S1: The refinement information and
crystallographic data of the semicarbazone 5e.
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