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A B S T R A C T

Human clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignant adult kidney
tumors. We constructed a weighted gene co-expression network to identify gene modules associated with clinical
features of ccRCC (n = 97). Six hub genes (CCNB2, CDC20, CEP55, KIF20A, TOP2A and UBE2C) were identified
in both co-expression and protein-protein interaction (PPI) networks, which were highly correlated with pa-
thologic stage. The significance of expression of the hub genes in ccRCC was ranked top 4 among all cancers and
correlated with poor prognosis. Functional analysis revealed that the hub genes were significantly enriched in
cell cycle regulation and cell division. Gene set enrichment analysis suggested that the samples with highly
expressed hub gene were correlated with cell cycle and p53 signaling pathway. Taken together, six hub genes
were identified to be associated with progression and prognosis of ccRCC, and they might lead to poor prognosis
by regulating p53 signaling pathway.

1. Introduction

Renal cell carcinoma (RCC) is the most common type of malignant
adult kidney tumors, accounting for> 90% of all adult renal tumors.
Up to one-third of patients with RCC already suffered with a distant
metastasis at the time of diagnosis [1]. Clear cell RCC (ccRCC), taking
up about 75%–85% of RCC, is the most common subtype [2]. At pre-
sent, ccRCC is usually resistant to chemotherapy. Targeted therapies
have been exploited for their target specificity and low toxicity so they
can be the best choice of non-surgical treatments [3]. Therefore, many
biomarkers for clear cell renal cell carcinoma have been discovered
including VHL, VEGF, CAIX and HIF1α/2α mutations. Some of which
could predict therapeutic effect and clinical prognosis [4]. We know
that carcinogenesis is not the result of deregulation of several onco-
genes or tumor suppressors; it is the outcome of complex mechanisms,

including the high interconnection between genes with similar ex-
pression patterns [5]. Thus, it is urgently needed to identify novel
molecular biomarkers that can predict disease stage and clinical out-
come of ccRCC patients, which could help understand its pathogenesis
and provide personalized treatment.

Rapid technological breakthroughs of genome-wide sequencing
have shed new light on the research of clinical issues and related pa-
thological mechanisms in various cancers [6]. Nowadays, most studies
just concentrated on the screening of differentially expressed genes and
not attached enough attention to the high degree of interconnection
between genes, where genes with similar expression patterns may be
functionally related. The algorithm, weighted gene co-expression net-
work analysis (WGCNA), can construct free-scale gene co-expression
networks to explore the relationships between different gene sets or
between gene sets and clinical features [7]. WGCNA has been widely
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applied to finding the hub genes associated with clinical feature in
different cancer types [8–10].

In this study, WGCNA and other analysis methods are adopted to
jointly analyze clinical information and microarray data of ccRCC pa-
tient samples to identify key genes associated with clinical features
(age, gender, and tumor grade). These key genes may have important
clinical implications and serve as diagnostic and prognostic biomarkers
or therapeutic targets.

2. Materials and methods

2.1. Data collection

Expression profiles of mRNA and related clinical data of clear cell
renal carcinoma were downloaded from Gene Expression Omnibus
(GEO) database (http://www.ncbi.nlm.nih.gov/geo/). Dataset GSE40435
performed on Illumina HumanHT-12 V4.0 expression beadchip was
used as a training set to construct co-expression networks and identify

Fig. 1. Clustering dendrogram of 97 tumor samples
and the clinical traits. (A) The clustering was based on
the expression data of differentially expressed genes
between tumor samples and non-tumor samples in
ccRCC. The color intensity was proportional to older
age and higher Furhman grade. (B-D) Determination
of soft-thresholding power in the weighted gene co-
expression network analysis (WGCNA). (B) Analysis of
the scale-free fit index for various soft-thresholding
powers (β). (C) Analysis of the mean connectivity for
various soft-thresholding powers. (D) Histogram of
connectivity distribution when β = 8. (E) Checking
the scale free topology when β = 8. (For interpreta-
tion of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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hub genes in this study. This dataset included 101 pairs of ccRCC tu-
mors and adjacent non-tumor renal tissue from Czech patients (in-
cluding 22 ccRCC of grade 1, 47 of grade 2, 24 of grade 3, and 8 of
grade 4). Another independent dataset of GSE53757 based on the mi-
croarray platform of Affymetrix U133 plus 2 was downloaded from
GEO and used as a test set to verify our results. This dataset included 72
pairs of clear cell renal carcinoma patients (including ccRCC of grade 1,
2, 3, and 4).

2.2. Data preprocessing

Normalized data were firstly downloaded from GEO database.
Microarray quality was assessed by sample clustering according to the
distance between different samples in Pearson's correlation matrices
and average linkage, and 4 samples (GSM993996, GSM994041,
GSM994065, and GSM994069) were removed from subsequent analysis
in GSE40435.

2.3. Differentially expressed genes (DEGs) screening

The “limma” (linear models for microarray data) R package was
used to screen the DEGs between normal kidney and clear cell renal cell
carcinoma. The SAM (significance analysis of microarrays) with FDR
(false discovery rate) < 0.05 and |log2 fold change (FC)| > 0.585
were chosen as the cut-off criteria to select genes further considered in
the network construction.

2.4. Co-expression network construction

Firstly, expression data profile of DEGs was tested to check if they
were the good samples and good genes. Then, we used the “WGCNA”
package in R to construct scale-free co-expression network for the
DEGs. At first, the Pearson's correlation matrices and average linkage
method were both performed for all pair-wise genes. Then, a weighted
adjacency matrix was constructed using a power function amn = |cmn|β

(cmn = Pearson's correlation between gene m and gene n;
amn = adjacency between gene m and gene n). β was a soft-thresh-
olding parameter that could emphasize strong correlations between
genes and penalize weak correlations. After choosing the power of β,
the adjacency was transformed into a topological overlap matrix
(TOM), which could measure the network connectivity of a gene de-
fined as the sum of its adjacency with all other genes for network
generation, and the corresponding dissimilarity (1-TOM) was calcu-
lated. To classify genes with similar expression profiles into gene
modules, average linkage hierarchical clustering was conducted ac-
cording to the TOM-based dissimilarity measure with a minimum size
(gene group) of 50 for the genes dendrogram. To further analyze the
module, we calculated the dissimilarity of module eigengenes, chose a
cut line for module dendrogram and merged some module.

2.5. Identification of clinically significant modules

Two approaches were used to identify modules related to clinical
traits of ccRCC. First, gene significance (GS) was defined as the log10
transformation of the P value (GS = lgP) in the linear regression

Fig. 2. Identification of modules associated with
clinical information. (A) Dendrogram of all differ-
entially expressed genes clustered based on a dis-
similarity measure (1-TOM). (B) Distribution of
average gene significance and errors in the modules
associated with the Furhman grade of ccRCC. (C)
Heatmap of the correlation between module eigen-
genes and different clinical information of ccRCC
(age, gender, and Furhman grade).
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between gene expression and the clinical traits. In addition, module
significance (MS) was defined as the average GS for all the genes in a
module. In general, the module with the absolute MS ranked first or
second among all the selected modules was considered as the one re-
lated with clinical trait. Module eigengenes (MEs) were considered as
the major component in the principal component analysis for each gene
module, and the expression patterns of all genes could be summarized
into a single characteristic expression profile within a given module. In
addition, we calculated the correlation between MEs and clinical traits
to identify the relevant module. The module with the maximal absolute
MS among all the selected modules was usually considered as the one
related with clinical trait. Finally, the module highly correlated with
certain clinical trait was selected for further analysis.

2.6. Identification of hub genes

Hub genes, highly interconnected with nodes in a module, have
been shown to be functionally significant. In this study, hub genes were
defined by module connectivity, measured by absolute value of the
Pearson's correlation (cor.geneModuleMembership> 0.8) and clinical
trait relationship, measured by absolute value of the Pearson's corre-
lation (cor.geneTraitSignificance> 0.2). We identified hub genes in
module which were highly correlated with certain clinical trait.
Furthermore, we uploaded all genes in the hub module to the STRING
database, choosing confidence> 0.4 to construct protein-protein in-
teraction (PPI). In the PPI network, genes with a connectivity degree of

≥8 were also defined hub genes. The common hub genes both in co-
expression network and PPI network were regarded as “real” hub genes
for further analysis.

2.7. Hub genes validation

In the test set of GSE53757, linear regression analyses were per-
formed to validate the role of hub genes in the progression of ccRCC as
well as the transcriptional levels in normal kidney and ccRCC samples.
Moreover, we used 2 other databases: Gene Expression Profiling
Interactive Analysis (http://gepia.cancer-pku.cn) and Oncolnc (http://
www.oncolnc.org) to perform validation of cancer specific expression
and prognosis of the candidate hub genes [11,12].

2.8. Functional and pathway enrichment analysis

The Database for Annotation, Visualization and Integrated
Discovery (DAVID) (http://david.abcc.ncifcrf.gov/) is an online program
providing a comprehensive set of functional annotation tools for in-
vestigators to understand biological meaning behind large list of genes
[13]. We uploaded DEGs in hub module to perform gene ontology and
KEGG pathway enrichment analysis. Those terms including hub genes
were selected as the key biological process and pathways. P < 0.05
was set as the cut-off criterion.

Fig. 3. Hub genes detection and protein-protein network
(PPI). (A) Scatter plot of module eigengenes in green
module. (B) The Venn diagram of co-expression hub genes
and PPI network hub genes. (C) Protein–protein interaction
network of genes in the green module. The color intensity
in each node was proportional to fold change of expression
in comparison to normal kidney samples (up-regulation in
red and down-regulation in green). The nodes with bold
circle represented network hub genes identified by
WGCNA. The edge width was proportional to the score of
protein-protein interaction based on the STRING database.
(For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this
article.)

L. Yuan et al. Genomics Data 14 (2017) 132–140

135

http://gepia.cancer-pku.cn
http://www.oncolnc.org
http://www.oncolnc.org
http://david.abcc.ncifcrf.gov


Fig. 4. Validation of the gene expression le-
vels of CCNB2, CDC20, CEP55, KIF20A,
TOP2A and UBE2C between normal kidney
and ccRCC samples. (A) Validation based on
microarray data of GSE53757. (a) CCNB2, (b)
CDC20, (c) CEP55, (d) KIF20A, (e) TOP2A,
and (f) UBE2C. (B) Validation based on TCGA
data in GEPIA. (a) CCNB2, (b) CDC20, (c)
CEP55, (d) KIF20A, (e) TOP2A, and (f)
UBE2C.

Fig. 5. Validation of the correlation between
the expression levels of CCNB2, CDC20,
CEP55, KIF20A, TOP2A, and UBE2C and the
Furhman grade of ccRCC (based on micro-
array data of GSE53757). (A) CCNB2, (B)
CDC20, (C) CEP55, (D) KIF20A, (E) TOP2A,
and (F) UBE2C.
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2.9. Gene set enrichment analysis (GSEA)

In the test set, ccRCC we firstly seek out the median expression of
each hub gene and according to the median, 72 ccRCC samples were
divided into two groups. To identify potential function of the hub gene,
GSEA (http://software.broadinstitute.org/gsea/index.jsp) was conducted
to detect whether a series of a priori defined biological processes were
enriched in the gene rank derived from DEGs between the two groups
[14,15]. For use with GSEA software, the collection of annotated gene
sets of c2.cp.kegg.v6.0.symbols.gmt in Molecular Signatures Database
(MSigDB, http://software.broadinstitute.org/gsea/msigdb/index.jsp) was
chosen as the reference gene sets. FDR < 0.05 was chosen as the cut-
off criterion.

2.10. Analysis of DEGs screening between grade I-III and grade IV

One hundred one samples were divided into 2 groups (grade I-III
and grade IV). The FDR < 0.05 and |log2 fold change (FC)| > 0.585
were chosen as DEGs between low grade ccRCC and high grade ccRCC.
Then DEGs were uploaded to DAVID database to perform functional
enrichment analysis.

3. Results

3.1. DEGs screening

After data preprocessing and quality assessment, the expression
matrices were obtained from the 202 samples in training set GSE40435.
Under the threshold of FDR < 0.05 and |log2FC| > 0.585, a total of
2756 DEGs (1314 up-regulated and 1442 down-regulated) were se-
lected for subsequent analysis.

3.2. Weighted co-expression network construction and key modules
identification

Ninety-four over one hundred one samples with clinical data were
included in co-expression analysis (Fig. 1A). Using “WGCNA” package
in R, the DEGs with similar expression patterns were grouped into
modules via the average linkage hierarchical clustering. In this study,

the power of β = 8 (scale free R2 = 0.89) was selected as the soft-
thresholding to ensure a scale-free network (Fig. 1B-E). A total of 7
modules were identified (Fig. 2A). Two methods were used to test the
relevance between each module and the ccRCC progression. Firstly,
modules with greater MS were considered to have more connection
with the disease progression. However, most of the correlations were
low to moderate (R2 < 0.5), and we found that the MS of green
module (P = 1 × 10−9, R2 = 0.57) was higher than those of any other
MS (Fig. 2B). Afterwards, the ME in the green module showed a higher
correlation with disease progression than other modules (Fig. 2C).
Based on the two methods, the green module with tumor progression
was identified as the clinical significant module, which was extracted
for further analysis.

3.3. Identification of hub genes for tumor progression in the green module

Highly connected hub genes in a module play important roles in the
biological processes. Defined by module connectivity, measured by absolute
value of the Pearson's correlation (cor.geneModuleMembership> 0.8) and
clinical trait relationship, measured by absolute value of the Pearson's cor-
relation (cor.geneTraitSignificance> 0.2), 22 genes with the high con-
nectivity in green module were taken as hub genes (TOP2A, UHRF1,
RAD51AP1, NR3C2, MCM6, PTTG1, NCAPG, CDCA5, UBE2C, PDGFD,
RGS5, CEP55, CCNB2, CDKN3, CCDC109B, PTTG3P, RACGAP1, KIF20A,
ALDH3A2, CDC20, EDNRB, and EMCN) (Fig. 3A). As to the PPI network,
under the cutoff of confidence> 0.4 and connectivity degree of ≥8, 16
genes were identified as hub genes (CCNB2, CDC20, CDC45, CEP55,
KIF20A, MAD2L1, NUSAP1, PRC1, PRKCA, PSMA1, SMC4, TOP2A, TSPO,
TUBA1B, TUBB, and UBE2C) (Fig. 3C). CCNB2, CDC20, CEP55, KIF20A,
TOP2A, and UBE2C were identified both in PPI network and co-expression
network (Fig. 3B). Eventually, these six genes were regarded as “real” hub
genes for tumor progression, which were chosen for further analysis.

3.4. Hub gene validation

Gene expression validations were performed, and all of six hub
genes were also oncogenes in the test set and TCGA data (Fig. 4). Then,
linear regression analyses were conducted to validate hub genes in the
test set GSE53757, most of which except TOP2A showed positive

Fig. 6. Validation of the correlation between the expression levels of CCNB2, CDC20, CEP55, KIF20A, TOP2A and UBE2C and the pathologic stage of ccRCC (based on TCGA data in
GEPIA). (A) CCNB2, (B) CDC20, (C) CEP55, (D) KIF20A, (E) TOP2A, and (F) UBE2C.
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correlation with ccRCC progression (Furhman grade) (P for trend<
0.05) (Fig. 5). Moreover, based on the TCGA data, we investigated that
all of six genes were highly-correlated with pathologic stage (Fig. 6). As
the tumor progression always affected the tumor prognosis, we also
validated the six hub genes by investigating their roles in ccRCC
prognosis including overall survival time and disease free survival time.
We found a shorter overall survival time (Fig. 7A) and disease-free
survival time in patients with higher expression levels of CCNB2,
CDC20, CEP55, KIF20A, TOP2A, and UBE2C (Fig. 7B). In addition,
based on the Oncolnc database, we found a cancer-specific expression
of the six hub genes, which demonstrated that the significance of

expression of CCNB2, CDC20, CEP55, KIF20A, TOP2A, and UBE2C was
top 4 among all cancers (Suplplementary Fig. S1).

3.5. Functional and pathway enrichment analysis

To obtain further insight into the function of DEGs in hub module,
they were uploaded to the DAVID database. GO analysis results showed
that hub genes were enriched in the top 10 biological process (BP),
including proteasome-mediated ubiquitin-dependent protein catabolic
process, negative regulation of blood coagulation, anaphase-promoting
complex-dependent catabolic process, DNA unwinding involved in DNA

Fig. 7. Survival analysis of six hub genes in ccRCC (based on TCGA data in GEPIA). (A) Overall survival analysis. (a) CCNB2, (b) CDC20, (c) CEP55, (d) KIF20A, (e) TOP2A, and (f) UBE2C.
(B) Disease free survival analysis. (a) CCNB2, (b) CDC20, (c) CEP55, (d) KIF20A, (e) TOP2A, and (f) UBE2C. Red line represented the samples with gene highly expressed and blue line was
for the samples with gene lowly expressed. HR: hazard ratio. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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replication, microtubule-based process, DNA replication initiation, mi-
totic cytokinesis, G1/S transition of mitotic cell cycle, mitotic chro-
mosome condensation, and cell division. Moreover, hub genes were
also overrepresented in these top 10 KEGG pathways, including pha-
gosome, progesterone-mediated oocyte maturation, DNA replication,
Hepatitis B, pancreatic cancer, pathways in cancer, HTLV-1 infection,
pathogenic Escherichia coli infection, gap junction, and cell cycle
(Supplementary Fig. S2). Among the functional and pathway enrich-
ment analysis, cell division and cell cycle were most significantly en-
riched.

3.6. Gene set enrichment analysis

To identify the potential function of those hub genes in ccRCC,
GSEA was conducted to search biological processes enriched in any hub
gene highly-expressed samples. Six gene sets were enriched in the
samples with all hub genes highly expressed, including “cell cycle”,
“p53 signaling pathway”, “DNA replication”, “primary im-
munodeficiency”, “homologous recombination”, and “base excision
repair” (Supplementary Fig. S3).

3.7. Grade-associated DEGs analysis

Firstly, sample cluster was performed (Supplementary Fig.
S4A).Under the threshold of FDR < 0.05 and |log2FC| > 0.585, a
total of 48 DEGs (35 up-regulated and 13 down-regulated) were iden-
tified (Supplementary Fig. S4B and Supplementary Table 1). And they
were significantly enriched in following terms listed in Supplementary
Table 2.

4. Discussion

The progression and prognosis of clear cell renal cell carcinoma
were quite variable. Though a number of prognostic models had been
proposed, most of them were based on clinical parameters and lacked
accuracy. In the era of precise medicine, better biomarkers for cancer
specific prognosis and progression were urgently needed and provided
more accurate clinical information that could significantly enhance
decision making for patient management. Here, we used an integrated
analysis to screen progression and prognosis related biomarkers.

WGCNA was performed to identify gene co-expression modules re-
lated with the progression of ccRCC. The green module was identified,
and 22 hub genes were derived from the module. Furthermore, relating
the results of PPI network, 16 hub nodes were identified. Therefore,
CCNB2, CDC20, CEP55, KIF20A, TOP2A, and UBE2C in common net-
works, were real hub genes, indicating that they had high connection
with clinical trait as well as vital biological processes. Few of them were
identified in clear cell renal cell carcinoma.

Cyclin B2 (CCNB2) is a member of the cyclin family, specially the B-
type cyclins. Takashima S et al. reported that stronger expression of
cyclin B2 mRNA in tumor cells was an independent predictor of a poor
prognosis in patients with adenocarcinoma of the lung [16]. Further-
more, Shubbar E et al. also found that CCNB2 might function as an
oncogene and could serve as a potential biomarker of unfavorable
prognosis over short-term follow-up in breast cancer [17]. Cell Division
Cycle 20 (CDC20), acted as a regulatory protein interacting with several
other proteins at multiple points in the cell cycle. Many studies de-
monstrated that CDC20 might be a potential biomarker for both ther-
apeutic target and prognosis in a number of cancers [18–21]. Cen-
trosomal protein 55 (CEP55), played a role in mitotic exit and
cytokinesis, which was important in carcinogenesis as well. Tao J. et al.
suggested that CEP55 could suppress cellular proliferation by regulating
cell cycle arrest at G2/M phase in human gastric cancer [22]. CEP55
overexpression has been found to significantly correlate with tumor
stage, aggressiveness, metastasis, and poor prognosis across multiple
tumor types and therefore has been included as part of several

prognostic ‘gene signatures’ for cancer [23]. Kinesin Family Member
20A (KIF20A) might act as a motor required for the retrograde RAB6
regulated transport of Golgi membranes and associated vesicles along
microtubules. Shi C. et al. found that Gli2-KIF20A axis was essential for
the proliferation and growth of human hepatocellular carcinoma cells
as well as a potential target for future therapeutic intervention and as
an independent prognostic biomarker for hepatocellular carcinoma
[24]. KIF20A was also reported that its over-expression correlates with
HPV infection, clinical stage, tumor recurrence, lymphovascular space
involvement, pelvic lymph node metastasis, and poor outcome in early-
stage cervical squamous cell carcinoma patients [25]. Topoisomerase
(DNA) II Alpha (TOP2A) encoded a DNA topoisomerase, an enzyme that
controlled and altered the topologic states of DNA during transcription.
Study had demonstrated that TOP2A identified and provided epigenetic
rationale for novel combination therapeutic strategies for aggressive
prostate cancer [26]. Moreover, we could find the prognostic value of
TOP2A in nasopharyngeal carcinoma and breast cancer [27,28]. Ubi-
quitin-conjugating enzyme E2 C (UBE2C), a member of the E2 ubi-
quitin-conjugating enzyme family, was required for the destruction of
mitotic cyclins and for cell cycle progression and may be involved in
cancer progression. It was reported to be a promising biomarker in
tumor progression and prognosis [29–32].

Based on many studies about six hub genes, we could find the
promising values of tumor progression and prognosis. According to the
tumor specific expression (Supplementary Fig. S1), we found that the p
value of each hub gene in ccRCC ranked top4 in all kinds of cancers
based on the Oncolnc database, which demonstrated that those hub
genes were strongly correlated with ccRCC as well as with great diag-
nostic value for ccRCC.

To further study their mechanism of regulating tumorigenesis, we
perform the gene ontology and KEGG pathway analysis as well as GSEA
analysis. In GO analysis, we found that hub genes were significantly
enriched in terms of regarding cell cycle and cell cycle regulation;
meanwhile, the KEGG analysis showed that cell cycle was the most
significant pathway. Interestingly, through GSEA analysis, we found
that hub genes were commonly enriched in cell cycle and p53 signaling
pathway. Several researchers had demonstrated that the presence of
p53 was necessary for DNA-damaged cells to arrest, repair the damage,
and reenter the cell cycle [33]. Thus, we might suppose that those six
hub genes played certain role in the progression of ccRCC and influ-
enced the prognosis probably by regulating p53 signaling pathway,
which contributed to the poor prognosis of ccRCC.

5. Conclusions

Our study used weighted gene co-expression analysis to construct a
gene co-expression network, identify and validate network hub genes
associated with the progression and poor prognosis of ccRCC.
Eventually, six hub genes including CCNB2, CDC20, CEP55, KIF20A,
TOP2A, and UBE2C were identified and validated in association with
the progression and poor prognosis of ccRCC probably by regulating
p53 signaling pathway.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.gdata.2017.10.006.
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