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Abstract: The primary means of intestinal absorption of nutrients by villus cells is via Na-dependent
nutrient co-transporters located in the brush border membrane (BBM). These secondary active co-
transport processes require a favorable transcellular Na gradient that is provided by Na-K-ATPase.
In chronic enteritis, malabsorption of essential nutrients is partially due to inhibition of villus Na-
K-ATPase activity mediated by specific immune inflammatory mediators that are known to be
elevated in the inflamed mucosa. However, how Prostaglandin E2 (PGE2), a specific mediator
of nutrient malabsorption in the villus BBM, may mediate the inhibition of Na-K-ATPase is not
known. Therefore, this study aimed to determine the effect of PGE2 on Na-K-ATPase in villus cells
and define its mechanism of action. In vitro, in IEC-18 cells, PGE2 treatment significantly reduced
Na-K-ATPase activity, accompanied by a significant increase in the intracellular levels of cyclic
Adenosine Monophosphate (cAMP). The treatment with cAMP analog 8-Bromo-cAMP mimicked
the PGE2-mediated effect on Na-K-ATPase activity, while Rp-cAMP (PKA inhibitor) pretreatment
reversed the same. The mechanism of inhibition of PGE2 was secondary to a transcriptional reduction
in the Na-K-ATPase α1 and β1 subunit genes, which was reversed by the Rp-cAMP pretreatment.
Thus, the PGE2-mediated activation of the PKA pathway mediates the transcriptional inhibition of
Na-K-ATPase activity in vitro.

Keywords: PGE2; Intestinal epithelial cells; Villus; Na-K-ATPase

1. Introduction

Na-K-ATPase is an integral plasma membrane protein present in the basolateral
membrane (BLM) of epithelial cells and transports 3 Na out of and 2 K into the cell by
utilizing one ATP per transport cycle. As a consequence of pumping Na out of the cell,
Na-K-ATPase generates a favorable transcellular Na gradient required for Na-dependent
nutrient absorption in the brush border membrane (BBM) of the intestinal epithelial cells.
Thus, Na-K-ATPase plays a vital role in driving transporters, specifically Na-dependent
transporters present on the BBM of absorptive intestinal villus cells.

Three distinct subunits: alpha (α), beta (β), and gamma (γ) constitute a fully functional
Na-K-ATPase enzyme. Of these subunits, the α and β subunits are crucial for the proper
functioning of Na-K-ATPase, whereas the γ subunit is not essential for its function [1–3].
The catalytic α subunit that does the pumping function can be found in four different
isoforms (α1, α2, α3, and α4) and is reported to be expressed in a tissue-specific man-
ner [1,3,4]. However, the regulatory β subunit facilitates maturation of the α subunit by
forming an α/β heterodimer and transporting this enzyme to the plasma membrane [2]. Of
these isoforms α1 and β1 are ubiquitously present in intestinal mucosa [5,6]. The activity
of Na-K-ATPase can be regulated by various mechanisms: (1) trafficking of pump from
cytoplasm to the plasma membrane [7], (2) transcriptional regulation of subunits [8,9], and
(3) phosphorylation and dephosphorylation of subunits [10–12].
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Inflammatory bowel disease (IBD) is characterized by the malabsorption of nutri-
ents and electrolytes, resulting in severe weight loss and malnutrition. Previous studies
have shown that Na nutrient co-transport pathways in the BBM—namely, Na-glucose
(SGLT1), Na-alanine (ATB0), Na-glutamine (B0AT1), Na-taurocholate (ASBT), and Na-
adenosine (DMT1) co-transporters, which depend on the BLM Na-K-ATPase for their
optimal activities—are inhibited in villus cells in a rabbit model of IBD [13–16]. In these
cases, it has been reported that there is decreased Na-K-ATPase activity in villus cells,
which implies that Na-K-ATPase might be at least in part responsible for the improper
functioning of those transporters, thus leading to malabsorption of nutrients.

It has been well-established that, during IBD, various immune inflammatory mediators
are produced endogenously in the intestine [17]. These immune inflammatory mediators
work solely or synergistically with one another to affect electrolyte and nutrient transport
pathways [18–20]. Immune inflammatory mediators such as arachidonic acid metabolites
(AAMs), including prostaglandins (PGs) and leukotrienes (LTs), are prominently seen in the
mucosa of patients with IBD. AAMs like PGs are formed through the cyclooxygenase (COX)
pathway [21], whereas LTs are produced through the lipoxygenase (LOX) pathway [22].
The COX pathway derivative PGE2 was found to be responsible for the reduced activity
of Na-dependent glutamine transporter B0AT1 and Na-K-ATPase in villus cells of IBD-
induced rabbits [23]. More specifically, PGE2 reduced the B0AT1 activity by reducing
its protein expression in the brush border membrane without affecting its affinity for its
substrate glutamine. PGE2 has also been shown to affect numerous biological activities
like water and electrolyte transport in the gut, have vasoactive effects, and induce smooth
muscle contraction [14,24]. However, the specific molecular mechanism responsible for
PGE2-mediated reduction of Na-K-ATPase activity in villus cells is yet to be determined.
Therefore, this work aims to understand the molecular mechanism(s) involved in PGE2-
mediated reduction of Na-K-ATPase in intestinal epithelial cells.

2. Materials and Methods
2.1. Reagents

All reagents were purchased from Cayman chemicals (Ann Arbor, MI, USA):
Prostaglandin E2 (PGE2, Cat# 14010), AH6809 (Cat# 14050), Rp-cAMP (Cat# 16985), and 8-
bromo-Cyclic AMP (Cat# 14431) were used in the experiments. All reagents were dissolved
in DMSO to make the stock solutions. Final working concentrations of solutions contained
less than 0.5% (v/v) DMSO. To check the effect of DMSO alone, an equal amount of DMSO
was added in control experiments (vehicle control). Toxicity of all the drugs were assessed,
and the lowest effective and safe dose was used for further experiments (Figure S1).

2.2. Cell Culture

The cells used in experiments were rat intestinal epithelial cells (IEC-18, American
Type Culture Collection) between passages 5 and 20. IEC-18 cells are a non-transformed,
polarized rat epithelial cell line that maintains its integrity and biochemical properties
that are similar to in vivo mammalian intestinal epithelial cells. IEC-18 cells were grown
in Dulbecco’s modified Eagle’s medium (DMEM), supplemented with 10% (v/v) fetal
bovine serum, 100-U/L human insulin, 0.25 mM β-hydroxybutyric acid, and 100 units/mL
penicillin and streptomycin. These cells were cultured in a humidified atmosphere of
10% CO2 at 37 ◦C. Cells were fed with fresh DMEM every other day. When the cells
reached 100% confluence, it was considered as 0 day, and cells were grown until 4 days
post-confluence. All of the experiments were conducted on day 4 post-confluence when
they exhibit villus-like features of the small intestine [25].

2.3. Cell Viability Assays

For assessing the cell viability, the MTT (3-(4,5-dimethylthaizol-2-yl)-2,5- diphenlyte-
trazolium bromide) assay was performed following Vybrant MTT cell proliferation kit’s
manual (Cat# V-13154, Thermo Fisher Scientific, Waltham, MA, USA). To perform the MTT
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assay, cells were seeded with an equal number of cells in a 96-well plate and cultured, then
treated with test chemicals for the desired time. Once the cells were plated, they were
grown until 4 days post-confluence. The medium was then removed from the wells and
replaced with 100 µL of fresh medium. After that, 10 µL of 12 mM MTT solution (prepared
in PBS) was added and incubated for at 37 ◦C for 2 h. The whole medium was aspirated
and replaced with 100 µL of SDS-HCl solution to each well and mixed thoroughly. The
cells were incubated in SDS-HCl solution overnight (~12 h) at 37 ◦C. Then, the solution was
again mixed, and the absorbance was read on the spectrophotometer at 570 nm. Trypan
blue exclusion assay was also performed to measure the cell viability.

2.4. Crude Plasma Membrane Preparation

Crude plasma membrane was prepared from IEC-18 cells following the method
of Havrankova et al. [26]. Briefly, 100 mg of cell pellets were well mixed with 2.5-fold
0.001 M NaHCO3 (pH 7.4) prepared with a protease inhibitor cocktail (cOmpleteTM, Cat#
11836153001, Millipore Sigma, St. Louis, MO, USA). Then, the mixture was homogenized
3 times (10 s each) with a homogenizer (IKA, Cat# 823707, T25 S1, Staufen, Germany).
These homogenized cells were centrifuged at 600× g for 30 min. The resultant supernatant
was centrifuged for 30 min at 20,000× g. The membrane was washed twice with 0.001 M
NaHCO3. The final pellet was resuspended in 0.04 M Tris-HCl buffer (pH 7.4) containing
the protease inhibitor cocktail. All procedures were carried out at 4 ◦C.

2.5. Na-K-ATPase Activity Assay

Na-K-ATPase activity was measured as Pi (Inorganic phosphate) liberated in plasma
membrane fractions of villus cells according to protocol of Forbush et.al. [27]. Briefly, a
solution I (Tris HCL (pH 7.4), MgSO4 (0.1 M), KCl (0.1 M), NaCl (0.1 M)) was first prepared
with or without ouabain (Na-K-ATPase inhibitor). Then, 20 µg of plasma membrane prepa-
ration was added to solution I and incubated for 5 min at 37 ◦C. Subsequently, adenosine
triphosphate (ATP; 2 mM) was added to solution I with the plasma membrane preparation
and incubated for another 15 min at 37 ◦C. Then, solution II (ascorbic acid 0.49 M, 1 N HCl,
20% SDS and 10% ammonium molybdate) was added, followed by incubation for another
10 min in the ice-water bath. The reaction was stopped by the addition of solution III (2%
arsenite, 2% sodium citrate and 2% acetic acid), followed by incubation for 10 min at 37◦C.
Finally, the solution was read at 705 nm in a spectrophotometer. Enzyme-specific activity
was expressed as nanomoles of Pi released per milligram protein per minute.

2.6. 86Rb+ Uptake for Na-K-ATPase Activity

For uptake studies, IEC-18 cells were grown on Transwell inserts (insert size 24 mm,
pore size 0.4 µm; Corning, Cat# 29442, NY, USA) in 24-well plates. IEC-18 cells were
plated with equal numbers of cells. Uptake studies for Na-K-ATPase were done using
radioactive Rubidium (86Rb+, PerkinElmer, Waltham, MA, USA). 86Rb+ is comparable to
K+ in chemical characteristics and has similar affinity for the Na-K-ATPase and, hence, was
used to determine Na-K-ATPase activity [28,29]. Cells were incubated for 1 h in serum-free
DMEM (SFM). The cells were subsequently washed with SFM and incubated for 10 min at
37 ◦C in SFM containing 20 µM monensin on both sides of the membrane. Then, cells were
washed with SFM. Na-K-ATPase uptake studies were then performed by incubating cells
for 15 min with reaction mixture (SFM and 86Rb+ (~1 µCi/well)) on the basolateral side of
the membrane in the presence and absence of ouabain (1 mM). The reaction was stopped
by the addition of ice-cold MgCl2 (10 mM), subsequently washed three times with MgCl2,
and the cells were lysed with 800 µL of 1 N NaOH and incubation for 30 min at 70 ◦C,
which was then mixed with 5 mL of Ecoscint A (National diagnostics). The vials were
kept in darkness overnight, and the radioactivity retained by the cells was determined in a
Beckman Coulter 6500 scintillation counter.
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2.7. RNA Isolation and Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

RNA was isolated from different experimental groups by using RNeasy mini kit
obtained from Qiagen. qRT-PCR was performed using isolated total RNA by a two-
step method. First, total RNA was used to synthesize cDNA using SuperScript III from
(Invitrogen, Life Technologies) and an equal mixture of oligo (dT) primer and random
hexamers. Second, newly synthesized cDNA was used as a template to perform real-time
PCR using TaqMan Universal PCR master mix from Applied Biosystems (Foster city, CA,
USA) according to manufacturer’s protocol. Rat-specific Na-K-ATPase α1- and β1-specific
primers and probe were used for the qRT-PCR studies. Rat-specific β-actin primer and
probe was used as a housekeeping gene to normalize the expression of samples.

2.8. cAMP Measurement

cAMP measurement was performed using the cAMP Direct immunoassay kit (Cat#
ab65355, Abcam, Cambridge, MA, USA). Equal number of cells were seeded in a 35-cm2

dish and cultured until day 4 post-confluent, then treated with test chemicals for the
desired time. The medium was aspirated followed by addition of 282 µL of 0.1 M HCl.
The suspension was homogenized by pipetting up and down several times. Then, the
suspension was centrifuged for 10 min at 14,000 rpm. The resultant supernatant was
collected and used for further experiments. Next, the sample was diluted and mixed with
acetylating reagents. After that, the samples were loaded in 96-well plates and incubated
with cAMP antibody for an hour. cAMP-HRP was added to each well and incubated
for another hour and washed 3 times with wash buffer. Subsequently, HRP developer
was added and incubated for 1 h. The reaction was stopped by 1 M HCl, and the color
developed was read at OD 450 nm using a plate reader (Spectramax i3x, Molecular Devices,
San Jose, CA, USA).

2.9. Western Blot Analysis

Western blot analysis was performed on plasma membrane fractions prepared from
different samples as described above. Equal amounts of protein (10 µg) were denatured
in a sample buffer (10 mM Tris-HCl, pH 7, 12% glycerol, 2% SDS, 0.01% bromophenol
blue and freshly added 1-mM dithiothreitol) and separated by electrophoresis on an 8%
polyacrylamide gel. Proteins on the gel were transferred to a polyvinylidene fluoride
(PVDF) membrane that was blocked with 5% milk or BSA in TBS (20 mM Tris, pH 7.5, and
150 mM NaCl) with 0.1% Tween-20 and then incubated with primary antibody against Na-
K-ATPase α1 (Cat# 05-369, Millipore sigma, St.Louis, MO, USA) or Na-K-ATPase β1 (Cat#
ab2873, Abcam, Cambridge, MA, USA) overnight at 4◦C. Membranes were washed three
times each with TBS and TBST, followed by incubation with secondary antibody for 1 h.
Membranes were washed again three times each with TBS and TBST. ECL Western blotting
detection reagent (GE healthcare Bio-Sciences, Piscataway, NJ, USA) was used to detect the
immobilized protein. The chemiluminescence was detected using FluorChem instrument
(Alpha Innotech, San Leandro, CA, USA) and analyzed with its software. Ezrin (Cat#
ab4069, Abcam, Cambridge, MA, USA) antibody was used to normalize the expression
levels of proteins in plasma membrane fractions.

2.10. Immunocytochemistry (ICC) Staining

IEC-18 cells were grown on a coverslip to day 4 post-confluence. Cells were treated
with PGE2 or Rp-cAMP, as mentioned before. Following the treatment for 24 h, cells were
fixed with 100% methanol (chilled at −20 ◦C) at room temperature for 5 min. After cells
were permeabilized with PBST (PBS + 0.5% Tween 20) for 10 min, and cells were blocked
with 3% BSA in PBST for 30 min. Then, the cells were incubated for an hour at room
temperature with primary antibodies ZO-1 (Anti-Rabbit; Cat# 40-2200, Invitrogen Life
technologies, Carlsbad, CA, USA) and Na-K-ATPase (Anti-mouse; Cat# 05-369, Millipore
sigma, St. Louis, MO, USA). Alexa Fluor secondary antibodies (Invitrogen Life technologies,
Carlsbad, CA, USA) were added, and the cells were incubated at room temperature for
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an hour. Cells were mounted with DAPI-containing mounting medium (Abcam PLC,
Cambridge, MA, USA) and sealed with nail polish to prevent cells from drying. An EVOS
microscope (Invitrogen Life technologies, Carlsbad, CA, USA) was used to capture images,
and ImageJ software was used for analysis.

2.11. Protein Determination

Total protein was measured by the Lowry method using the DC Protein Assay Kit
(Bio-Rad, Hercules, CA, USA). Different concentrations of BSA were used as standards.
Samples were diluted to 200 µL with water. The diluted sample was mixed with 250 µL of
DC Protein Assay reagent A (Cat# 500-0113, BIO-RAD, Hercules, CA, USA) and incubated
for 2 min. Subsequently, the sample was incubated for another 15 min after the addition of
2 mL DC Protein Assay reagent B (Cat# 500-0114, BIO-RAD, Hercules, CA, USA). Finally,
the sample was read at OD 750 nm using a spectrophotometer.

2.12. Statistical Analysis

All data presented had at least n = 4 per group of experiments, repeated with cells
from different passages. The values were presented as the mean ± SEM, and p-values
of < 0.05 were taken to indicate statistical significance. All of the data were analyzed
using t-test, one-way (Dunnett’s multiple comparisons) or two-way analysis of variance
(ANOVA, Tukey’s multiple comparison) using GraphPad Prism 7 software (San Diego,
CA, USA).

3. Results
3.1. Effect of PGE2 on Na-K-ATPase in IEC-18 Cells

IEC-18 cells were treated with various concentrations of PGE2 for 24 h (two treatments
12 h apart), and the activity of Na-K-ATPase was measured by 86Rb+ uptake. The lowest
dose of PGE2, which significantly diminished the Na-K-ATPase activity, was 0.1 µM
(0.1 µM, 792 ± 53.2 vs. Control, 1656 ± 95.6 picomole/mg protein/min) (Figure 1A). The
reduction of Na-K-ATPase activity in the plasma membrane by 0.1 µM of PGE2 was further
corroborated by the inorganic phosphate (Pi) release assay (Control, 18.9 ± 1.64 and PGE2
(0.1 µM), 9.36 ± 1.22 nanomole/mg protein/min; Figure 1B).
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Figure 1. Effect of PGE2 exposure for 24 h on Na-K-ATPase activity in IEC-18 cells. (A). Measurement of Na-K-ATPase
activity by 86Rb+ uptake (n = 6, Dunnett’s multiple comparison). (B). Measurement of Na-K-ATPase activity by Pi release in
plasma membrane preparations (n = 4, t-test). Values are represented as means ± SEM. ** p < 0.01 and *** p < 0.001 vs. 0 µM
or control.
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3.2. Effect of PGE2 on Cell Viability

To ensure that a given dose of PGE2 did not affect the viability of IEC-18 cells, MTT and
trypan blue assays were performed. Cell viability was not significantly altered with 0.25 µM
or less concentration of PGE2 (Figure 2A). However, there was decreased cell viability in
IEC-18 cells with 1 µM or higher concentration of PGE2. Therefore, the concentration we
used for our experiments (0.1 µM) did not cause any cell death, which was also validated
with the trypan blue exclusion assay (Figure 2B).
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Figure 2. Effect of PGE2 exposure for 24 h on cell viability. (A). Measurement of cell viability by MTT assay (n = 6, Dunnett’s
multiple comparison). (B). Measurement of cell viability by trypan blue assay (n = 4, t-test). Values are represented as
means ± SEM; * p < 0.05 and ** p < 0.01 vs. 0 µM.

3.3. Prostaglandin Receptor Antagonist Blocked PGE2 Effect on Na-K-ATPase

The PGE2 receptor antagonist AH6809 was used to determine if the PGE2 effect is
specifically mediated through its receptor activation in IEC-18 cells. AH6809 is an EP
and DP receptor antagonist that blocks EP1, EP2, EP3, EP4 and DP1 receptors present in
cells [30]. Previous studies from our laboratory have shown that EP2 and EP4 receptors
are present in IEC-18 cells (data not shown). AH6809 (5 µM) blocks the PGE2 signaling
in various cells [31]. Therefore, in this study, IEC-18 cells were pretreated with 5 µM of
AH6809 for an hour, followed by PGE2 treatment for 24 h (two treatments 12 h apart).
As shown in Figure 3, PGE2 significantly inhibited Na-K-ATPase, however, pretreatment
with AH6089 followed by PGE2 treatment, it prevented the inhibition produced by PGE2
(Control, 1690 ± 111.1, PGE2, 792 ± 81.1, AH6089, 1645 ± 115 and AH6089 + PGE2,
1528 ± 85.4 picomole/mg protein/min). This indicates that the inhibitory effect of PGE2 is
mediated through its receptors EP2 and/or EP4 in IEC-18 cells.

3.4. Effect of PGE2 on Intracellular cAMP

In many systems, PGE2 is known to mediate its action via the second messenger cAMP,
which is involved in various physiological and pathophysiological processes [32]. Thus,
the measurement of cAMP was conducted. PGE2 treatment increased the cAMP levels in
IEC-18 cells, as shown in Figure 4. cAMP increased 2.4-fold (Control, 11.4 ± 2.3 and PGE2,
27.09 ± 3.1 picomole/mg protein) within two min and peaked at 10 min (4.3-fold, Control,
10.1 ± 0.5 and PGE2, 43.2 ± 3.3 picomole/mg protein) with PGE2 treatment. The levels
reduced gradually at later time points (30 min, 3.3-fold; Control, 11.4 ± 2.9 and PGE2,
37.7 ± 2.4, 60 min, 1.9-fold; Control, 12.9 ± 2.2 and PGE2, 25 ± 2.8, 180 min, 1.8-fold; and
Control, 12.5 ± 4.6 and PGE2, 22.3 ± 0.6 picomole/mg protein) but were still significantly
higher than the control. Thus, these data indicated that PGE2 increased the cAMP levels in
IEC-18.
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3.5. Effect of an Analog of cAMP on Na-K-ATPase Activity in IEC-18 Cells

To know whether increased cAMP is responsible for the reduction of Na-K-ATPase, we
used an analog of cAMP, 8-Bromo-cAMP. Previous studies have shown that 8-Bromo-cAMP
(0.1 mM) activates cyclic-AMP dependent protein kinases in epithelial cells [33]. Therefore,
IEC-18 cells were treated with 0.1 mM 8-Bromo-cAMP for 24 h (two treatments 12 h apart)
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followed by 86Rb+ uptake. The Na-K-ATPase activity was found to be diminished with
the 8-Bromo-cAMP treatment comparable to PGE2 (Figure 5, Control, 1665 ± 108.4, PGE2,
780 ± 79.6, and 8-Bromo-cAMP, 779.8 ± 60.5 picomole/mg protein/min).
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3.6. Effect of PKA Pathway Inhibition on Na-K-ATPase Activity in IEC-18 Cells

It has been demonstrated that cAMP mediates its effects via the activation of protein
kinase A (PKA) and subsequent phosphorylation of many proteins [34]. To see whether
PKA plays an active role in the regulation of Na-K-ATPase by PGE2, cells were pretreated
with 10 µM of the PKA inhibitor Rp-cAMP (IC50 = 12.5 µM [35,36]) for an hour. After
pretreatment, cells were treated with PGE2 for 24 h (two treatments 12 h apart), and cellular
uptakes for 86Rb+ were performed. Pretreatment with Rp-cAMP prevented the PGE2-
mediated reduction of Na-K-ATPase (Control, 1592 ± 100.9, PGE2, 746 ± 75.3, Rp-cAMP,
1596 ± 67.3, and Rp-cAMP + PGE2, 1455 ± 113.5 picomole/mg protein/min; Figure 6).
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3.7. Na-K-ATPase α1 and β1 Subunit mRNA Abundance after PGE2 Treatment

Gene and protein expression levels of Na-K-ATPase subunits, specifically α and β,
are correlated with its functional activity. While the α subunit is accountable for Na-K-
ATPase pumping activity, the β subunit does not contribute any pumping activity directly
but instead supports the α subunit by proper folding and transporting α subunit from
the cytoplasm to the plasma membrane. Therefore, to determine whether changes in
Na-K-ATPase activity mediated by PGE2 are transcriptionally regulated, we performed
qRT-PCR on both Na-K-ATPase α1 and β1 subunits. Na-K-ATPase α1 subunit mRNA was
significantly decreased when exposed to PGE2, while Rp-cAMP pretreatment prevented
the reduction of the Na-K-ATPase α1 subunit (Figure 7A, control, 1.00 ± 0.04, PGE2,
0.65 ± 0.04, Rp-cAMP, 0.88 ± 0.13, and PGE2 + Rp-cAMP, 0.93 ± 0.09). Similarly, there was
a decrease in the Na-K-ATPase β1 subunit levels when treated with PGE2, but the reduction
was partially abolished when pretreated with Rp-cAMP (Figure 7B, control, 1.00 ± 0.05,
PGE2, 0.55 ± 0.06, Rp-cAMP, 1.01 ± 0.16, and PGE2 + Rp-cAMP, 0.85 ± 0.05). These data
indicate that the Na-K-ATPase α1 and β1 subunits were transcriptionally downregulated
when treated with PGE2. Additionally, the PGE2-mediated decrease in the Na-K-ATPase
α1 and β1 subunit mRNA abundances was prevented with Rp-cAMP, indicating that the
PKA pathway is responsible for the PGE2-mediated regulation of Na-K-ATPase.
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3.8. Na-K-ATPase α1 and β1 Subunit Protein Expression after PGE2 Treatment

Protein levels of the Na-K-ATPase α1 and β1 subunits were determined by performing
immunocytochemistry of cell monolayers and Western blots analysis on plasma membrane
fractions for all experimental conditions. Immunocytochemistry (Figure 8) and Western
blot analysis (Figure 9) showed that relative levels of Na-K-ATPase α1 protein expression
were significantly lowered after PGE2 treatment, whereas this reduction was blocked when
treated with Rp-cAMP (Figure 9A,B). Similarly, there was also a significant decrease in the
Na-K-ATPase β1 subunit protein expression in plasma membrane fractions when treated
with PGE2, and this was reversed when treated with Rp-cAMP (Figure 9A,C). Therefore,
the expression of the Na-K-ATPase α1 and β1 subunits mRNA correlated with its protein
expression in plasma membrane fractions. These data indicate that PGE2 regulates Na-K-
ATPase transcriptionally through the cAMP-activated PKA pathway.
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Figure 8. Immunocytochemistry of IEC-18 cells treated with PGE2 (0.1 µM) and Rp-cAMP (PKA inhibitor, 10 µM).
(A). Representative images of Na-K-ATPase α1 (grey) and ZO-1 (red) (20X). (B). Quantification of Na-K-ATPase α1
fluorescence. Values are represented as mean ± SEM (n = 6, Tukey’s multiple comparison). * p < 0.01 vs. Control.
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4. Discussion

Prostaglandins play an essential role in maintaining normal physiological processes
such as intestinal secretion, motility, and mucosal protection [22]. However, they have also
been seen to be increased in the mucosa during chronic enteritis [37,38]. PGE2 has been
extensively studied in the various process such as apoptosis [39] and inflammatory pro-
cesses [22]. With relevance to intestinal absorption, PGE2 has been shown to decrease active
sodium and chloride absorption and increase chloride secretion in in vitro studies [37,38].
PGE2 has also been involved in the regulation of intestinal epithelial transporters, including
Na-glucose (SGLT1) [40,41], Na/H exchanger [42,43], Na-K-ATPase [44], and Cl/HCO3
exchanger [45]. Moreover, our laboratory has also shown that the cyclooxygenase path-
way, which produces prostaglandins, is involved in the reduction of Na-glutamine uptake
(B0AT1) and Na-K-ATPase activity in villus cells in the inflamed intestines of rabbits [46].
Given this background, it is evident that PGE2 plays a crucial role in regulating intesti-
nal epithelial cell absorptive pathways, including Na-K-ATPase during chronic enteritis.
However, the molecular mechanism of regulation of Na-K-ATPase by PGE2 in intestinal
epithelial cells during chronic intestinal inflammation is not known.

In the present study, we demonstrated that the inflammatory mediator PGE2 regulates
Na-K-ATPase in the basolateral membrane, which, in turn, may partially be responsible
for the regulation of several secondary active Na-dependent nutrient and electrolyte
transporters in the brush border membrane of intestinal epithelial cells. This study also
revealed that PGE2 reduces Na-K-ATPase activity through the activation of the PKA-
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mediated pathway in rat intestinal epithelial cells (IEC-18 cells), which physiologically
behave like absorptive villus cells when grown to four days post-confluence [5,25].

PGE2 is a well-known regulator of Na-K-ATPase activity in numerous tissue types.
A PGE2-mediated inhibitory effect in Na-K-ATPase has been seen in various organs, in-
cluding the heart [47], liver [48,49], and kidneys [50]. Similar to these findings, our data
also demonstrates that 0.1 µM of PGE2 for 24 h is optimal for the reduction of Na-K-
ATPase activity in IEC-18 cells. Our qRT-PCR data showed that PGE2 transcriptionally
reduces Na-K-ATPase α1 and β1, which led to a decrease in plasma membrane protein
expression of both subunits, as demonstrated by the Western blot analysis. Immunoflu-
orescence studies also confirmed that there was a significant decrease in the membrane
expression of the functional Na-K-ATPase α1 subunit in cells treated with PGE2. However,
as demonstrated by Western blot and immunofluorescence studies, Rp-cAMP pretreatment
reversed the downregulation of Na-K-ATPase α1 subunit expression, indicating that the
cAMP-mediated pathway was responsible for the inhibition of Na-K-ATPase activity in
PGE2-treated cells. Further analysis of the data revealed that there was a significant corre-
lation between Na-K-ATPase function and protein α1 subunit expression (R2 value 0.99;
Pearson’s r correlation test).

Previously, our laboratory showed that IEC-18 cells have PGE2 receptors (EP2 and
EP4). The specific inhibitor AH6809 is an EP and DP receptor antagonist and inhibits these
receptors with equal affinity [30]. When IEC-18 cells were pretreated with AH6809, the
reduction of Na-K-ATPase due to PGE2 treatment was prevented. These data demonstrate
that the decrease of Na-K-ATPase activity is mediated through PGE2 receptors. These
receptors mediate their action through secondary messengers such as Ca2+ or cAMP [51,52].
We observed that PGE2 increases the intracellular cAMP levels. Therefore, to demonstrate
the role of cAMP in the reduction of Na-K-ATPase, we treated cells with a cAMP analog
(8-Bromo-cAMP), which produced similar effects on Na-K-ATPase activity comparable to
that by PGE2 treatment.

PGE2 has been shown to activate signaling pathways through PKA or PKC down-
stream of the second messenger cAMP or Ca2+ in various cell types [53,54]. PKA has been
shown to have differential regulation (activation, inhibition, or no effect) of Na-K-ATPase
based on the tissue types. The discrepancy in the regulation of Na-K-ATPase by PKA might
be due to the phosphorylation of different isoforms of Na-K-ATPase subunits [7]. Oliveira
et al. reported that the short-term treatment of PGE2 has a PKA-mediated inhibitory effect
on Na-K-ATPase hippocampal tissue, likely due to phosphorylation of the Ser943 residue
of the α subunit [55]. On the other hand, cAMP-mediated PKA has also been shown to
regulate Na-K-ATPase transcriptionally. Dagenais et al. reported that the activation of
PKA by a cAMP analog subsequently phosphorylated the transcription factor CREB and,
eventually, increased the synthesis of mRNA of the α1 subunit but not the β1 subunit after
eight h of treatment in isolated rat alveolar epithelial cells [56]. However, there was no
significant change in the α1 mRNA level after 24 h of cAMP analog treatment. Additionally,
three prostaglandin response elements (PGRE) were identified in the β1 subunit, which,
in response to PGE1 (four h of treatment), increased the transcription of the β1subunit by
activating transcription factors CRE and CREB [57–59]. Contrary to this finding, in our
study, we found that cAMP-mediated PKA is responsible for the inhibition of Na-K-ATPase.
The discrepancy in the results may be due to the different tissues of origin that we used,
the concentration of the PGE2, and/or the exposure time. Another possible reason for this
discrepancy might be that the observed effect is an early response. Moreover, in a study
by Mony et al., in the hypoxic condition in cancer, transcription factors hypoxia inducing
factor (HIF-1α) and Smad3 were shown to bind to the β1 subunit gene and repress the
expression of β1 subunit [60]. Therefore, the prolonged treatment with PGE2, as seen in
this study, might result in transcription repression of the β1 subunit by transcription factors
like HIF-1α and Smad3.
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5. Conclusions

The current study indicates that PGE2 reduces Na-K-ATPase activity via the cAMP-
mediated PKA pathway, as shown in Figure 10. The mechanism involves the binding of
PGE2 to prostaglandin receptors, leading to increased intracellular cAMP production and
the subsequent activation of the PKA pathway, which eventually leads to a decrease in
the Na-K-ATPase activity. The reduction in activity is due to transcriptional repression of
genes encoding the α1 and β1 subunits of Na-K-ATPase.
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