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Introduction
The receiver operating characteristic (ROC) curve plots two 
accuracy measures of tests (the false-positive rate and the 
true-positive rate), which are frequently used to measure and 
compare the accuracy of different diagnostic methods. It fre-
quently depends on covariates such as gender and age as in the 
hearing impairment example in Dodd and Pepe.1 To explain 
the effects of covariates, the covariate-dependent ROC mod-
els are studied extensively in the literature. Two most common 
approaches are as follows: (i) one that introduces covariate-
dependent error distributions2 and (ii) the other that directly 
quantifies the covariate effect on the ROC curve.1,3–8

The clustered outcomes are multiple measurements of a 
diagnostic test from a single subject (or cluster). They typically 
occur when subjects are repeatedly tested over time and are 
naturally correlated to each other. The random-effects model 
is introduced to explain the correlation among observations 
within a cluster. In particular, the location-scale model, where 
the location and scale parameters are modeled with random 
effects to explain the correlation among observations within 
a cluster, is popularly used.9,10 On another direction, there are 

efforts to directly model the area under the ROC curve (AUC). 
Obuchowski11 estimated the AUC (without covariates) with 
the Mann–Whitney (MW)-type statistics and made pairwise 
comparisons among several diagnostic methods. Dodd and 
Pepe1 introduced the generalized estimation equation (GEE) 
framework to model the AUC with covariates. However, they 
both did not consider the clustered outcomes. Recently, Lim 
et al.12 extended the study of Dodd and Pepe1 to incorporate 
the clustered outcomes by considering a wider class of GEE 
weights and proposed a procedure to choose the optimal 
weights to minimize the variance of the regression estimator 
of interest.

Despite many scholastic discussions on the ROC regres-
sion model, we have a limited number of models for the clus-
tered ordinal outcomes and practitioners still have difficulties 
in using them. In this article, we propose a simple regression 
model (a nonlinear mixed-effects model) for the clustered 
ordinal test results with covariates. The proposed model is 
originally from the proportional hazard model for grouped-
survival (GS) time data by Hedeker et al.13 We find that the 
proposed model defines a new type of location-scale model 
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and also a Lehman family of ROC curves, where the Lehman 
family was proposed and extensively studied by Gönen and 
Heller.15 Finally, due to the formulation of the GS time (or 
GS in short) model, our model can be estimated by fitting a 
nonlinear mixed-effects model, which is supported by many 
common statistical software, including SAS and SPSS.

The remainder of the article is composed of four sec-
tions. In the Model section, we introduce the model we pro-
posed and discuss its connection to the existing models. In 
the Numerical study section, we present a numerical study to 
assess the performance of the proposed method. We apply the 
model to comparing different magnetic resonance imaging 
(MRI) methods to detect the presence of hepatic metastases 
in the Data example section. The Conclusion section provides 
a brief summary of the article. Finally, the sample codes for 
the example are presented in the Appendix section.

Model
This section introduces the nonlinear random effects model 
we proposed in this article. Let Yij be an ordinal marker value 
with K categories of the ith cluster (or subject) and the jth 
measurement (diagnostic result), for i = 1, 2, …, n, and j = 1,2, 
…, ni. Let xij be a p-dimensional covariate vector and Vi be a 
random effect to explain correlation of observations in the ith 
cluster. Let dij be an indicator variable of the true diagnostic 
class, where dij = 0 and dij = 1 imply that the true class of the 
(i,j)th observation is normal (negative) class and tumor (posi-
tive) class, respectively.

The regression model we propose is, for k = 1, 2, …, K, 
as follows:

	 g P k v d d d vij i ij ij k ij ij ij ij i
| ; , ,x x xT T( ){ } = + + + +α γ θ β0 	 (1)

where Pij(k|vi;xij,dij) = P(Yij # k|vi;xij,dij) and the link func-
tion g(.) is a monotone increasing function from (0,1) to R. 
The model (1) is known as the grouped-time survival model 
by Hedeker et al.13 The model assumes that the true survival 
time Tij is observed as a categorical response Yij defined by 
Y k Iij k

K= ⋅ ∈( )=∑ T Iij k1 , where Ik, k  =  1, 2, …, K, are pre-
determined disjoint and exhaustive intervals on [0,∝). This 
is the case we encounter in a medical diagnostic procedure. 
For example, the ordinal outcomes in the next section are 
the medical judgments by experts based on the size or num-
ber of tumors. In applying the GS model to the data, the 
continuous severity measures of a disease (for example, the 
size of tumors) are considered as the true survival times and 
the ordinal diagnostic outcomes are read as the observed 
GS times.

By reading the ordinal results as GS times, we have a 
handy and interesting class of nonlinear random-effects 
models for the ROC curves of correlated categorical diagnos-
tic results. In particular, the model we propose is also closely 
related to the several models in the previous literature.

First, the model (1) with the link function as 
g(p) = log(–log p) defines an extension of the Lehmann family 
of the ROC curves to the model with random effects. Sup-
pose x is a covariate vector attached to the test results Y. The 
Lehmann family of the ROC curves is defined as a collection 
of the ROC curves of the form:

	 R u S S u u T( ; ( ; ,exp( )x) x) x= ( ) =−
1 0

1 γ β+ 	 (2)

where

	 S t S t S0 0 1 0( ; ) ( ) .exp( ) exp( )x  and ;x ;xx x= ( ) = ( )+ +α θ γ βT T

S t t 	 (3)

Here, S0(t) is the survival function (=1  − cumulative 
distribution function) of the outcome of normal subject with 
x = 0. It assumes that the survival functions of normal and dis-
eased subjects have the proportional hazard specification on 
the covariates. The hazard rate at (the outcome value) t is the 
instantaneous rate that we have a diagnostic outcome value 
at t when its value is known to be not ,t. The proportional 
hazard means that the covariates are multiplicatively related 
to the hazard rate. Given the cluster-specific random effect v, 
our model specifies

	

S t v S t
S S

t v
0 0

1 0

|

| |

; ( )exp( ( ) )

exp(
x  

and ; x ; x

x( ) =

( ) = ( )
+ +α θT

t v t v γγ β+xT ) ,	
(4)

and its ROC curves forms the same Lehmann family (2) men-
tioned earlier. In addition, if we further assume that log vi is 
distributed as a gamma distribution, a simple algebra shows 
that the marginal model (integrating out vi) also defines 
the same Lehmann family. Second, the model (1) is closely 
related to the location-scale ROC model introduced in Pepe 
(page 151 in Chapter 6.3),16 that is

	P x x xY k d dij ij ij ij ij
T

i≥( ) = − + + + +( )| v d S vi ij ij k
T; , .0 0α γ θ β 	 (5)

The model in (4) tells that, given Vi, the survival function 
of Yij is

	

log ; ,

exp ( ) log (
S t v d

t v S
i ij ij

ij
T

ij ij
T

i

| x

x x
( )

= + + + +{ }⋅α γ θ βd dij 0 tt), 	 (6)

and it defines the location-scale family mentioned earlier if 
log S0(t) = exp(−t). In addition, our model (4) assumes that the 
intercept is random in S0(t|v;x), and all other coefficient vec-
tors are fixed, not cluster-specific random. This simplification 
makes the cluster-specific ROC curve be the same with (2).

Our primary goal of the ROC analysis is the comparison 
of different diagnostic methods. To do it, we introduce dichot-
omous covariates x indicating the choice of methods and test 
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their coefficients in model (1). In our motivating example (the 
example followed in the next section), we have three imag-
ing methods by two readers (two medical doctors who read 
the images) and we use the three-dimensional covariate vector 
with two levels (0 or 1), x = (xr,xm2,xm3), where xr = 1 implies 
the outcome is recorded by the second reader, xm2 = 1 implies 
the outcome is from the second imaging method, and xm3 = 1 
implies the outcome is from the third imaging method.

Finally, the proposed model (1) is a nonlinear mixed-
effects model, which is well studied in the literature. Many 
refined approximations to the likelihood function of the model 
are proposed and encoded into common statistical packages, 
including SAS and SPSS. The comparison of different diagno-
sis methods could be done by testing the regression coefficients 
of the covariates, indicating the choice of diagnostic methods. 
This feature is illustrated in details by analyzing a real data in 
the next section. We refer readers to Davidian and Giltinan17 
for the details of the nonlinear mixed-effects model.

Numerical Study
In this section, we conduct a small numerical study to access 
the performance of the proposed GS model. The study consid-
ers one sample problem to estimate and test the effectiveness of 
a single diagnostic method with the AUC instead of compar-
ing the ROCs of two or more diagnostic methods. Thus, we 
have the diagnostic outcomes of two populations, say the nor-
mal and cancer populations, by a given diagnostic method.

The data sets for the study are generated as follows. The 
number of subjects from each population is set as 25 (n = 50 
( = 25 + 25)) and 50 (n = 100 ( = 50 + 50)). The number of 
repeated observations per subject is set as m = 2 and m = 4. 
The ordinal data are generated by categorizing exponentially 
distributed random variables as follows. For the ith subject of 
the normal population, we generate m continuous repeatedly 
measurements from the exponential distribution with the rate 
λ = 0.1vi, where log vi is from normal distribution with mean 0 
and variance σ v

2. For the subject i in the cancer population, the 
repeated measurements are from the exponential distribution 
with the rate λ so that

	 λ γ= 0.1vi exp(− ), 	 (7)

where log vi is again from normal distribution with mean 0 
and variance σ v

2. The variance σ v
2 is considered as 1 and 3, 

where σ v
2 3=  introduces higher correlation among observa-

tions within a subject than σ v
2 1= .  We transform them to the 

ordinal data (with five levels indexed by k = 0, 1, 2, 3, 4) using 
pre-decided grids, which are the five quantiles of the expo-
nential distribution with λ = 0.1.

In (7), γ  =  0 implies that there is no difference in the 
distributions of diagnostic outcomes of normal and can-
cer populations. In the study, we vary γ  =  0, 0.2, 0.4, 0.6, 
0.8, 1.0 and consider the powers in testing H0: γ  =  0 (ver-
sus γ . 0) as a measure of effectiveness of the procedure. To 

test the hypothesis, we apply the proposed GS model with 
link function

	
log log ; ,− − ( )( ){ } = + +1 0P k v d di ij k ijij iv| α γ

	
(8)

where di is the indicator variable for the cancer population (it has 
value 1 if the ith subject is from the cancer population, other
wise, 0) and Pij(k|vi;dij) = P(Yij # k|vi;di ) for k = 0, 1, 2, 3, 4. 
The hypothesis is tested by the Z-statistic Z = γ γ / {var ( , )}1/2  
and both γ  and var ( γ ) are obtained using the NLMIXED 
procedure in SAS version 9.3.

For the comparison, we consider the AUC estimate based 
on the MW statistic, which is popularly used in practice. Here, 
the MW statistic does not take into account the within-cluster 
correlation and treats all observations as independent samples. 
The sample AUC for the ordinal data is computed as the MW 
statistic with ties as

	
U

n n
U

D ND
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j
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	 (9)

where U Y Uij j
D
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D

j
ND Here, nD is the total number of observations 

from the disease population and nND is that from the normal 
population. In our case, n n n mD ND= = ⋅ . The asymptotic vari-
ance of the AUC under the assumption of independence of all 
outcomes is given as follows:
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,	 (10)

where Sk is the number of observations whose scores are j 
for k  =  1, …, 5. The test for non-effectiveness of the diag-
nostic method is done using the standardized statistics 
Z U UMW /{var )}= ( ,1/2  which follows approximately the stan-
dard normal distribution under the null.

We generate 1000 data sets for each case of σ v
2 1 3= ,  

(the variance of random effects) and m  =  2, 4 (the num-
ber of repetitions with a subject) and evaluate the empirical 
power by counting the number of rejections among 1000 
data sets. The empirical powers of the GS method and MW 
statistic are plotted in Figure 1. In the figure, “MW (size 
corrected)” is the empirical size correction of MW test, 
where 100(1  −  α)th empirical percentile of the MW sta-
tistic for γ = 0 is used as the critical value, instead of zα/2, 
the 100(1 – α/2)th percentile of the standard normal dis-
tribution. “MW (size corrected)” is simply added as a refer-
ence and is not applicable in practice because we do not have 
those statistics from the null.

Figure  1  shows that the size of MW-based test (the 
power when γ = 0) is biased significantly and its magnitude 
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increases as either σ v
2 increases or the number of repetition 

m increases. Both increases of σv
2 and m imply the increase 

in the correlation among repeated observations within a 
subject (or cluster). On the other hand, the size of the pro-
posed GS model-based test is approximately at the aimed 
level 0.05, regardless of σv

2 and m. The powers of GS-
method are comparable to the size-corrected MW test in all 
cases considered.

Data Example
In this section, we apply our model to the detection of hepatic 
lesions. The liver is the most frequent site of metastases from 
various extrahepatic malignancies, and determining the pres-
ence of hepatic metastases is important in order to provide the 

optimal plan for patients who are candidates for surgery and in 
order to assess prognosis after initial treatment.

The data analyzed in this article are the records of patients 
who underwent liver MRI with separate acquisition of dou-
ble contrast enhancement between November 2005 and June 
2006. The data are collected from the database of the radiol-
ogy department at Asan Medical Center in Seoul, Republic 
of Korea. The data record the test results of the 106 focal liver 
lesions from 36 patients n fii

n= =( )=∑36 106
1

 and , where fi 
denotes the number of the focal hepatic lesions from the ith 
subject. The 106 focal liver lesions are composed of 51 metas-
tases and 55 benign lesions. Note that the minimum and the 
maximum of {f1, …, f36} are 1 and 8, respectively. We take 
a picture of each lesion with three different methods: MRI 
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Figure 1. Power comparison between the proposed grouped-survival model-based and MW-based tests (not considering correlation among outcomes 
of a single subject). The “size corrected MW” implies the MW test is implemented with an empirically decided critical value. The empirical critical value is 
decided with the percentile of the (evaluated) MW test statistics for the case γ = 0. (A) σ v

2 1=  (low within-cluster correlation) and the number of repetitions 
m = 2. (B) σ v

2 1=  (low within-cluster correlation) and the number of repetitions m = 4. (C) σ v
2 3=  (high within-cluster correlation) and the number of 

repetitions m = 2. (D) σ v
2 = 3 (high within-cluster correlation) and the number of repetitions m = 4.
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with MultiHance (Set A), MRI with Resovist (Set B), and the 
combination of the original MRI with Resovist and dynamic 
MRI (Set C). Two readers determine the possibility of malig-
nancy of the detected lesions using a 5-point confidence rating 
scale (definitely not = 0, probably not = 1, possibly = 2, prob-
ably = 3, and definitely = 4). Then, each lesion has six ratings; 
the combination of two readers (two medical and three imag-
ing methods) and a subject has six x fi(= ni) ratings in total. 
The goal of this experiment is comparing the performance of 
three picturing methods and two readers. More details on the 
data including how the data are corrected are available from 
the study of Hong et al.14 A summary of the data is presented 
in Table 1.

Let Yij be the jth rating of the ith subject having an ordi-
nal integer mark value between 0 and 4, for i = 1, 2, …, 36 
and j = 1, 2, …, ni; let dij be the binary variable, which equals 
to 1 if the (i, j)th rating is from the disease (positive) group in 
truth, otherwise 0. For the (i, j)th rating, let xij = (xijr, xij2, xij3) 
be the three-dimensional covariate vector of indicator vari-
ables, where xijr = 1 if the rating is done by the first reader, 
xij2 = 1 if the rating is on the MRI by Set B, and xij3 = 1 if it 
is by Set C.

We apply the model (1) with the complementary log–log 
link, so that we have

	

log log ; ,
,

− − ( )( ){ }
= + + + +

1

0

P k v d
d d v

i ij

k ij ij
T

ij ij
T

i

ij ij| x
x xα γ θ β 	

(11)

where P k v d P k v d
ij i ij ij i ij r| |; , ; , , , ,x x( ) = ≤( ) = ( )Yij ij

Tθ θ θ θ2 3
 

and β = (βr,β2,β3)T. Let Vi be a random effect from the ith sub-
ject and v Ni

iid
∼ ( , )0 2σ . Here, γ measures the difference in out-

comes between benign and metastasis lesions; ϑr, ϑ2, and ϑ3 

measure the difference between two readers, the difference in 
imaging methods between Set A and Set B, and the difference 
between Set A and Set C, respectively; βr is the interaction 
effect between the reader and existence of disease; and β2 and 
β3 are the interaction effects between the imaging methods 
and the existence of disease. Here, the non-zero β implies that 
the readers and the methods perform differently between the 
normal and disease groups. In particular, β2 and β3 measure 
the efficacy of the imaging methods.

Table 2 displays the parameter estimates calculated from 
the data, and Figure 1 plots the estimated ROC curves for the 
six combinations of readers and MRI methods. The results 
tell that the MRI methods and the reader do not perform 
differently for normal liver lesions. However, for the tumor 
lesions, the MRI method Set C performs better than Set A 
(P-value = 0.0044). In addition, the P-value for jointly testing 
H0: β2 = β3 = 0 is 0.0160 and that for testing H0: β2 − β3 = 0 
is 0.0490. This implies that the MRI method Set C per-
forms better than any of Set A and Set B for tumor lesions. 
In tumor groups, there is no statistically significant difference 
between readers.

The covariate-specific ROC curve R(u|x, d) from (11) is 
in the form of

	 R( x)  exp( xu; u
T

= +γ β)
	 (12)

and its AUC is A(x) / exp x= + +1 1 γ βT( ){ }. Figure  1 plots 
the estimated ROC curves along with their empirical ROC 
curves. Here, the empirical ROC curves do not take into 
account the correlation among outcomes within a cluster. For 
both readers, the curves for Set C are higher than Set A and 
Set B, indicating that taking pictures of lesion with combina-
tion of original MRI with Resovist and dynamic MRI method 
is superior to use only a single MRI method (Fig. 2).

Table  3  summarizes the estimates of the AUCs for 
the combinations of a reader and an imaging method. 
The standard errors (SEs) of the model-based estimates 

Table 1. Summary of the data for hepatic metastases.

Imaging 
Set

Reader Disease Ratings

Y = 0 Y = 1 Y = 2 Y = 3 Y = 4

A 1 0 46 4 0 5 0

A 1 1 13 1 3 8 26

A 2 0 43 5 2 2 3

A 2 1 6 0 0 3 42

B 1 0 43 3 2 1 6

B 1 1 8 1 1 4 37

B 2 0 44 5 2 2 2

B 2 1 7 2 3 1 38

C 1 0 49 0 1 2 3

C 1 1 2 0 0 8 41

C 2 0 47 3 1 1 3

C 2 1 5 0 1 5 40

Notes: Set A is the MRI with MultiHance, Set B is the MRI with Resovist, 
and Set C is the combination of the original MRI with Resovist and dynamic 
MRI (Set C). Reader 0 and Reader 1 are the IDs of radiologists who read the 
images. Y is the diagnostic results.

Table 2. Parameter estimates.

Parameter Estimate S.E. P-value

γ −2.3688 0.2969 ,10–4

ϑr −0.2545 0.1633 0.1280

ϑ2 −0.04253 0.1878 0.8222

ϑ3 0.2926 0.2034 0.1591

βr −0.2230 0.2803 0.4316

β2 −0.3414 0.3247 0.3003

β3 −1.0639 0.3498 0.0044

Notes: SE means the standard error and the P-value is that for the two-sided 
test. The parameter γ measures the overall difference in outcomes between 
benign and metastasis lesions; ϑr is for the difference between two readers; 
ϑ2, and ϑ3 are for the differences between Imaging Set A and Set B and 
between Set A and Set C, respectively; βr is the interaction effect between 
the reader and existence of disease; and β2 and β3 are the interaction effects 
between the imaging methods and the existence of disease, respectively.
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of the AUC are obtained by the delta method. We also 
report their empirical estimates without taking account the 
within-cluster correlation of outcomes by Obuchowski.11 
The formulas of empirical estimates can also be found from 
Pepe (Chapter 6.3).16

The AUCs may not be always sensible to detect the dif-
ferences for specific covariates, regardless of whether they are 
model based or empirical, since they are functional forms of 
many other components as given:

	 A x; , , , / exp xγ β β β γ βr 2 3 1 1( ) ( ){ }= + + T .	 (13)

On the other hand, the proposed regression model can 
test the contribution from each covariate separately. To be 
specific, in our example, if we want to find the performance 
difference between imaging methods of Set A and Set C for 

reader 1, the (model-based) AUC estimates are 0.914 and 
0.969, respectively. The 95% confidence interval for AUC of 
Set C is (0.793, 1), which overlaps the confidence interval of 
AUC for Set A, (0.876, 0.952). This indicates that there is no 
significant difference between the AUCs of two sets. How-
ever, the test based on the proposed regression model makes 
it possible to test the significance for particular parameter. 
For example, the P-value of test H0: β3  =  0 is 0.0044, and 
it indicates the existence of significant interaction between 
sets (A and C) and disease groups (disease and non-disease) 
at α = 0.05; this implies that the imaging methods A and C 
perform differently in detecting the cancer.

Conclusion
In this article, we propose a new ROC regression model for 
clustered ordinal outcomes. The new model views the ordi-
nal outcomes as GS times and uses the grouped-time survival 
model to define the regression model of the ROC curve. It is 
shown that the proposed model is closely related with many 
existing models including the Lehman family and the location-
scale family of the ROC curves and further provides their 
extensions to the random-effects models. Our proposed model 
has an additional advantage of being easily programmed in 
many standard statistical packages, which makes it easy to use 
and interpret. In summary, the model proposed in this article 
provides a flexible exploratory tool for identifying covariate 
effects on the ROC curve with clustered ordinal outcomes.
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ROC curves of Sets A, B, and C of Reader 1 
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ROC curves of Sets A, B, and C of Reader 2 
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Figure 2. Estimated ROC curves of three methods by two readers. The “Empirical” is the empirical ROC curve based on empirical (cumulative) 
distribution functions of (diagnostic outcomes of) normal and diseased populations. The Empirical disregards the correlations among repeated 
measurements of a subject and treats them as independent samples. The “Model” is the ROC curve from the model with the estimated parameters.

Table 3. The estimates of the AUC and their SEs for the 
combinations of a reader and a picturing method.

factor Set A Set B Set C

Model

Reader 1 0.914 (0.0196) 0.938 (0.1226) 0.969 (0.0900)

Reader2 0.930 (0.0671) 0.949 (0.0967) 0.975 (0.1096)

Empirical

Reader 1 0.837 (0.0393) 0.849 (0.0393) 0.945 (0.0393)

Reader2 0.902 (0.0393) 0.892 (0.0393) 0.915 (0.0393)

Notes: The “Empirical” is estimated using the MW statistic, which disregards 
the correlation among measurements from a single subject. The SEs of the 
Empirical are evaluated under the independence assumption of the repeated 
measurements from a subject, which is rarely true. Thus, they would not be 
the right numbers. The Model is the estimated AUCs using the formula (13), 
and its SEs are evaluated using the delta method.
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Appendix
The following SAS code fits the random-effects grouped-time survival model:
DATA Final;
SET Temp; TRT2=0;TRT3=0;RD=0;TD2=0;TD3=0;
IF TRT=2 THEN TRT2=1;
IF TRT=3 THEN TRT3=1;
IF READER=2 AND DISEASE=1 THEN RD=1;
IF TRT=2 AND DISEASE=1 THEN TD2=1;
IF TRT=3 AND DISEASE=1 THEN TD3=1; RUN;
PROC NLMIXED DATA=Final;
PARMS b0=0 b1=0 b2=0 b3=0 b4=0 b5=0 b6=0 b7=0 sd=1 t2=1 t3=2 t4=3 t5=4;
ODS OUTPUT ParameterEstimates=estb;
Z=b0+b1*DISEASE + b2*TRT2+b3*TRT3 +b4*READER+b5*RD+ b6*TD2+b7*TD3+u;
DO;
IF (Y=0) THEN p=1-exp(0-exp(t2+z));
ELSE IF (Y=1) THEN p=(1-exp(0-exp(t3+z)))-(1-exp(0-exp(t2+z)));
ELSE IF (Y=2) THEN p=(1-exp(0-exp(t4+z)))-(1-exp(0-exp(t3+z)));
ELSE IF (Y=3) THEN p=(1-exp(0-exp(t5+z)))-(1-exp(0-exp(t4+z)));
ELSE IF (Y=4) THEN p=exp(0-exp(t5+z)); END;
like=LOG(p);
MODEL Y∼General(like);
Random u∼NORMAL(0,sd*sd)
SUBJECT=id;
CONTRAST “all TRT” b6, b7;
ESTIMATE ’3 vs 2 TRT’ b7-b6;
RUN;

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10

