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Simple Summary: Aleutian disease (AD) is a major infectious disease found in mink farms, and it
causes financial losses to the mink industry. Controlling AD often requires a counterimmunoelec-
trophoresis (CIEP) method, which is relatively expensive for mink farmers. Therefore, predicting
AD infected mink without using CIEP records will be important for controlling AD in mink farms.
In the current study, we applied nine machine learning algorithms to classify AD-infected mink.
We indicated that the random forest could be used to classify AD-infected mink (accuracy of 0.962)
accurately. This result could be used for implementing machine learning in controlling AD in the
mink farms.

Abstract: American mink (Neogale vison) is one of the major sources of fur for the fur industries
worldwide, whereas Aleutian disease (AD) is causing severe financial losses to the mink industry. A
counterimmunoelectrophoresis (CIEP) method is commonly employed in a test-and-remove strategy
and has been considered a gold standard for AD tests. Although machine learning is widely used in
livestock species, little has been implemented in the mink industry. Therefore, predicting AD without
using CIEP records will be important for controlling AD in mink farms. This research presented
the assessments of the CIEP classification using machine learning algorithms. The Aleutian disease
was tested on 1157 individuals using CIEP in an AD-positive mink farm (Nova Scotia, Canada). The
comprehensive data collection of 33 different features was used for the classification of AD-infected
mink. The specificity, sensitivity, accuracy, and F1 measure of nine machine learning algorithms were
evaluated for the classification of AD-infected mink. The nine models were artificial neural networks,
decision tree, extreme gradient boosting, gradient boosting method, K-nearest neighbors, linear
discriminant analysis, support vector machines, naive bayes, and random forest. Among the 33 tested
features, the Aleutian mink disease virus capsid protein-based enzyme-linked immunosorbent assay
was found to be the most important feature for classifying AD-infected mink. Overall, random forest
was the best-performing algorithm for the current dataset with a mean sensitivity of 0.938 ± 0.003,
specificity of 0.986 ± 0.005, accuracy of 0.962 ± 0.002, and F1 value of 0.961 ± 0.088, and across
tenfold of the cross-validation. Our work demonstrated that it is possible to use the random forest
algorithm to classify AD-infected mink accurately. It is recommended that further model tests in
other farms need to be performed and the genomic information needs to be used to optimize the
model for implementing machine learning methods for AD detection.

Keywords: Aleutian disease; classification; machine learning; mink; random forest

1. Introduction

Mink is the major source of the fur industry worldwide [1], and Aleutian disease (AD),
which is caused by the Aleutian mink disease virus (AMDV), brings tremendous financial
losses to the mink industry [2]. The AD is associated with some important traits of farmed
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mink, including reproductive performance [3,4], body size [5], feed intake [6,7], and pelt
quality [8]. There are several methods to test for AD, including the AMDV antigen-based
enzyme-linked immunosorbent assay (ELISA-G), the AMDV capsid protein-based ELISA
(ELISA-P), counterimmunoelectrophoresis (CIEP), and the iodine agglutination test (IAT).
Among them, CIEP has been considered a gold standard [9]. Since controlling AD has not
succeeded because no effective vaccine or medicine has been created, culling mink that have
tested positive using CIEP has been applied as the primary method to control AD [10–13].
However, implementing the culling method following a positive diagnosis using CIEP
requires screening a large number of animals, consequently causing the demand for an
additional labor force and problems in the availability of the CIEP antigen [14]. Therefore,
predicting AD without using CIEP will provide an effective way for controlling AD in
mink farms.

Machine learning (ML) algorithms have proven successful in diagnosing and predict-
ing diseases [15,16] and are becoming more popular in health care. They are also widely
used methods in agriculture [17–19], such as for high throughput phenotyping [20] or
predicting plant diseases [21]. In animals, the ML algorithms have been used for moni-
toring the health status [22,23], product quality [24,25], and prediction of diseases [26–30].
Selection of the ML algorithms for studies on farm animals depends on the traits and data,
and their performance also varies among the studies [17,28,31]. For instance, different
ML algorithms, including artificial neural networks [29], support vector machines [31], or
random forest [28], had an accuracy of 85–90% for the classification of mastitis in dairy
cows. Overall, ML is appropriate for large data or data with many predictors, missing
values, and abnormal distributions. Data from a mink farm often has many predictors
and missing values that might benefit from the application of ML. For instance, ML can be
used for predicting some phenotypes such as daily feed consumption and reproductive
performance or for recognizing the missing labels in the animal IDs in the mink farms.
Therefore, we examined the performance of nine ML algorithms including artificial neural
networks, decision tree, extreme gradient boosting, gradient boosting method, K-nearest
neighbors, linear discriminant analysis, linear support vector machines, naive bayes, and
random forest for the classification of AD in American mink. We used 33 different features
obtained from different data sources in an AD positive mink farm for the classification of
AD-infected mink. We used four different matrices for assessing the performance of the
ML algorithms. Finally, we performed the Wilcoxon test to examine if these ML algorithms
are significantly different.

2. Materials and Methods

The animals used in this study were raised according to the Code of Practice for the
Care and Handling of Farmed Mink guidelines published by the Canada Mink Breeders
Association (https:/www.nfacc.ca/pdfs/codes/mink_code_of_practice.pdf, accessed on
20 October 2019). The animal care was followed by protocols approved by the Dalhousie
University Animal Care and Use Committee (certification# 2018-009 and 2019-012).

2.1. Animals and the Phenotypic Records

The mink used in this study were raised under standard farming conditions at the
Canadian Centre for Fur Animal Research (CCFAR) at Dalhousie University, Faculty of
Agriculture (Truro, NS, Canada) from 2013 to 2019. All mink had ad libitum access to
feed and water. The feeds were adjusted based on the animals’ needs in each production
period, with a higher dry matter added during the growing and furring periods [32]. Three
AD tests were conducted using the established protocols described by Hu et al. [33]. In
brief, the blood samples of the mink (1157 individuals) were collected using the toenail
clipping approach. Both the ELISA-G and ELISA-P systems were employed to quantify
the anti-AMDV antibodies in the serum. The ELISA-G scores (0–7) and ELISA-P scores
(0–8) were conducted at Middleton Veterinary Services (Middleton, NS, Canada), and
Nederlandse Federatie van Edelpelsdierenhouders (Wijchen, The Netherlands), respec-
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tively. The CIEP tests were conducted at the Animal Health Laboratory at the University of
Guelph (Guelph, ON, Canada) to detect the existence of anti-AMDV antibodies in the blood
samples, and the results were recorded as negative or positive. The IATs were conducted
at the CCFAR to measure the serum gamma globulin level in the serum, and the results
were scored into four categories from 0 (low) to 4 (high). All bodyweight (BW), growth
parameters, and feed intake data were collected using the established protocols described
by Do et al. [34] and Davoudi et al. [35], respectively. The mink were housed individually
in single cages, and the feed was distributed to each pen every morning. The amount of
allocated feed was regulated based on the leftover records one day before in order to avoid
unnecessary feed waste and to meet the mink’s appetite. The daily feed intake (DFI) was
obtained by subtracting the amount of leftover from the quantity of feed supplied. The
average daily feed intake (ADFI) was calculated by averaging the DFI records obtained
during the test period. The average daily gain (ADG), feed conversion ratio (FCR), Kleiber
ratio (KR), residual feed intake (RFI), residual gain (RG), and residual intake and gain (RIG)
were derived from the body weight and daily feed intake data [35]. The growth curve
parameters, including asymptotic weight (α), growth rate at mature (k), shape parameter
(m), weight at the inflection point (WIP), and age at the inflection point (AIP), were obtained
from the body weights of mink using the Richard growth model [34]. A total of 33 features
were examined for the development of the ML algorithms to classify animals for AD. The
number of CIEP positive and negative mink as well as the mean values for these features
are given in Table 1. A simplifized workflow of the current study is shown in Figure 1.

Table 1. A summary of features used for the classification of CIEP.

CIEP Negative CIEP Positive

Features Name N Mean SD N Mean SD

General features

Sample_Age (day) Age at the collection of blood for AD testing 201 197.3 63.1 902 234.6 136.3
RowIDyear Row number where the mink were kept each year 200 6.55 2.80 853 5.20 3.09

AgeFE Age of the mink (in days) when the feeding measure started 200 198.25 3.50 852 197.60 9.73
Damage The damage score in the fur 202 1.42 0.63 881 1.34 0.57

Aleutian disease and health-related tests

Elisa_P In vitro cultured Aleutian mink disease virus antigen-based
enzyme-linked immunosorbent assay test 203 0.33 0.97 924 1.67 2.29

Elisa_G Capsid protein of Aleutian mink disease virus-based
enzyme-linked immunosorbent assay test 203 0.64 0.98 922 2.46 2.19

PCV Packed cell volume 201 58.11 2.94 919 56.67 4.03
IAT Iodine agglutination test 200 0.42 0.60 918 0.77 1.05

Feed intake and efficiency

DFI Daily feed intake 200 221.36 56.24 853 227.21 57.45
ADG Average Daily Gain 199 7.45 3.40 821 8.60 3.86
FCR Food Conversion Ratio 199 33.59 11.17 813 30.42 11.40
RFI Residual feed intake 198 7.45 34.69 820 −1.14 36.96
RG Residual intake and gain 199 0.11 1.12 817 −0.01 1.44
RIG Residual gain 198 −0.14 1.37 819 0.01 1.56
KR Kleiber ratio 199 5.19 1.40 821 5.51 1.58

Offfeeddays Proportion of off-feed days based on feed intake 199 0.05 0.09 842 0.06 0.08
Feedvariation Day-to-day variation in feed intake 199 48.22 11.55 842 49.15 18.02

Body weight and growth parameters

BW13 Body weight at week 13 198 1.15 0.26 837 1.27 0.30
BW16 Body weight at week 16 198 1.42 0.36 834 1.58 0.41
BW19 Body weight at week 19 198 1.62 0.46 829 1.82 0.53
BW22 Body weight at week 22 198 1.82 0.54 824 2.04 0.61
BW25 Body weight at week 25 198 1.88 0.56 810 2.13 0.64
BW28 Body weight at week 28 197 1.92 0.59 805 2.17 0.67
Alpha Weight at maturity [34] 198 1.99 0.63 807 2.25 0.71

k Maturation rate [34] 198 0.24 0.10 803 0.24 0.11
m Inflection parameter [34] 198 0.68 0.90 798 0.64 0.83

AIP Age at the inflection point [34] 195 10.79 1.86 799 10.97 1.83
WIP Weight at the inflection point [34] 196 0.89 0.33 804 1.01 0.35

SD: Standard Deviation.
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2.2. Algorithm Selection and the Data Preparation

The classification of AD-infected mink was constructed using the following algorithms:
artificial neural networks, decision tree, extreme gradient boosting, gradient boosting, K-
nearest neighbors, linear discriminant analysis, support vector machines (linear form),
naive bayes, and random forest. These algorithms were selected as they have been widely
used for the diagnosis of human diseases, e.g., cancers [36–38], as well as for predicting
phenotypes in livestock [17,19,39]. All calculations were performed in R using the caret
package [40], and CIEP was used as the response variable in the models. Since the CCFAR
was infected with AD in 2012, more animals were positive (954) than negative (203) using
CIEP in the current dataset. The missing data of features (Table 1) were input using
the mice R package [41]. If the imbalance ratio is high, the decision function favors the
majority group (positive CIEP group). For non-probabilistic classifiers such as logistic
regression, neural networks, and support vector machines algorithms, an imbalanced
data structure can affect their parameters [39]. We used the over-sampling function in
the Rose package [42] to create the balanced data. In this function, the minority group
(negative CIEP, n = 203) was oversampled from 203 to 954 in order to balance a sample
size as the majority group (positive CIEP, n = 954). The preProcess function from the
caret package [40] was used to scale and center the variables in the training dataset. The
relative importance of the features and feature selection were examined using the Boruta
package [43]. The Boruta algorithm is a wrapper approach that is built based on the random
forest. This algorithm creates shadow features as a replica of actual features, and then
randomly shuffles to remove any correlation with the response variable. In the next step, a
random forest classifier is run, and the Z-score is computed by dividing the average loss
by its standard deviation. The maximum Z-score of randomized shadow features is used
to set a threshold for the selection of important features [43]. If the Z-score computed for
an actual feature is significantly more than the Z-score of the shadow feature, then it is
considered as an important feature [43].

2.3. Model Training and Performance Assessment

Following the oversampling, the data was randomly divided into 80% for training
and 20% for testing datasets. We created ten different sets of training-testing dataset
using the createDataPartition function. The models were built in each training dataset and
evaluated in each test data. In the training dataset, we used the trainControl function to
select the hyperparameters for the model building. The repeated cross-validation methods
implemented in the trainControl function were used. In this method, for each one of
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the ten iterations, the hyperparameters were selected using a search within the 10-fold
cross-validation structure on a random 70% subset of the training dataset. Each algorithm
was run separately using the default initial hypermeters and the train function of the caret
package. The confusionMatrix function was used to evaluate the model performance from
the best built model for each training dataset and the corresponding testing dataset.

The model fit and ranking of the models were assessed using several scores that
were computed using the number of true positive (TP), true negative (TN), false positive
(FP), and false-negative (FN). The following formulas were used for the calculation of
accuracy (Equation (1)), specificity (Precision; Equation (2)), which is the fraction of correct
predictions, sensitivity (Recall; Equation (3)), which measures a fraction of the correct
predictions per true number of samples, and F-Measure (F1; Equation (4)), which is a
goodness of fit assessment for a classification analysis that balances precision and recall:

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(1)

Specificity (Precision) =
TP

(TP + FP)
(2)

Sensitivity (Recall) =
TP

(TP + FN)
(3)

F1 =
2 × (Precision × Recall)
(Precision + Recall)

(4)

A receiver operating characteristic (ROC) curve was used to depict the sensitivity
against 1-specificity over all possible decision thresholds ranging for classifying the pre-
dicted AD-infected mink and was characterized using the pROC package [44]. The accuracy
of the models was assessed by calculating the area under the curve (AUC). The values
of AUC were interpreted as non-accurate (AUC = 0.5), less accurate (0.5 < AUC ≤ 0.7),
moderately accurate (0.7 < AUC ≤ 0.9), highly accurate (0.9 < AUC < 1) and perfectly
(AUC = 1) [45]. Moreover, the pairwise differences in the accuracy of the models were
compared using the Wilcoxon test.

3. Results and Discussion
3.1. Feature Importance and the Model Performance

The descriptive statistics of all numerical features are shown in Table 1. A total of
33 different features were collected and used as input in the Boruta package. The relative
importance of the features based on the random forest from the Boruta package is shown
in Figure 2.

The ELISA-P was identified as the most important feature for the classification of
AD-infected mink. Other important features based on the ranking by the Boruta package
for the AD-infected mink classification were those related to bodyweight measures, growth
curve parameters, and DFI. Sex, birth year, and color were the less important features for
the classification of AD-infected mink. The importance of the ELISA is expected as the
ELISA systems are also alternative methods for the diagnosis of AD [46]. Previously, we
also reported that the ELISA tests had significant phenotypic and genetic correlations with
CIEP [33]. The age at sampling might be an important feature for CIEP since, if animals
stayed on the farm for a longer period of time, they might have a higher chance of being
infected by the AMDV. Bodyweights, growth curve parameters, and DFI were important
traits for the growth of animals. Since AD harms the animal’s health and growth [47], it
was expected that these features would be important for classifying AD-infected animals.
Interestingly, the variation in feed intake was important for the CIEP classification, which
might be because of the inconsistency in the diet of infected mink. Sex and color type were
less important for the CIEP classification, which was also supported by our previous study
that these effects were not significantly affecting the CIEP [33].
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3.2. Performance Assessment

Table 2 presents the sensitivity, specificity, F1, and accuracy of the nine ML algorithms
using four different sub-sampling procedures. Overall, the sensitivity, specificity, F1, and
accuracy were varied between the algorithms. The specificity ranged from 0.588 (K-nearest
neighbors) to 0.938 (random forest), while the sensitivity ranged from 0.841 (naive bayes)
to 0.987 (extreme gradient boosting). All algorithms obtained higher specificity values
than sensitivity values. All algorithms had the F1 and accuracy values of more than
0.7, thereby indicating that they could be used for the classification of AD-infected mink
with an acceptable accuracy. The random forest algorithm had an excellent performance
considering both the F1 measure and accuracy (>0.95).

Table 2. The mean (SE *) of the sensitivity, specificity, F1, and accuracy of the classification of Aleutian
disease using nine machine learning algorithms.

Algorithms Sensitivity Specificity F1 Accuracy

Artificial Neural
Networks 0.805 ± 0.008 0.877 ± 0.016 0.836 ± 0.096 0.841 ± 0.007

Decision tree 0.634 ± 0.007 0.894 ± 0.014 0.726 ± 0.01 0.764 ± 0.007
Extreme
Gradient
Boosting

0.905 ± 0.002 0.987 ± 0.005 0.944 ± 0.002 0.946 ± 0.002

Gradient
Boosting 0.831 ± 0.005 0.924 ± 0.01 0.871 ± 0.035 0.877 ± 0.004

K-Nearest
Neighbors 0.588 ± 0.006 0.909 ± 0.011 0.700 ± 0.000 0.749 ± 0.005

Linear
Discriminant

Analysis
0.672 ± 0.005 0.865 ± 0.009 0.743 ± 0.001 0.768 ± 0.004

Naive Bayes 0.666 ± 0.007 0.841 ± 0.014 0.73 ± 0.002 0.753 ± 0.007
Random Forest 0.938 ± 0.003 0.986 ± 0.005 0.961 ± 0.088 0.962 ± 0.002
Support Vector

Machines 0.687 ± 0.005 0.872 ± 0.01 0.757 ± 0.001 0.779 ± 0.004

* SE: Standard errors.
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Table 3 shows the confusion matrix obtained from the random forest algorithm. The
random forest could correctly classify 186 out of 190 CIEP positive mink and 184 out of
190 CIEP negative mink. The Friedman test indicated the significant differences in the
accuracies obtained from the different algorithms according to the subsampling procedures
(p-value < 2.2 × 10−16). The paired samples used in the Wilcoxon tests for the differences
indicated that all algorithms had significant differences in their accuracies, except for the
K-nearest neighbors with the linear discriminant analysis (p = 0.18) and the naive bayes
(p = 0.51) (Table 4).

Table 3. A confusion matrix obtained from the random forest algorithm for the classification of CIEP
in mink.

Actual Data

Accuracy =
186 + 184

186 + 4 + 6 + 184
= 0.974

F1 =
2 × 0.979 × 0.968

0.979 + 0.968
= 0.973

Positive Negative

Predicted data
Positive 184 4

Negative 6 186
Total 190 190

Sensitivity =
184
190

= 0.968 Specificity =
186
190

= 0.979

Table 4. The paired samples used in the Wilcoxon tests for the differences in the accuracies obtained
from the nine machine learning algorithms.

ModelA * ModelB FDR ** ModelA ModelB FDR

GBM DEC 7.90 × 10−18 RF KNN 7.90 × 10−18

KNN DEC 2.36 × 10−3 SVM KNN 1.18 × 10−7

LDA DEC 5.15 × 10−3 XGBOOST KNN 7.90 × 10−18

NB DEC 8.90 × 10−6 NB LDA 9.33 × 10−3

NNET DEC 1.91 × 10−17 NNET LDA 1.10 × 10−17

RF DEC 7.90 × 10−18 RF LDA 7.90 × 10−18

SVM DEC 1.18 × 10−4 SVM LDA 1.51 × 10−12

XGBOOST DEC 7.90 × 10−18 XGBOOST LDA 7.90 × 10−18

KNN GBM 7.90 × 10−18 NNET NB 1.10 × 10−17

LDA GBM 7.90 × 10−18 RF NB 7.90 × 10−18

NB GBM 7.90 × 10−18 SVM NB 8.91 × 10−12

NNET GBM 9.37 × 10−13 XGBOOST NB 7.90 × 10−18

RF GBM 7.90 × 10−18 RF NNET 7.90 × 10−18

SVM GBM 7.90 × 10−18 SVM NNET 2.23 × 10−17

XGBOOST GBM 7.90 × 10−18 XGBOOST NNET 7.90 × 10−18

LDA KNN 0.18 SVM RF 7.90 × 10−18

NB KNN 0.51 XGBOOST RF 3.77 × 10−8

NNET KNN 1.08 × 10−17 XGBOOST SVM 7.90 × 10−18

* Decision tree (DEC), gradient boosting (GBM), K-nearest neighbors (KNN), linear discriminant analysis (LDA),
naive bayes (NB), artificial neural networks (NNET), random forest (RF), support vector machines (SVM), and
extreme gradient boosting (Xgboost). ** FDR: The p-value adjusted for false discovery rate.

The average values of the AUC (Figure 3) indicated that the random forest and the
extreme gradient boosting were the best algorithms with the highest AUC as their AUC
values were >0.90. Other algorithms had a moderate AUC with the AUC values ranging
from 0.75 (naive bayes and K-nearest neighbors) to 0.88 (gradient boosting).

All of the tested algorithms in this study have been used for the diagnosis of dis-
eases [17,39,45]. The decision tree, gradient boosting, random forest, and extreme gradient
boosting are all tree-based models, and their performances will be influenced by the class
imbalances via the leaf impurity. To solve the problem of class imbalance, the oversampling
method was chosen for handling the imbalance classifiers as it does not lead to any informa-
tion loss. In the current study, the random forest outperformed the other methods, which
was consistent with the previous study [39] that implemented the random forest to predict
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the leg weakness in pigs. However, the random forest was not the best method as observed
by Shao et al. [48], who showed that the support vector machines outperformed the neural
networks, random forest, and linear regression to predict the corrected inventory decision
for the market using China’s hog inventory data. The random forest was also less accurate
compared with the support vector machines, kernel ridge regression, and Adaboost.R2 in
the prediction of the reproductive performance traits in pigs using genomic data [49]. The
random forest approach is known to be fairly stable in the presence of outliers and noise
and can handle the correlations between the predictors [49,50].
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Extreme gradient boosting was the second-best method for the classification of AD-
infected mink, which might be because this method could perform implicit variable selec-
tions and could capture the non-linear relationships [51,52]. Both the random forest and
the extreme gradient boosting showed great potential for the classification of CIEP in the
current study with high accuracies, F1 values, and AUCs. Especially, these algorithms were
close to perfect (sensitivity > 0.99) in classifying AD-infected mink. Both the random forest
and extreme gradient boosting succeeded in detecting the posture and behavior in dairy
cows [51] with the accuracy obtained from the extreme gradient boosting algorithm in
predicting the posture was 0.99, and the random forest had the highest overall accuracy in
predicting the behavior (0.76). The NNET performed fairly well, but was not the best, and
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that could be due to the limitation of the fine tuning in hyper parameters for the NNET or
the limitation of the small sample size in the current study. Nevertheless, the performance
of the ML algorithms depends on the data, and therefore, it is necessary to test different
algorithms to find the most suitable one.

The current study had some limitations. Although CIEP has been adapted by the mink
farmers for controlling AD, it is important to mention that the CIEP test results are binary
outcomes while AD is a chronic disease. The CIEP measure is sensitive to the status of the
disease; therefore, the results of the current study might be limited by the lack of repeated
measurements of CIEP. More frequent measures of CIEP are required to confirm the AD
status better and to consequently apply the ML algorithms to the classification of AD-
infected mink. Additionally, even though the random forest reached a very high accuracy,
specificity, and sensitivity, some individuals were still wrongly classified. Therefore, larger
sample sizes with more features or better hyper-parameterizing are required for correctly
classifying these individuals. The results of the current study were also limited to use in the
AD positive mink farms. However, the majority of mink farms are infected with AD; thus,
the results are still beneficial for most mink farmers. In the meantime, these results could
be helpful for the farmers who want to cull animals based on the classified AD-infected
mink obtained by the ML algorithms.

Finally, although being considered as a gold standard for the AD test, CIEP is a
relatively expensive test and requires a large labor force, due to the many steps in the CIEP
test that are performed manually. Moreover, the CIEP results are prone to false-positive
results as the accuracies of the CIEP results are dependent on the experience of the readers
in visualizing the bands. These drawbacks of CIEP limit its application in large mink farms.
Alternatively, the ELISA test can be used for high-throughput assays, and the ELISA results
can be used in the ML approaches (e.g., random forest or extreme gradient boosting) to
accurately classify the AD-infected mink. Therefore, the mink farmers might not need to
perform the CIEP test, but use the information from the ELISA test to predict AD risks and
to decide which animals are needed to be culled for the control of AD.

4. Conclusions

In summary, among the nine ML algorithms, the random forest was the best method
for the classification of AD-infected mink in the current dataset. This study indicated that it
is possible to classify AD-infected mink with a high accuracy, specificity, and sensitivity
using the random forest algorithms. Therefore, it is suggested that the random forest
algorithm might be used for classifying the AD-infected mink in other AD-positive farms.
Given the fact that the current study used the data from only one AD-positive farm and the
performance of the ML algorithms were sensitive to the data input, it is recommended that
further model tests in other AD-positive farms be performed. Since AD is a chronic disease,
it is also recommended to collect disease records more frequently for better disease moni-
toring. Finally, it is also recommended to combine the genomic information to optimize the
model for the implementation of machine learning methods in controlling AD.
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