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Abstract: Peristaltic flow of hybrid nanofluid inside a duct having sinusoidally advancing boundaries
and elliptic cross-section is mathematically investigated. The notable irreversibility effects are also
examined in this mathematical research by considering a descriptive entropy analysis. In addition,
this work provides a comparison analysis for two distinct nanofluid models: a hybrid model (Cu-
Ag/water) and a phase flow model (Cu/water). A comprehensive graphical description is also
provided to interpret the physical aspects of this mathematical analysis.

Keywords: peristalsis; elliptic duct; hybrid nanofluid; entropy analysis

1. Introduction

Many recent functional devices operate on the key principle of peristalsis. These are
useful in industry, engineering and medical fields, etc., for food, corrosive liquids, blood,
and chemical transportation [1]. The flow within a tube due to the sinusoidal wall motion
that propels the fluid along the axial length of this tube was mathematically evaluated by
Barton and Raynor [2]. Siddiqui and Schwarz [3] had conveyed the analytical analysis of
non-Newtonian flow within a tube due to the sinusoidal wall motion of this tube. Our main
focus in this investigation is to highlight the physical aspects and dynamics of flow within
a duct that has an elliptic cross-section. Saleem et al. [4] recently provided the first research
work that evaluates the heated flow within a duct that has an elliptic cross section and
fluctuating sinusoidal walls. Further, Nadeem et al. [5] provided a comprehensive analysis
with a thorough, streamlined evaluation for heated non-Newtonian flow inside a duct with
an elliptic cross-section.

Nanofluids are used in the base fluid for a required rate of thermal conductivity
that helps in achieving the target of a descriptive heat transfer mechanism. Sometimes,
we use more than one nanofluid in the base fluid. These are then called hybrid nanofluids.
Akbar and Nadeem [6] provided an analysis of nanofluid flow within a tube that has
sinusoidally deforming walls. Tripathi and Beg [7] mathematically evaluated the peristaltic
flow of nanofluid and also targeted its prime drug delivery applications in their study.
Khan et al. [8] modelled the peristaltic flow phenomenon by considering the various types
of nanofluids inside an asymmetric channel. The flow of nanofluids with applications of a
peristalsis mechanism within a hybrid model was evaluated by Awais et al. [9]. Bibi and
Xu [10] also took into account the chemical reaction activity occurring during the peristaltic
flow with a hybrid model of nanofluids. Further to this, recent literature that interprets the
peristaltic flow with nano-fluidic applications has been conveyed [11–19].

Entropy analysis has also been mathematically studied by many recent researchers to
interpret the irreversibility effects and disorder of the whole system. Akbar [20] provided
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an interpretation of entropy generation for peristaltic flow problems. Akbar et al. [21]
also evaluated the nanofluid flow with entropy analysis for peristaltic flow problems.
Hayat et al. [22] recently conveyed a mathematical analysis of hybrid nanofluids flow
inside a sinusoidally deforming channel with entropy evaluation. The three-dimensional
flow analysis inside a cylindrical cavity with nanofluids and entropy evaluation was
modelled by Riaz et al. [23]. Additional recent studies on this topic are presented in [24–
29].

The in-depth and descriptive literature analysis reveals that the peristaltic flow of
hybrid nanofluid inside an elliptic duct has not yet been mathematically investigated. Fur-
thermore, we have incorporated the irreversibility effects by considering entropy analysis
in the present study. Momentum and energy equations are solved exactly by utilizing a
polynomial solution approach. Finally, we have evaluated a descriptive graphical analysis
that not only highlights the physical aspects of this mathematical study but also verifies
the mathematical computations.

2. Mathematical Model

The geometrical model for this flow problem is presented by Figure 1.
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Figure 1. Geometry of the problem.

The sinusoidal motion of this duct’s boundary is mathematically considered by utiliz-
ing the following equations:

a
(
Z, t
)
= a0 + dsin

(
2π

λ

(
Z− ct

))
b
(
Z, t
)
= b0 + dsin

(
2π

λ

(
Z− ct

))
(1)

The primary mathematical equations that elucidate the hybrid nanofluid flow inside
this elliptic duct are unfolded as follows:

∂U
∂X

+
∂V
∂Y

+
∂W
∂Z

= 0 (2)

ρhn f

(
∂U
∂t

+ U
∂U
∂X

+ V
∂U
∂Y

+ W
∂U
∂Z

)
= − ∂P

∂X
+ µhn f

(
∂2U

∂X2 +
∂2U

∂Y2 +
∂2U

∂Z2

)
(3)

ρhn f

(
∂V
∂t

+ U
∂V
∂X

+ V
∂V
∂Y

+ W
∂V
∂Z

)
= − ∂P

∂Y
+ µhn f

(
∂2V

∂X2 +
∂2V

∂Y2 +
∂2V

∂Z2

)
(4)

ρhn f

(
∂W
∂t

+ U
∂W
∂X

+ V
∂W
∂Y

+ W
∂W
∂Z

)
= − ∂P

∂Z
+ µhn f

(
∂2W

∂X2 +
∂2W

∂Y2 +
∂2W

∂Z2

)
(5)
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(
ρCp

)
hn f

(
∂T
∂t +U ∂T

∂X
+ V ∂T

∂Y
+ W ∂T

∂Z

)
= khn f

(
∂2T
∂X2 +

∂2T
∂Y2 +

∂2T
∂Z2

)
+µhn f

[
2
{(

∂U
∂X

)2
+
(

∂V
∂Y

)2
+
(

∂W
∂Z

)2
}
+
(

∂U
∂Y

+ ∂V
∂X

)2
+
(

∂V
∂Z

+ ∂W
∂Y

)2

+
(

∂W
∂X

+ ∂U
∂Z

)2
] (6)

The suitable boundary conditions are provided in dimensional form as follows:

W = 0, T = Tw, for
x2

a2 +
y2

b
2 = 1 (7)

The two relevant reference frames are connected through these mathematical equations.

x = X, y = Y, z = Z− ct, p = P, u = U, v = V, w = W − c, (8)

The relevant non-dimensional parameters that are utilized in this problem to obtain
the simplified dimensionless form of mathematical equations are provided as:

x = x
Dh

, y = y
Dh

, z = z
λ , t = ct

λ , w = w
c , p =

D2
h p

µ f λc , θ = T−Tw
Tb−Tw

, δ = b0
a0

, φ = d
b0

u = λu
Dhc , v = λv

Dhc , a = a
Dh

, b = b
Dh

, Br =
µ f c2

k f (Tb−Tw)

Ω = Tb−Tw
Tw

, S = S
k f (Tb−Tw)

2

Dh
2Tw2

(9)

where Dh denotes the hydraulic diameter, defined as:

Dh =
πb0

E(e)
(10)

Moreover, E(e) is defined as [30] and e =
√

1− δ2.

E(e) =

π
2∫

0

√
1− e2sin2αdα (11)

The final simplified and dimensionless form of governing mathematical equations is
provided as

∂p
∂x

= 0 (12)

∂p
∂y

= 0 (13)

dp
dz

=

(
µhn f

µ f

)(
∂2w
∂x2 +

∂2w
∂y2

)
(14)

(
khn f

k f

)(
∂2θ

∂x2 +
∂2θ

∂y2

)
+ Br

(
µhn f

µ f

)[(
∂w
∂x

)2
+

(
∂w
∂y

)2
]
= 0 (15)

The non-dimensional form of boundary conditions is given as

w = −1, for
x2

a2 +
y2

b2 = 1, (16)

θ = 0, for
x2

a2 +
y2

b2 = 1 (17)
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and a = E(e)
π

[
1
δ + φsin(2πz)

]
, and b = E(e)

π [1 + φsin(2πz)].
Tables 1 and 2 represents the numerical values and experimental formulas for thermo

physical features of hybrid nanofluid respectively.

Table 1. Thermophysical properties of base fluid and nano-particles [15].

Physical Parameters Base Fluid Nanoparticles

(Water) Cu (s1) Ag (s2)

Cp

(
J

kg.K

)
4179 385 235

k
(

W
mK

)
0.613 401 429

ρ
(

kg
m3

)
997.1 8933 10,500

Table 2. Hybrid Nanofluid Model [15].

Properties Nanofluid

Density ρhn f =
[
(1− φ2)

{
(1− φ1)ρ f + φ1ρs1

}]
+ φ2ρs2,

Viscosity µhn f =
µ f

(1−φ1)
2.5(1−φ2)

2.5 ,

Thermal Conductivity
khn f
kb f

=
ks2+(n−1)kb f−(n−1)φ2(kb f−ks2)

ks2+(n−1)kb f +φ2(kb f−ks2)
kb f
k f

=
ks1+(n−1)k f−(n−1)φ1(k f−ks1)

ks1+(n−1)k f +φ1(k f−ks1)

Heat Capacity
(
ρCp

)
hn f =

[
(1− φ2)

{
(1− φ1)

(
ρCp

)
f + φ1(ρCp)s1

}]
+ φ2(ρCp)s2,

3. Entropy Analysis

The dimensional mathematical formulation for the entropy generation is written
as [26]

S =
khn f

T2
w

[(
∂T
∂X

)2

+

(
∂T
∂Y

)2

+

(
∂T
∂Z

)2]
+

µhn f

Tw

(∂W
∂X

)2

+

(
∂W
∂Y

)2

+

(
∂W
∂Z

)2
 (18)

The dimensionless and simplified mathematical form of entropy equation is given
as follows:

S =

(
khn f

k f

)[(
∂θ

∂x

)2
+

(
∂θ

∂y

)2
]
+

(
µhn f

µ f

)
Br

Ω

[(
∂w
∂x

)2
+

(
∂w
∂y

)2
]

(19)

Moreover, the Bejan number, defined as the ratio of entropy produced due to conduc-
tion and total entropy, is given as

Be =
Scond.

Scond. + Svisc.
(20)

After using the relevant values in Equation (20), we get

Be =

( khn f
k f

)[(
∂θ
∂x

)2
+
(

∂θ
∂y

)2
]

( khn f
k f

)[(
∂θ
∂x

)2
+
(

∂θ
∂y

)2
]
+
(

µhn f
µ f

)
Br
Ω

[(
∂w
∂x

)2
+
(

∂w
∂y

)2
] , (21)

4. Exact Solution

Let
w(x, y) = C1x4 + C2y4 + C3x2y2 + C4x2 + C5y2 + C6 (22)
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The value of w(x, y) given in Equation (22) is inserted in momentum Equation (14)
and the coefficients of x2, y2, x0, y0 are compared to get

12C1 + 2C3 = 0 (22a)

2C3 + 12C2 = 0 (22b)

2C4 + 2C5 =
dp
dz

µhn f
µ f

(22c)

Additionally, by using Equation (22) in the boundary condition for momentum equa-
tion provided in Equation (16) and comparing the coefficients of x4, x2, x0, we have

C1a4 + C2b4 − C3a2b2 = 0 (22d)

− 2C2b4 + C3a2b2 + C4a2 − C5b2 = 0 (22e)

C2b4 + C5b2 + C6 = −1 (22f)

The simultaneous solution of Equations (22a)–(22f) give the values of above constants
as follows:

C1 = 0, C2 = 0, C3 = 0, C4 =
b2 dp

dz

2(a2+b2)

(
µhn f

µ f

) ,

C5 =
a2 dp

dz

2(a2+b2)

(
µhn f

µ f

) , C6 = −
a2b2 dp

dz +2a2
(

µhn f
µ f

)
+2b2

(
µhn f

µ f

)
2(a2+b2)

(
µhn f

µ f

) ,

Inserting the values of above constants in Equation (22), we have

w(x, y) = −1 +

dp
dz

(
x2

a2 + y2

b2 − 1
)

a2b2

2(a2 + b2)
(

µhn f
µ f

) , (23)

The integral of Equation (23) over the cross-sectional area of this elliptic duct, provides
the non-dimensional flow rate given as

q(z) = −abπ −
a3b3 dp

dz π

4(a2 + b2)
(

µhn f
µ f

) , (24)

where q(z) = Q−
∫ 1

0 abdz, and from Equation (24), we have

dp
dz

= −
4
(
a2 + b2)(− ∫ 1

0 abdz + abπ + Q)
(

µhn f
µ f

)
a3b3π

, (25)

Finally, the pressure rise is defined as

∆P =

1∫
0

∂p
∂z

dz, (26)

By following a similar procedure for temperature solution, we have

θ(x, y) =
−a2b2Br

(
dp
dz

)2( x2

a2 + y2

b2 − 1
)[

b6x2 + a2b4(b2 + 6x2 − y2)+ a6(b2 + y2)+ a4b2(4b2 − x2 + 6y2)]
12(a2 + b2)

2
(a4 + 6a2b2 + b4)

( khn f
k f

)(
µhn f
µ f

) (27)



Entropy 2021, 23, 732 6 of 14

5. Results and Discussion

The above exact solution segment discloses an explicit technique that provides exact
mathematical outcomes for velocity, temperature, flow rate and pressure gradient. We have
also considered the entropy analysis in detail. Presented next is the graphical analysis of
these mathematical outcomes that completely verifies the mathematical results. The graph-
ical outcomes disclose a combine analysis for the hybrid nanofluid model (Cu-Ag/water)
and phase flow model (Cu/water). In the case of the hybrid model, we have used a four
percent concentration for both Cu and Ag with water as a base fluid, while in the case of the
phase flow model, only four percent concentration of Cu is used with the base fluid water.
The combined graphical results are provided in just a 2D-plot of the graphical outcomes,
while we have provided separate graphical solutions as 3D-plots for both the hybrid and
phase flow models. Figure 2 reports the graphical solution of velocity for varying values
of Q. In Figure 2a, we can see that velocity is increasing at exactly the same rate for both
nanofluid models, with increasing Q. Figure 2b presents the 3D-plot of the phase flow
model for increasing Q, while Figure 2c discloses the 3D-plot of the hybrid model for
increasing Q. A perfectly evolved, parabolic velocity profile also with axial symmetry is
observed. The nanofluid’s concentration plays a key role in the enhancement of thermal
conductivity of fluid that has its importance in many practical engineering applications.
The graphical solutions highlight the results for both phase flow and hybrid models of
nanofluids and their effects on various physical parameters. Figure 3 presents the graphical
plot of temperature profile for varying values of Br. Figure 3a shows that temperature is
an increasing function of Br for both of the considered nanofluid models. A slightly rapid
increment in temperature is noted for the phase flow model as compared to the hybrid
model with increasing Br. Figure 3b provides the 3D-plot of the phase flow model for
incrementing Br, while Figure 3c discloses the 3D-plot of the hybrid model for temper-
ature profile with increasing Br. The temperature profile depicts the axially symmetric
flow behaviour. Figure 4 demonstrates the effect of Q on the temperature profile and it
is observed in Figure 4a that temperature is also an increasing function of Q, since both
cases of nanofluid model disclose an increment in temperature for increasing Q. Again,
a slightly quicker increase in the temperature is noted for the phase flow model when com-
pared with the hybrid model. Figure 4b discloses the 3D-plot of the phase flow model for
increasing Q, while Figure 4c represents the 3D-plot of the hybrid model for temperature
profile with incrementing Q. In the core region of the duct, the temperature is notably
higher when compared to the boundaries. Figure 5a–c provides the graphical solutions
dp
dz plot against z − axis. Figure 5a shows that dp

dz increases for both nanofluid models

with increasing δ. A high value of dp
dz is achieved for the phase flow model as compared

to the hybrid one. Figure 5b reveals that dp
dz gains high value in both nanofluid models

with an expanding peristaltic wave, while the value declines with a relaxing peristaltic
wave for incrementing φ. Again, the values of dp

dz are higher for the phase flow model

as compared to the hybrid model. Figure 5c shows a decline in the value of dp
dz for both

nanofluid models with increasing Q. The comparative value of dp
dz is higher for the phase

flow model than the hybrid model. Figure 6a,b present the graphical assessment of ∆P plot
against Q. Figure 6a reveals that ∆P is an increasing function of δ in the region ∆P > 0,
while it is a decreasing function of δ in the region ∆P < 0 for both nanofluid models.
Furthermore, Figure 6b discloses that ∆P gains higher values with increasing φ for the
region ∆P > 0, whereas the value of ∆P declines for increasing φ in the region ∆P < 0.
The entropy analysis S is conveyed graphically through Figure 7a,b. Figure 7a shows the
effect of Br on S. The value of S is increasing for both nanofluid models with increasing Br.
Figure 7b depicts the effect of Q on S and it reveals that S is an increasing function of Q
for both of the considered nanofluid models. Higher values of entropy S are noted for the
hybrid nanofluid flow as compared to the phase flow. It is disclosed from entropy solutions
that the hybrid model of nanofluid causes a higher level of disorder when compared to
the phase flow model. Moreover, it is observed that entropy has the lowest values (almost
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zero) in the core region of the duct due to a fully developed and smooth flow profile in the
centre, while entropy S has maximum values near the boundaries due to the sinusoidal
fluctuations of walls. Any possible disorder happens due to the sinusoidal wave motion of
walls and, therefore, entropy is at its maximum value near boundaries. However, a fully
developed flow profile is noted at the centre of the duct so entropy is also at its minimum
value at the centre. Figure 8a,b represent the graphical solution of Be for increasing Br and
Q, respectively. Figure 8a shows that the value of Be is increasing at the same rate for both
nanofluid models with incrementing Br. Figure 8b reveals an increase in the value of Be
with exactly the same ratio for both nanofluid models with increasing Q. The value of Be
approaches zero in the core region of the duct, as entropy is also approaching zero in the
core region of the duct. Figure 9a–d provide the streamline plots of the phase flow model
for increasing Q. An increment is observed in the trapping phenomenon for increasing Q.
Figure 10a–d disclose the streamline plots of the hybrid nanofluid model for increasing Q.
Again, a slightly increasing trapping phenomenon is noted for increasing Q.
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6. Conclusions

The mathematical analysis of peristaltic flow of hybrid nanofluid inside an elliptic
duct is presented in this study. Entropy analysis is also incorporated in detail. This is
a basic benchmark study that will further develop a key understanding in this area of
research. The key outcomes of this mathematical study are narrated as follows:

• A completely evolved, parabolic velocity profile also having axial symmetry is noted.
• A slightly rapid increment in temperature is noted for the phase flow model as

compared to the hybrid one with increasing Br and Q.
• The minimum value of disorder in the central region indicates a fully developed flow

while the disorder near the walls is due to the sinusoidal fluctuation of boundaries.
• A high value of dp

dz is achieved for the phase flow model as compared to the hybrid
model for all the dimensionless parameters involved in this study.

• Higher values of entropy S are noted for the hybrid nanofluid flow as compared to
the phase flow.

• The hybrid model of nanofluid is causing a higher level of disorder when compared
to the phase flow, as revealed by the entropy solutions.

• It is observed that entropy has its lowest values (almost zero) in the core region of the
duct due to a fully developed and smooth flow profile in the centre, while entropy S
has its maximum values near boundaries due to the sinusoidal fluctuations of walls.
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Nomenclature(
X, Y, Z

)
Coordinate system(

U, V, W
)

Velocity components
δ Aspect ratio
φ1 Concentration of copper
φ2 Concentration of silver

ρ
(

kg
m3

)
Density

Ω Dimensionless temperature ratio
φ Occlusion

µ
(

Nsm−2
)

Viscosity

λ (m) Wavelength
Br Brinkman number
a0, b0 Ellipse half axes (b0 < a0)

c
(
ms−1) Wave velocity

d(m) Wave amplitude
e Ellipse eccentricity

k
(

W
mK

)
Thermal conductivity

S Dimensionless entropy
Tw(K) Tube’s wall temperature
Dh(m) Hydraulic diameter of ellipse

Cp

(
J

kg.K

)
Heat capacity

hn f Hybrid nanofluid
Tb (K) Bulk temperature
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