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Abstract

Decreased sea ice cover in the northern Bering Sea has altered annual phytoplankton phe-

nology owing to an expansion of open water duration and its impact on ocean stratification.

Limitations of satellite remote sensing such as the inability to detect bloom activity through-

out the water column, under ice, and in cloudy conditions dictate the need for shipboard

based measurements to provide more information on bloom dynamics. In this study, we

adapted remote sensing land cover classification techniques to provide a new means to

determine bloom stage from shipboard samples. Specifically, we used multiyear satellite

time series of chlorophyll a to determine whether in-situ blooms were actively growing or

mature (i.e., past-peak) at the time of field sampling. Field observations of chlorophyll a and

pheophytin (degraded and oxidized chlorophyll products) were used to calculate pheophytin

proportions, i.e., (Pheophytin/(Chlorophyll a + Pheophytin)) and empirically determine

whether the bloom was growing or mature based on remotely sensed bloom stages. Data

collected at 13 north Bering Sea stations each July from 2013–2019 supported a pheophytin

proportion of 28% as the best empirical threshold to distinguish a growing vs. mature bloom

stage. One outcome was that low vs. high sea ice years resulted in significantly different

pheophytin proportions in July; in years with low winter-to-spring ice, more blooms with

growing status were observed, compared to later stage, more mature blooms following

springs with abundant seasonal sea ice. The detection of growing blooms in July following

low ice years suggests that changes in the timing of the spring bloom triggers cascading

effects on mid-summer production.

Introduction

An unprecedented lack of winter sea ice led to open water conditions throughout the winter of

2017–2018 in the northern Bering Sea [1]. Sea ice extent in the Bering Sea in 2017–2018 was

far lower than any previous winter in the reconstructed or observed past dating back to 1850
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[2]. Unusual environmental conditions that led to the drastic sea ice reduction included resid-

ual heat from 2017 that delayed freeze-up in the Chukchi Sea, which then delayed ice produc-

tion in the Bering Sea. Additionally, a large, persistent high-pressure system over the Aleutian

Islands and southern Bering Sea from February through May 2018 shifted the position of the

Aleutian Low Pressure System northwest over eastern Siberia, resulting in persistent southerly

winds transporting warm air over the Bering Sea that prevented sea ice formation until March

[1, 3]. At least in the short term, this event appears anomalous rather than a trend as the 2020

and 2021 period had sea ice recovering to more typical extents [4].

Sea ice is an important controlling factor for many of the biological characteristics observed

on the Bering Sea shelf [5]. Declines in Pacific Arctic Region sea ice impact species at multiple

trophic levels as well as overall ecosystem function [6, 7]. Following the 2017–2018 event, the

northern Bering Sea had weakened water column stratification, a delayed spring phytoplank-

ton bloom, and the typical persistence of cold bottom water (<2˚C), termed the cold pool that

extends through the summer, was much diminished. The cold pool may serve as a refuge for

the early age class of juvenile Walleye pollock [8, 9], and low seawater temperatures (<0˚C)

exclude the commercially fished, larger size classes of this species [10]. Cascading effects of the

sea ice decline has led to lower abundances of large crustacean zooplankton (large copepods

and euphausiids) in the summer and coincident die-offs of summer seabirds [8] as well as

reductions in lipid content and overwinter survival of age-0 pollock [11] that prey on large

zooplankton. These biological consequences are tied to the timing of phytoplankton growth,

meaning that the extent and persistence of seasonal sea ice is a critical element for understand-

ing the function of the marine ecosystem. Monitoring efforts such as the Distributed Biological

Observatory (DBO) in the Pacific Arctic Region provide the opportunity to improve our

understanding of how phytoplankton growth and its phenology play a role in ecosystem orga-

nization [12, 13].

While other studies have evaluated the impacts on phytoplankton phenology from sea ice

cover reductions in the fall [14] and spring months [15], including blooms initiated prior to

sea ice breakup [16, 17], our focus here is on productivity in the mid-summer, in July. Changes

in the timing of sea ice break up and subsequent timing of spring blooms could have follow-on

consequences into the summer and potentially affect ecosystem function. We use here existing

ship-based DBO datasets collected during annual July field sampling of chlorophyll a biomass,

and combine these data with comparable satellite observations to offer a potentially more syn-

optic identification of mid-summer bloom patterns.

Repeat chlorophyll a observations from satellites have routinely been used to monitor sur-

face phytoplankton bloom phenology, e.g. [14]. However, optical satellite sensors are limited

in that they cannot detect chlorophyll a deep within the water column and the collection of

useful data are further hindered by consistent cloud cover that is characteristic of the Pacific

Arctic Region. A remedy to these limitations is to use ship-sampled chlorophyll a pigments as

indicators of phytoplankton bloom stage. The proportion of active chlorophyll a relative to its

oxidized breakdown product, pheophytin, can be used to determine whether chlorophyll a
biomass reflects sampling during the growing phase of a phytoplankton bloom or during its

senescence. Chlorophyll a is converted into pheophytin during microbial degradation and

grazing activities [18, 19]. Pheophytin proportions relative to combined live chlorophyll a and

pheophytin pigments have been used to qualitatively determine areas of relatively active

blooms in the Arctic [20, 21], but these studies have been limited in analyzing only individual

cruises and have not attempted to derive a more quantitative approach to describe bloom

stage. More typically, pheophytin collections in Arctic regions have been used as a diagnostic

marker for phytoplankton grazing processes [22–24] or used in conjunction with other pig-

ments to characterize phytoplankton community composition [25]. Empirical quantitative
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relationships between chlorophyll a and pheophytin for predicting in-situ bloom stage have

not been developed. Therefore, our novel objective in this study was to determine a threshold

value of pheophytin to total chlorophyll a that would provide an estimate of in-situ phyto-

plankton bloom stage. Specifically, our goals were the following: (a) Can the proportion of

pheophytin relative to combined pheophytin and chlorophyll a be used to estimate phyto-

plankton bloom stage using satellite-measured time series; and (b) has there been any measur-

able impact on the July phytoplankton bloom phenology owing to earlier sea ice retreat or

limited formation during the prior winter in the northern Bering Sea?

Methods

Remote sensing of surface phytoplankton phenology

Remotely sensed bloom stages were derived from sea surface chlorophyll a measurements,

using a methodology that is an extension of common approaches for remote sensing land

cover classification [26–29]. Typically, these studies involve comparisons of classifications

derived from satellite remote sensing and “ground truthing” verified through local surveys or

by using reference remote sensing sources with higher spatial resolutions [30]. Unlike these

typical land cover classification applications, there is no available “ground truth” for our study

due to the lack of continuous in-situ sampling that would be required to directly determine

bloom stage. Therefore, to examine the relationship between remotely sensed phenology and

field-based cruise measurements, satellite observations were considered the reference classifi-

cation since stations are observed continuously over time.

Satellite remotely sensed time series of ocean surface chlorophyll a concentrations were

used to resolve bloom cycles in order to determine whether chlorophyll a was increasing or

decreasing on the dates of field sampling. Ocean color imagery collected by NASA MODIS-A-

qua mission (https://oceancolor.gsfc.nasa.gov/), sourced from Google Earth Engine datasets at

500 m resolution from 2013–2019 were used to analyze phytoplankton growth patterns

observable at the seawater surface. Satellite images were collected at the DBO sites every 1–2

days but owing to frequent cloud cover, the average number of days of useable imagery was 27

observations per year. Years with fewer than 6 total satellite observations were not evaluated to

ensure only representative phytoplankton life stages were documented at a given location,

which is a standard applied in previous work [31]. Complete (usually secondary) remotely

sensed surface chlorophyll a blooms at the DBO Bering Sea sites indicated an average differ-

ence of 20 days between bloom peak and return to baseline values. Therefore, in order to bal-

ance satellite imagery availability and resolvable bloom activity relevant to shipboard

observations, the period of interest was set to be the dates of annual field sampling (Day of

Year (DOY) 194–199) ± 20 days. The quality of the chlorophyll a time series as it relates to

field data was assured by excluding years with fewer than 6 chlorophyll a concentration obser-

vations, and by using a minimum of one observation every 25 days and a minimum of three

chlorophyll a concentration determinations over the extended period (DOY 174–219) overlap-

ping the shipboard sampling dates. These criteria enabled the removal of incomplete bloom

data immediately prior and post cruise sampling. Furthermore, to remove chlorophyll a con-

centration signals that may be affected by the presence of sea ice, daily sea ice concentration

estimates were used to mask any satellite image pixels that had greater than 15% sea ice con-

centration. To examine the chlorophyll a variability for each of 13 northern Bering Sea stations

between sites DBO1 (n = 5: SLIP-1, SLIP-2, SLIP-3, SLIP-4, SLIP-5) and DBO2 (n = 8: BCL-

6A, BCL-6C, UTBS-1, UTBS-2, UTBS-3, UTBS-4, UTBS-5, DBO2.7) (Fig 1), a buffer radius of

5.5 km was used. This buffer was selected because it was small enough to adequately represent

each station yet large enough to mitigate loss of observations owing to persistent cloud cover.
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The median chlorophyll a concentration was extracted at each station from near-daily MODIS

imagery rather than the arithmetic mean to reduce the dominance by unrepresentative, outlier

pixels [32]. Satellite extracted chlorophyll a data was determined for each station within each

year were then filtered using a locally weighted scatterplot smoothing function to further

reduce outliers following previous methodologies [14, 31]. Finally, a daily chlorophyll a time

series for each station year (defined as each year of cruise data at each station within the DBO1

and DBO2 sites) was produced via linear interpolation between data points.

Based on the remotely sensed phytoplankton growth curve at each DBO station, the life

stage at time of sampling for each collection date 2013–2019 was estimated using a classifica-

tion approach. We define these categories as No Blooms, Early Blooms (EB), and Post Blooms

(PB) based upon the dates of start (t1), peak (t2), and end (t3) of bloom cycles within the phe-

nology curves compared with the DOY of sampling (Fig 2). The start, peak, and end dates and

associated chlorophyll a concentrations were recorded from each bloom if multiple blooms

cycles occurred within a year at a single location (e.g. double bloom [14]). We used a threshold

Fig 1. Map of the northern Bering Sea study area. Two DBO areas are indicated in red and the black text

corresponds to individually sampled stations within each DBO transect marked by the blue circles. The stations are

grouped as DBO1 (n = 5: SLIP-1, SLIP-2, SLIP-3, SLIP-4, SLIP-5) and DBO2 (n = 8: BCL-6A, BCL-6C, UTBS-1,

UTBS-2, UTBS-3, UTBS-4, UTBS-5, DBO2.7). The bathymetry is reproduced from GEBCO Sheet G.08 compiled by R.

L. Fisher of the Scripps Institution of Oceanography and extracted from the GEBCO Digital Atlas published by the

British Oceanographic Data Centre on behalf of the IOC and IHO, 2003.

https://doi.org/10.1371/journal.pone.0267586.g001
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increase of 0.5 mg/m3 of surface chlorophyll a to identify additional individual blooms [32,

33]. Smaller increases were considered either continuations of a large bloom cycle or minor

variability classified as No Bloom (Eq 1) depending on the context of each annual phenology

curve. The timing of peak chlorophyll a concentrations is considered a focal identifier for

describing phytoplankton phenology [34, 35]. To tease out within-bloom dynamics, EB and

PB stages were distinguished based on sample dates preceding or following the chlorophyll a
concentration peak within a bloom cycle respectively. Specifically, EB contained the section of

the phenology curve from the start time (t1) until the maximum amplitude of chlorophyll a
concentration at (t2) in Eq 2 and Fig 2. PB were considered to be any concentration that fol-

lowed a specific time, t, t2 through t3 (Eq 3).

No Bloom DOY Sampled < t1 or DOY Sampled > t3 ð1Þ

Early Bloom t1 � DOY Sampled � t2 ð2Þ

Post Bloom t2 < DOY Sampled � t3 ð3Þ

Shipboard measurements

Seawater samples were collected on seven research cruises aboard the Canadian Coast Guard

Ship (CCGS) Sir Wilfrid Laurier annually in July from 2013–2019 at DBO designated stations

(Fig 1). DBO1 stations are located southwest of St. Lawrence Island and the DBO2 region is

within the Chirikov Basin, which is north of St. Lawrence Island. Water was collected from the

CTD rosette (Sea-Bird SBE25/33) using a SBE32 Carousel 12-bottle water sampler with 8-L

bottles. Water samples were collected at set depth increments (i.e. 5, 15, 25, 35, 50, 75 m, bot-

tom depth, and at the chlorophyll maximum). Chlorophyll a and pheophytin collection meth-

ods followed National Estuarine Research Reserve System Centralized Data Management

Office protocols [36]. Briefly, seawater samples (200 mL) were immediately filtered on 25 mm

Whatman GF/F filters in the dark. Filters were frozen shipboard (-20˚C) and analyzed within

three months post-cruise at Clark University. Chlorophyll a was extracted from filters using

90% acetone, and vials with acetone and filters were stored wrapped in foil in a freezer for at

least 48 hours prior to measurement on a calibrated Trilogy Fluorometer (Turner Designs, San

Jose, California). Pheophytin was determined following acidification of the samples. Cruise

data are available at https://arcticdata.io/catalog/portals/DBO/Data.

Pheophytin threshold model

Estimates of the life stage of the in-situ sampled bloom were determined using the proportion

of pheophytin in the combined surface chlorophyll a and pheophytin concentrations [Pheo-

phytin/(Chlorophyll + Pheophytin)] [21] of field analyzed surface (5 m) samples. Pheophytin

proportion thresholds were assessed empirically to classify stages of phytoplankton bloom

cycles (EB versus PB) in accordance with satellite-derived phenology. Specifically, using the

Fig 2. Examples of sea surface phytoplankton phenology curves using NASA MODIS Aqua chlorophyll a
concentration. The examples listed are (a) DBO2 station UTBS-2 in 2013, (b) UTBS-4 in 2013, and (c) DBO1 station

SLIP-1 in 2015. The dark circles and label indicate time 1, 2, and 3 (t1, t2, t3, respectively) that were recorded for each

bloom curve for the Day of Year (DOY) and chlorophyll a concentrations, at the day of year of the start, peak, and end

of bloom (shown in plot (a) only). The metrics were recorded for each separate bloom (determined to be individual

curves that rose at least 0.5 mg/m3 from its t1). Therefore, the second bloom pictured here was separately assigned t1, t2,

and t3 in red. The yellow shaded bars represent the date range of all July cruise sampling 2013–2019 (DOY 194–199).

The bloom stage was recorded for each bloom that corresponded to the time of cruise sampling. Therefore, the

examples shown are (a) Early Bloom, (b) Post Bloom, and (c) No Bloom stages at the time of sampling.

https://doi.org/10.1371/journal.pone.0267586.g002
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full 2013–2019 DBO1 and DBO2 dataset, consecutive integer pheophytin percentage thresh-

olds (0–100%) were incrementally compared to corresponding satellite-derived EB and PB

classes to select the threshold that best matched the satellite classes. The threshold testing fol-

lowed the logic that a higher percentage of pheophytin indicated a mature PB while samples

deplete of pheophytin represented growing EB. The final threshold selection was based on

which model produced the maximum overall accuracy and minimized classification bias

determined using omission and commission errors. These were calculated by reviewing the

incorrect classifications of the reference (remotely sensed classes) and classified model (pheo-

phytin proportions) for each class type following traditional remote sensing classification tech-

niques [37]. The No Bloom class was not considered in the analysis because of the challenges

of distinguishing whether a No Bloom period contained residual chlorophyll a from a previous

bloom or if it followed a more prolonged unproductive state.

Sea ice impacts on in-situ chlorophyll a pigments

The impact of spring sea ice on mid-summer phytoplankton phenology was analyzed for each

station year based on high and low ice years, which were defined by sea ice breakup dates and

daily sea ice concentrations. Springtime sea ice concentrations were considered in addition to

sea ice breakup dates to account for instances in which ice recovered and limited light penetra-

tion into the sea surface which may have obstructed photosynthesis and therefore bloom growth.

Daily sea ice data were obtained from the Special Sensor Microwave/Imager (SSM/I) and Special

Sensor Microwave Imager/Sounder (SSMIS) passive microwave instruments carried on Defense

Meteorological Satellite Program satellites. Sea ice concentration estimates were calculated using

the Goddard Bootstrap (SB2) algorithm [38, 39] at 25 km spatial resolution. Sea ice breakup

dates were determined following methodology in [4, 40]. Briefly, breakup date each year was

defined using satellite imagery when a 25 km pixel observed two consecutive days below a 15%

sea ice concentration threshold. A change point analysis using the method At Most One Change

(AMOC) [41, 42] was conducted to determine a DOY threshold parameter to distinguish high

versus low sea ice years according to the sea ice breakup date specific to each station [43]. The

change point method ensured a representative threshold would be selected for each study site

along the latitudinal gradient. Station years were categorized as low or high sea ice years based

on whether the sea ice breakup occurred before or after the DOY threshold, respectively (see

details in S1 Appendix). In addition to sea ice breakup dates, high and low sea ice years were cat-

egorized directly by sea ice concentrations during the late winter-spring transition (March

1–May 1), when increasing daylight would activate spring blooms. High ice years were consid-

ered the default while any year with zero percent sea ice concentrations for more than five conse-

cutive days in the March 1–May 1 timeframe was classified as a low ice year.

Pheophytin proportions determined from water column field samples as described above

were grouped based on high and low sea ice years to investigate the impact of low sea ice on

subsequent bloom phases in July. Depth-integrated pheophytin proportions were considered

in addition to surface samples due to decreased sensitivity to wind-driven mixing and rapid

nutrient depletion at depth compared to surface chlorophyll a concentrations. Therefore, sur-

face (5 m) and depth-integrated chlorophyll a and pheophytin concentrations measured at

each station were used to investigate the impact of high and low sea ice years on pheophytin

proportions throughout the water column. The samples were binned according to low and

high ice years and Welch’s t-test was used to compare the two groups to determine if their

averages were significantly different from one another. The statistics were performed using the

“numpy” and “scipy” packages in the Python programming language (Python Software Foun-

dation, https://www.python.org/) [44, 45].
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Results

Chlorophyll a bloom stage classification

Nine remotely sensed time series curves were excluded due to not reaching the criteria for con-

sistent observations (i.e. a minimum of one chlorophyll a value every 25 days and a minimum

of three chlorophyll a values between DOY 174–219). The excluded data were from BCL-6A

and all DBO1 stations in 2013, as well as SLIP-1, SLIP-2, and SLIP-3 in 2018 (see Fig 1 for sta-

tion location). With the exclusion of these station years and the exclusion of the No Bloom

remotely sensed classes, data from twenty-eight stations in the study years were available to

compare between field and satellite classifications and to test the compatibility of the two

methods for determining bloom stage (early (including growing) and post bloom). Based on

this dataset, a 28% pheophytin proportion threshold relative to the combined surface chloro-

phyll a and pheophytin concentrations produced the highest overall accuracy for distinguish-

ing EB and PB classes based on corresponding satellite-derived bloom stage classes. Therefore,

samples that contained less than a 28% pheophytin proportion were classified as EB and con-

sidered to be growing. Samples with more than 28% pheophytin proportion were classified as

PB, meaning they were sampled post peak according to the remotely sensed time series. An

error matrix and accompanying accuracy assessment are available in Table 1. The 28% pheo-

phytin proportion threshold provided an overall accuracy of 75% in distinguishing EB vs. PB

according to the remotely sensed bloom staging criteria. Of the twenty-three satellite EB (used

as a reference), the threshold model correctly classified sixteen samples, while the model cor-

rectly matched all five referenced PB samples.

Results for the field and satellite annually aggregated classes for all DBO1 and DBO2 sta-

tions are shown in Fig 3, and individual station matchups for each year are provided in S2

Table. The annually aggregated results (Fig 3) of all classified station years for both the

remotely sensed and field collected datasets included instances of missing observations (indi-

cated as NaN). The majority of the DBO1 stations did not have adequate remote sensing obser-

vations available to resolve surface phenology in years 2013–2015 and 2018, limiting data

availability needed to compare the classification model performance of DBO1 and DBO2 sepa-

rately. On the other hand, remotely sensed classifications were successfully produced for the

majority of DBO2 stations each year.

Sea ice and pheophytin proportions

High and low sea ice station years were determined using sea ice breakup date (Fig 4, S4

Table) and sea ice concentration (Figs 5 and 6, S4 Table). Interannual sea ice dynamics were

generally similar throughout the Bering Sea stations, although some distinctions between

DBO1 and DBO2 were evident. In 2018, no sea ice breakup nor concentration data were

Table 1. Field measured vs. remotely sensed life stage classification accuracy assessment of phytoplankton stage.

Satellite

EB PB Total N = 28 Consistent Inconsistent

Field EB 16 0 16 Number 21 7

PB 7 5 12 Percentage (%) 75 25

Total 23 5

Error matrix (left panel) and accuracy results (right panel) of the developed field classification scheme against the remotely sensed classes of life stage at the time of

cruise sampling using a pheophytin proportion of 28% for each field water column sample taken at 5 m depth. EB = Early Bloom, PB = Post Bloom. Note that only exact

matches for station years with both satellite and field data available were used.

https://doi.org/10.1371/journal.pone.0267586.t001
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Fig 3. The aggregated counts of bloom stages identified for all of the stations within DBO1 and DBO2 for both the remotely sensed (RS) and cruise-

collected (field) pheophytin proportion methods. EB = Early Bloom, PB = Post Bloom, NaN = missing data, NB = No Bloom for observations outside of a

bloom cycle. The aggregation was performed using all available years of data (i.e. years that failed the minimum observations criteria for satellite time series are

classified here as “RS NaN”).

https://doi.org/10.1371/journal.pone.0267586.g003
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presented because winter sea ice did not form at stations SLIP-1 and SLIP-2 (Figs 4(A), 5(A)

and 5(D)). The remaining stations in DBO1 had continuous ice cover for less than a month

late in the season. At the same time, DBO2 had reduced sea ice cover with periods of open

water in spring (March 1–May 1), although the duration of open-water events varied among

stations. The following year, 2019, was another low sea ice year although the observed sea ice

Fig 4. Sea ice breakup dates. Sea ice breakup dates for DBO1 (a) and DBO2 (b) over the time series. Bars are missing

at some 2018 DBO1 stations because winter sea ice did not form and no breakup date was observed.

https://doi.org/10.1371/journal.pone.0267586.g004

Fig 5. Daily sea ice concentrations (blue) and MODIS chlorophyll a (green) time series curves at the DBO1 stations.

https://doi.org/10.1371/journal.pone.0267586.g005
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breakup resembled pre-2018 dates in DBO2 with some open water presence in March. Mean-

while at DBO1, 2019 sea ice breakup dates remained anomalously early and increases in daily

sea ice concentration were less striking than in spring 2018.

Fig 6. Daily sea ice concentrations (blue) and MODIS chlorophyll a (green) time series curves at the DBO2

stations.

https://doi.org/10.1371/journal.pone.0267586.g006
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Pheophytin proportions in high vs. low sea ice years were significantly different (Welch’s t-

test, p<0.05) except for surface samples binned using the timing of sea ice breakup date

(Table 2). The mean pheophytin proportions observed in July were consistently higher in high

ice years than low ice years.

Pheophytin proportions throughout the water column showed interannual variability in

July 2013–2019 (Figs 7 and 8). In 2015, no field EB signals were detected (Fig 3) as a sharp rise

in pheophytin proportions was observed throughout the DBO1 and DBO2 stations (Figs 7 and

8), which corresponded to a high sea ice year at all stations based on sea ice concentration.

Conversely, 2018 was classified as a low ice year but observations of July pheophytin propor-

tions were not anomalously low relative to other years from 2013–2019 (Fig 8). However, there

were more observations of field EB in 2018 (46%) than there were in previous high sea ice

years such as 2013 (14%) and 2014 (30%) (Fig 3). In the following low ice year, 2019, 100% of

the samples were classified as field EB though the number of samples collected was reduced in

this particular year to N = 6 (Fig 3).

Discussion

In-situ and remotely sensed bloom stage model

The classification methodology used here sought to determine if pheophytin proportion (the

ratio of pheophytin to combined pheophytin and chlorophyll a) from field measurements

could be used to estimate bloom stage at the time of sampling based upon a satellite time series.

To the best of our knowledge, this is the first application of this approach of basing remotely

sensed classes on relation in time (growing or declining chlorophyll blooms) rather than direct

snapshots of Earth’s surface to study the seasonality of phytoplankton growth stages. This

application is based on the adaptation of remote sensing land cover classification techniques

(e.g. [47]) to classify phytoplankton bloom stage at the time of field sampling.

Overall accuracy compares how each pixel is classified versus the confirmed surface cover

conditions obtained from corresponding ground truth data [47]. While our methodology uti-

lized chlorophyll a time series to estimate time-based classes, similar studies were unavailable

for comparison. However, the overall accuracy of our classification model was 75%, which is

Table 2. Statistical summary for pheophytin proportions of total chlorophyll a + pheophytin measured in high

vs. low sea ice station years for the DBO1 and DBO2 stations (n = 13) in the northern Bering Sea.

Depth Integrated Pheophytin Proportions Surface Pheophytin Proportions

Sea Ice Concentration Sea Ice Breakup Sea Ice Concentration Sea Ice Breakup

Low Ice

Years

High Ice

Years

Low Ice

Years

High Ice

Years

Low Ice

Years

High Ice

Years

Low Ice

Years

High Ice

Years

N 20 52 46 26 20 51 45 26

Mean 0.35 0.42 0.38 0.45 0.25 0.34 0.30 0.35

SD 0.09 0.13 0.11 0.13 0.07 0.15 0.13 0.14

Min 0.18 0.11 0.11 0.26 0.15 0.14 0.14 0.15

Max 0.52 0.78 0.78 0.73 0.36 0.85 0.85 0.57

t-test 2.65 2.1 3.34 1.38

p 0.01� 0.03� 0.001� 0.17

N indicates the number of station year observations that were grouped in each high versus low year bin. The mean,

standard deviation (SD), minimum, maximum are provided for the binned pheophytin proportions (Pheophytin/

(Chlorophyll a + Pheophytin)) along with Welch’s t-test and p-value. �Bold values indicate significant differences at

p<0.05.

https://doi.org/10.1371/journal.pone.0267586.t002
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consistent with previously published satellite-derived land cover classifications maps (e.g.

[48]).

Examination of the misclassified station years revealed a general pattern. Each of the

remotely sensed (RS) EB that were field-classified as PB contained large pheophytin propor-

tions, ranging from 29–61%. These instances occurred as a second bloom following a recently

ended bloom (over 2–33 day intervals). Therefore, the growing second bloom observed by sat-

ellite could not be distinguished in field samples due to elevated levels of pheophytin that

remained in the water column from the preceding bloom. When considering the exact station

matchups per year (Table 1), the pheophytin proportion model was successful at classifying

Fig 7. Transect views of pheophytin proportion based on combined chlorophyll a and pheophytin concentrations measured in units μg/L at each

collected depth. The annual latitudinal transects show DBO1 stations on the left and DBO2 stations to the right. Note: cruise samples for most DBO2 stations

were missing in 2019. Figure constructed using Ocean Data View (version 5.3; [46]).

https://doi.org/10.1371/journal.pone.0267586.g007
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satellite-derived PB in all cases. Despite the success in matching specific PB cases, inconsisten-

cies (considered here as greater than three observations) between field and RS PB classes

appeared in 6 out of the 7 years evaluated in the aggregated comparisons (Fig 3). However,

these years also each coincided with 4–6 missing RS observations (labelled as RS NaN), which

made up 16–27% of the total observations in any given year. Therefore, it is likely that the RS

NaN would have contributed to the PB category had RS observations not been limited. Addi-

tionally, RS contained a “No Bloom” class which could not be differentiated using the pheo-

phytin proportion index, which was a limitation between the field and RS classification

matches.

Another limitation existed in using satellite observations as a reference because these data

are also a proxy for surface level chlorophyll a biomass, and do not necessarily incorporate a

confirming at-sea measurement. Furthermore, in order to take advantage of several years of

useable data, our remote sensing time series included an expansion of the minimum observa-

tions criteria to once in at least every 25 days rather than once in 20 days that was used in prior

work in this region [14, 31]. However, our criteria were adequate to resolve phenological

patterns.

The frequency of EB were consistently identified in both the field and remotely sensed data-

sets year-to-year (r2 = 0.94, p< 0.01). EB were more prevalent in later years (2016–2019), yet

the variability was reflected well in both models. Considering the satellite-derived bloom stages

as the reference for individual matchups (Table 1), the pheophytin model performed well in

classifying bloom stages with a success rate of 70% for EB. Overall, our model supports the

conclusion that a pheophytin proportion of 28% or less based on the total concentration of

chlorophyll a and pheophytin depicts pre-peak growth according to the accompanying satellite

time series (Table 1). This model is novel in its ability to resolve phytoplankton growth versus

Fig 8. Pheophytin proportion time series. Depth integrated (a, c) and surface (b, d) pheophytin proportions at each

station in DBO1 (a, b) and DBO2 (c, d) over time.

https://doi.org/10.1371/journal.pone.0267586.g008
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deterioration within bloom cycles. Applying this model to other Bering Sea datasets would be

beneficial to confirm the consistency of this 28% threshold.

Previous applications of using pheophytin proportions to estimate in-situ bloom stage are

limited. Roy [49] routinely measured chlorophyll and associated pigments throughout a

bloom progression in Bedford Basin, Canada and found a distinct difference in pheophytin

proportion based on early and late bloom stages. Despite geographical differences, the domi-

nant phytoplankton taxa studied by Roy [49] were diatoms, which is similarly dominant in the

northern Bering Sea [50, 51]. Chlorophyll a represented 60% of the total pigment in the early

bloom stage [49] while our model predicted a 72% representative threshold. However, Roy

[49] measured chlorophyll c pigment separately, and those concentrations combined with

chlorophyll a accounted for 70–75% of the early bloom signal at 5 m depth (Fig 5 in Roy [49]).

Unfortunately, our observations did not differentiate additional chlorophyll accessory pig-

ments. During the late bloom period, Roy [49] observed a distinct increase in surface pheophy-

tin. Similarly, in the Laptev Sea another study observed high pheophytin concentrations

compared to chlorophyll late in the season (September) [24]. Additionally, Sathish et al. [52]

found seasonal trends in pheophytin concentrations after repeated sampling in various marine

ports on the Indian subcontinent. These findings support the suitability of pheophytin propor-

tions as an index for bloom stage.

Pheophytin proportions in the northern Bering Sea

On the Chukchi Shelf, Goñi et al. [53] found bottom waters with high (>0.4) pheophytin pro-

portions (reported as pheophytin/(chlorophyll + pheophytin) ratios) indicative of phytoplank-

ton detritus in August and September. Interestingly, in July and August, McTigue et al. [54]

found the ratio of chlorophyll to total pheopigments (the sum of pheophytin a, pheophorbide

a, and pyropheophorbide a) to be> 1 at the majority of their Chukchi Shelf stations for sur-

face sediment concentrations, indicating viable cells. Goñi et al. [53] reported similar results

and found that surface sediments that received fresh inputs of phytoplankton cells had low

(< 0.2) pheophytin proportions whereas locations with increased microbial and herbivorous

grazing displayed higher (>0.2) pheophytin proportions. While we did not measure sediment

pigment concentrations, the pheophytin proportions measured in the northern Bering Sea

bottom waters were consistently greater than 0.2 and were commonly greater than 0.4 (Fig 7).

While these proportions are not consistent with the sediment processes described by McTigue

et al. [54], the July northern Bering Sea bottom water pheophytin proportions were on par

with late summer Chukchi Sea samples reported by Goñi et al. [53].

Sea ice and pheophytin proportion dynamics

Pheophytin proportions differed between high and low ice years for samples collected at the

surface as well as depth integrated inventories. These data provided consistent evidence of a

connection between the timing of sea ice dissolution and pheophytin proportions (Table 2).

High sea ice years were associated with a larger mean pheophytin proportion than was found

in low ice years in the northern Bering Sea (Welch’s t-test, p<0.05) in three of four analyses,

although surface samples grouped by sea ice breakup of low and high years were not signifi-

cant. The surface samples analyzed according to sea ice breakup had the smallest difference in

mean (0.05) and nearly exact standard deviation (difference of 0.01) between the low and high

ice year groups, which likely resulted in the insignificant distinction among them. Still, in most

of the cases high versus low sea ice years produced statistically different outcomes for the

observed pheophytin proportions.
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While distinct outcomes were found between high versus low sea ice years when aggregat-

ing DBO1 and DBO2 stations through time, the relationship was less obvious in individual

years. Annually, the pheophytin proportion throughout the water column did not exhibit a

clear distinction between the high and low years (Figs 7 and 8). Individual years and stations

had high variability and there is a need for a longer time series at individual stations. Interan-

nual variability and exceptions of years with high (low) sea ice producing low (high) pheophy-

tin proportions suggest sea ice is not the sole driver of bloom stage in mid-summer, despite

statistical indications that sea ice influences chlorophyll a and pheophytin proportions

(Table 2). Factors such as stratification and nutrient availability are major drivers of phyto-

plankton growth and taxonomic changes. These mid-summer conditions likely influenced

July chlorophyll a concentrations.

Results of our classification model indicate it is practical to define bloom stage based on

pheophytin proportion relative to chlorophyll a. Lower proportions of pheophytin in low sea

ice years suggests an early bloom signal will be present in mid-summer compared to a more

mature (higher pheophytin proportion) bloom stage that is typical in high sea ice years. Prior

work on these dynamics, e.g. the Oscillating Control Hypothesis [55] projected that late ice

retreat leads to an early, ice-associated bloom, but limited ice or an early ice retreat leads to a

later open-water spring bloom in May or June in warm water. This hypothesis assumes that

the timing of spring primary production is primarily determined by the timing of ice retreat.

Sea ice cover aids phytoplankton growth by providing freshwater stratification from sea ice

melt that provides a stable water column to support phytoplankton growth in the euphotic

zone, and by mixing nutrients into the upper water column during winter brine rejection as

sea ice forms [56]. Although our samples were obtained in July, months after direct interaction

between sea ice and the spring bloom, we were able to distinguish a shift in the phase of phyto-

plankton phenology based on pheophytin proportions. Following from the Oscillating Control

Hypothesis, our results indicate that earlier sea ice breakup and low springtime sea ice concen-

trations that alter spring bloom timing have consequences for chlorophyll a biomass extending

into mid-summer. In short, the detection of this phase shift with increased observations of EB

rather than PB conditions in low ice years suggests that changes in timing of the spring bloom

further alters mid-summer production.

Other observations simultaneous with our study include the M5 mooring southeast of

St. Matthew Island in the Bering Sea, where observations were made of low chlorophyll a con-

centrations within a late spring bloom (with onset on approximately June 12) in 2018 owing to

the lack of fresh water input from melting sea ice resulting in weak stratification [8]. Kikuchi

et al. [57] also observed delays in the spring bloom at their mooring sites north and south of

the Bering Strait in 2018 compared to 2017, and attributed the differences to varying sea ice

concentrations. Observations and modelling [15] of later spring blooms that follow spring sea-

sons with little or no sea ice could conceivably lead to delayed phytoplankton growth in later

months. Though other environmental variables clearly influence mid-summer productivity,

this study demonstrates that sea ice status during the prior spring, including concentrations

and breakup date are contributing drivers.

The absence of winter sea ice in the Bering Sea in 2018 could become typical by the 2040s

[2]. It is possible that these anomalous events indicate the beginning of a sea ice regime change

that could reflect ecosystem restructuring [58]. Based on the 2013–2019 July observations, con-

tinued sea ice decline may shift mid-summer productivity to an earlier bloom signal than pre-

viously observed in the northern Bering Sea. Delayed spring blooms that lead to delayed

summer bloom pulses could change the timing of food availability for higher trophic levels.

While the spring bloom is considered the most critical period for biological production, there

is evidence in the southeastern Bering Sea that summer production is also a crucial energy
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source for zooplankton and contributes to the survival of age-0 walleye pollock [59]. Long

term consequences of a shift in mid-summer production is uncertain. Ice cover in the 2019/

2020 winter was more extensive, providing uncertainty for whether 2017/2018 sea ice condi-

tions represent an anomaly or the beginning stages of a new regime state [60]. Still, major envi-

ronmental changes in this region are expected to continue and will require expanded efforts to

include both remotely sensed and field observations to resolve physical and ecological conse-

quences of climate change.

Conclusion

The classification model presented is shown to be able to resolve phytoplankton growth stages

within bloom cycles from in-situ discrete water samples. An optimized model for northern

Bering Sea field samples produced a threshold of a proportion of 28% pheophytin in the overall

pheophytin + chlorophyll a pigment inventory to distinguish growing blooms from post-peak

bloom stages. Our study found that samples that consisted of less than 28% pheophytin pro-

portion represented growing blooms while proportions higher than 28% indicated past peak

or senescent blooms according to remotely sensed chlorophyll a phenology. Although addi-

tional studies are needed to confirm this model with other northern Bering Sea datasets, our

results suggest that pheophytin proportions can be used as a proxy for bloom stage as con-

firmed by satellite sensed phenology.

Earlier sea ice breakup dates and reduced springtime sea ice concentrations led to a later

spring bloom and subsequently an increase in early bloom stages (as opposed to matured

blooms) being observed in mid-summer. The difference of pheophytin proportions from July

cruise samples between high and low sea ice years was significant (p<0.05) for depth-inte-

grated pheophytin. Surface pheophytin proportions were divided between two distinctive out-

comes with high confidence (p<0.001) for March–May sea ice concentration. The increase in

mid-summer EB signals observed in low sea ice years represents a shift from typical annual

growth cycles. The Oscillating Control Hypothesis [55] describes the mechanisms driving

delayed spring blooms following early sea ice retreat. Therefore, it is likely that changes to the

timing of spring phytoplankton blooms owing to decreased sea ice can have pronounced

effects on mid-summer production, though the influence of drivers such as immediate nutri-

ent availability and stratification may prevail in individual years.
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