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ABSTRACT: Soil salinization is a serious concern across the globe that is negatively affecting crop productivity. Recently, biochar
received attention for mitigating the adverse impacts of salinity. Salinity stress induces osmotic, ionic, and oxidative damages that
disturb physiological and biochemical functioning and nutrient and water uptake, leading to a reduction in plant growth and
development. Biochar maintains the plant function by increasing nutrient and water uptake and reducing electrolyte leakage and lipid
peroxidation. Biochar also protects the photosynthetic apparatus and improves antioxidant activity, gene expression, and synthesis of
protein osmolytes and hormones that counter the toxic effect of salinity. Additionally, biochar also improves soil organic matter,
microbial and enzymatic activities, and nutrient and water uptake and reduces the accumulation of toxic ions (Na+ and Cl),
mitigating the toxic effects of salinity on plants. Thus, it is interesting to understand the role of biochar against salinity, and in the
present Review we have discussed the various mechanisms through which biochar can mitigate the adverse impacts of salinity. We
have also identified the various research gaps that must be addressed in future study programs. Thus, we believe that this work will
provide new suggestions on the use of biochar to mitigate salinity stress.

1. INTRODUCTION
Salinity stress is the second most important abiotic stress
negatively affecting crop productivity and global food security.1

The intensity of salinity stress will be higher in the future
owing to rapid climate change and global warming.2 Irrigated
lands are some of the biggest sources of food production and
they produce one-third of the world’s food supply, which is
severely affected by salt stress.3 It is projected that the world’s
population will reach 9.6 billion by 2050; therefore, agricultural
production must be substantially increased to meet the food
needs.3 Nonetheless, salinity stress is impeding the steady food
supply4,5 and causing a significant reduction in yields of major

crops, i.e., maize, rice, and wheat.6 Soil salinization negatively
affects plant establishment by increasing soil osmotic pressure.3

Salinity-induced osmotic stress causes water scarcity in plants
and leads to a reduction in plant growth. Further, salinity also
cause ionic toxicity and nutritional imbalance, therefore
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resulting in a significant reduction in plant growth.7−9 Salinity
stress negatively affects plant physiological processes including
photosynthesis, nutrient acquisition, and water uptake.8−11

Photosynthesis is one of the most important processes that
provides energy and organic molecules for the growth and
development of plants.10 However, plant photosynthesis is

Table 1. Effect of Salinity Stress on Growth and Physiological and Molecular Processes of Plants

salinity
stress

plant
species major effects refs

3000
mg kg−1

eggplant salinity stress reduced the chlorophyll contents, RWC, fruit NPK, fruit length, and total yield 41

6 dS m−1 tomato saline conditions reduced the chlorophyll synthesis, membrane stability, RWC, and chlorophyll contents and increased
accumulation of toxic ions

42

300
mmol L−1

maize saline conditions reduced germination potential, shoot length, and chlorophyll contents and increased MDA and Na
concentrations and antioxidant activities

43

6 g/kg Jatropha
curcas

saline conditions reduced plant growth, leaf area, leaf biomass, photosynthetic pigments, and chlorophyll fluorescence 44

200 mM alfalfa a significant reduction in root length, leaf length and width, and growth and photosynthetic efficiency was observed under saline
conditions

14

10 g L−1 wheat saline conditions reduced germination rate, capacity, germination time, and mean germination and growth traits 45
10 dS m−1 maize salt stress reduced root and shoot growth, leaf area, RWC, photosynthesis, chlorophyll, and uptake of zinc and potassium 46
200 mM cotton salinity stress reduced the root and shoot length and their fresh biomass and increased proline synthesis and activities of CAT and

POD
47

10.23 dS
m−1

wheat saline conditions reduced root and shoot growth and chlorophyll synthesis and increased the levesl of proline and soluble sugars
and CAT and APX activity

48

8 dS m−1 wheat salinity increased MDA, H2O2, Na, and Cl accumulation, electrolyte leakage, and antioxidant activities and decreased growth,
chlorophyll synthesis, RWC, and uptake of Ca, Mg, and K

49

Figure 1. Salinity inhibits seed germination and chlorophyll synthesis, reduces photosynthetic efficiency cell hydration, and induces oxidative stress
and nutritional imbalance, thereby reducing plant growth and biomass production.
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progressively reduced with increasing salinity stress owing to
reduced carbon dioxide (CO2) availability, disturbed light
harvesting, hindered electron flow, and carbon assimilation.12

Salinity stress also restricts the root water uptake by
diminishing the water potential owing to the presence of the
higher concentration of salts in soil solution.13 Moreover,
salinity also reduces the cell water concentration and
consequently decreases the rates of cell elongation and cell
division.14

Managing crop production under saline soils is a complex
and challenging task owing to osmotic and ionic stresses.15

Salinity also harms the cellular membranes, disturbs the
nutrient balance and enzymatic activities, and causes metabolic
dysfunctions.16 Saline conditions also increase the production
of reactive oxygen species (ROS) that disrupt the cell redox
balance and cause damage to essential molecules and cell
organelles.17 However, plants have excellent systems, including
a reduction in the uptake of toxic ions, the compartment of
toxic ions in vacuoles, the production of various osmolytes, and
increased enzymatic and nonenzymatic antioxidant activities,
that can counter the toxic effects of salinity.18 Nonetheless,
when salinity stress is severe, plants cannot protect themselves
from the damaging effects of salinity. Therefore, appropriate
measures must be taken to reduce the negative impacts of
salinity stress on plants to ensure food productivity and global
food security.19

Biochar (BC) is a carbon-rich product and it is also known
as black gold.20 Recently it received attention across the globe
for its to improve crop productivity and mitigate the toxic
effects of abiotic stresses.8,20−22 BC application improves soil
carbon sequestration, soil permeability, soil fertility, and
microbial growth, which improves the water holding capacity
and nutrient availability and thus ensures better plant growth.23

Biochar also increases the soil cation exchange capacity and
nutrient use efficiency and therefore leads to an increase in
crop yield.24 Biochar application also reduced the toxic effects
of salinity by binding Na+ on its exchange site and increasing
soil K+ and moisture contents. Besides, this BC also possesses a
higher salt adsorption capacity that could reduce the Na+
uptake and thus mitigate the adverse impacts on soil salinity.25

Additionally, BC also improves physiological functions and
mitigates ROS production, which can reduce the toxic effects
of salinity stress on plants.26 Therefore, the present Review
describes various mechanisms through which BC can mitigate
the adverse impacts of salinity stress on plants. This Review
also highlights the different research gaps that must be
addresses in future studies. Further, the toxic effects of BC on
plants and limitation of biochar are also discussed. This Review
will provide new suggestions on the use of BC for mitigating
the toxic effects of salinity stress.

2. SALINITY STRESS IMPACTS AND CONSEQUENCES
ON PLANTS

Salinity stress negatively affects all plant processes ranging from
germination to growth, productivity, and physiological and
molecular processes (Table 1). Salinity stress suppresses plant
growth, and it depends on several factors, including plant
species, salt concentration, and stage of plant growth.27 Salinity
stress also shrinks and dehydrates cells, which affects the cell
division and results in decreased root and leaf growth.4 Further
salt stress also restricts the ability of plants to absorb water,
which can cause a significant reduction in plant growth and
development.28 Photosynthesis is a vital process for plants, and

salinity stress reduces chlorophyll synthesis, damages photo-
synthetic apparatus, and reduces the CO2 supply, which causes
a reduction in photosynthesis.29,30 The decrease in chlorophyll
synthesis under saline conditions occurs because of increased
oxidation and degradation of chlorophyll initiated by increased
ROS accumulation.31 Further, salinity-induced pseudocyclic
electron transport also inhibits the electron transport chain,
which causes excessive ROS production.30 The increased ROS
production damage proteins, membranes, and DNA (Figure 1)
and disturbs the ultrastructure of chloroplast by inducing
thylakoid swelling and starch accumulation.32

The disturbed nutrient acquisition under saline conditions is
linked with a reduction in nutrient availability owing to the
competition of major ions (Ca2+, K+, and Mg2+) with Na+ and
Cl−.33 Nitrogen is an essential nutrient needed for plants, and
an increase in Cl− uptake and accumulation under saline
conditions can decrease the N uptake.34 Salinity stress also
negatively affects the phosphorus uptake and salinity-induced
excessive Cl− reduces the P uptake, possibly owing to the high
ionic strength of the media and low solubility of the Ca ± P
minerals. Potassium is also an important nutrient needed for
plants; however, under saline conditions, there is intense
competition between Na+ and K+, which therefore reduces the
K+ uptake. An increase in Na+ concentration under saline
conditions significantly decreases K+ and Ca2+ concentrations
and leads to a significant reduction in plant growth.35 Under
saline conditions, the osmotic potential of plant cells becomes
more negative owing to the increased concentration of salts in
soils, which produces the osmotic gradients that drive water
out of cells and results in a reduction in turgor pressure.36

Salinity stress also reduce relative water content, transpiration,
and photosynthesis, therefore leading to a significant decrease
in plant performance under saline conditions.37 Besides this,
salinity stress also impairs the synthesis of proteins, energy
metabolism, and cell signaling and ultimately leads to a serious
decrease in plant growth and development.38 Apart from this,
salinity stress also reduces root and shoot length and plant
fresh and dry biomass production; however, this varies
according to the plant species, the stage of plant stress, and
the concentration of salts in the growth medium.39,40 Further,
saline conditions also induced leaf yellowing due to senescence
and caused leaf necrosis.19 Leaf shedding is also another
important negative effect of salinity stress that leads to lower
fresh and dry matter production and a decreased number of
flowers, and this aspect is more visible in older leaves owing to
the accumulation of Na+ for a longer time period.19,39

3. BIOCHAR PRODUCTION AND STANDARDS
The feedstock plays an important role in the final properties
and functioning of BC.50 There are different kinds of biochars
that can be used for agricultural purposes (Table 2). Biochar
has lower carbon mineralization and non-CO2 emissions owing
to its greater persistence as compared to the original biomass.
The selection of parent materials is an important factor that
significantly affects the potential of BC to mitigate climate
change.51 Biochar classification and standards regulate the
selection of the feedstock and thermal conversion processes,
which is important to develop BC technology to reduce
greenhouse gas (GHG) emission.52 Different guidelines and
standards have been proposed for BC by different
organizations like the International Biochar Initiative (IBI),
the European Biochar Community (EBC),53 and the Biochar
Quality Mandate (BQM).54 The different BC standards
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include quality requirements, environment threshold levels for
heavy metals and pollutants, feedstock type, production
technologies, and transportation distance. According to IBI,53

the pyrolysis product must contain less than 10% organic C,
while EBC suggested BC must contain >50% organic carbon
and BQM suggested that stable organic carbon in BC should
be at least 10% (w%).53,54 IBC and EBC classified the BC into
five different categories based on their application: liming
material, carbon storage material, fertilizer product, particle-
size classes, and use in different potting mixes and soilless
agriculture. Even though the current standards and guidelines
do not specify the application rules for BC in particular types
of soils, BC used in salt-affected soils must still adhere to the
specifications for feedstock, production techniques, and quality
control set by IBI, EBC, BQM, or local or national laws and
regulations. Additionally, the specifications for BC quality and
stability should take into account the particular difficulties
presented by soils with poor soil structure, low carbon content,
high salt content, and limited nutrient availability. Saline soils
contain higher electrical conductivity (EC), which can cause
osmotic stress to plants, and therefore BC with a higher
nutrient value must be selected for salt affected soil.55 It is
important to note that there are several restrictions and
difficulties with the present biochar standards and guidelines.
Developing a uniform classification of biochar feedstock,
properties, and applications is extremely difficult due to its
complexity and diversity. In general, the choice and use of
biochar must be optimized depending on the unique issues of
each salt-affected soil. Additionally, inconsistencies and
obstacles to international trade and collaboration resulting

from the lack of universal adoption of a single set of standards
must be resolved in the future.

4. BIOCHAR IS AN IMPORTANT AMENDMENT TO
MITIGATE SALINITY STRESS

Soil salinity is a serious abiotic stress that causes a marked
reduction in crop productivity and threatens global food
security.83 The extent of soil salinity is considerably increasing,
which is a serious concern across the globe. It has been
reported that every year saline area is increasing at a rate of
10% owing to anthropogenic activities.28 Biochar is a carbon-
rich product that plays an important role in mitigating the
adverse impacts of salinity stress.84 Biochar improves plant
functioning and soil properties that improve the salt tolerance
in plants,85 and different mechanisms through which BC
counter the toxic effects of salinity are discussed below.
4.1. Biochar Improves Water Uptake and Maintain

Membrane Stability to Counter Toxic Effects of Salinity.
Salinity stress induces osmotic stress, which decreases the plant
water uptake and consequently reduces the leaf water contents.
However, BC is a promising soil amendment that mitigates
salinity-induced osmotic stress and maintains plant water
relations by increasing K+ uptake and decreasing Na+ uptake.86

Potassium is an important osmoprotectant that maintains plant
function and therefore improves plant water relations.86,87.88

Aquaporins play an important role in water uptake,50 and the
application of BC up-regulates aquaporin genes, which
improves the water uptake and ensures better leaf water
status.89 Biochar supplementation also improves the activity of
water transport genes and the soil water holding capability,
which ensures better leaf water status under saline con-
ditions.88 However, this study was conducted in lab conditions,
and there is dire need to conduct the field studies to validate
the study results.

Soil salinity damages the cellular membranes by increasing
malondialdehyde (MDA) and H2O2 production, and salinity
-induced membrane damage leads to the loss of important
osmolytes.34,90 Lipids and fatty acid composition play an
important in membrane functioning and stability.91 Biochar
application can increase the concentration of unsaturated fatty
acids, which improves the membrane stability and reduces the
loss of important osmolytes.92 Biochar application under saline
conditions also improves antioxidant activities and increases
osmolyte accumulation, which protects the membranes from
the toxic effects of MDA and H2O2.

93 Biochar-mediated
reduction of MDA and H2O2 production also reduces the
electrolyte leakage by making the membranes stronger.86,92

4.2. Biochar Maintains Nutrient Uptake to Counter
Salinity Stress. Nutrient homeostasis plays an important role
in mitigating the adverse impacts of salinity. However, salinity
stress disturbs nutrient homeostasis, resulting in a significant
reduction in plant growth.88 Biochar is a promising soil
amendment that mitigates adverse impacts of salinity and
improves the uptake of nutrients, which can counter the toxic
effects of salinity. The application of BC increases the
concentration of Ca2+, which induces cell signaling, therefore
improving salt tolerance in plants.88,94 BC supplementation
also improves the uptake of P, Mn, K, Fe, and Zn in a dose-
dependent manner, which counters the toxic effects of salinity
and improves plant performance under saline condi-
tions.66,93,95

Under saline conditions, the uptake of Na+ is significantly
increased, which disturbs the plant’s nutrient uptake; however,

Table 2. Different Types of Biochar Used to Mitigate the
Toxic Effects of Salinity Stress on Plants

biochar type pyrolysis temperature refs

rice husk biochar 400 °C 56
corn cob biochar 350 °C 57
tree wood biochar 600 °C 58
maize straw 550 °C 59
wheat straw biochar 550 °C 60
wheat straw biochar 550−600 °C 61
wood biochar 250−300 °C 62
rice straw biochar 450 °C 63
mixed-wood biochar 700 °C 64
maize straw biochar 600 °C 65
coniferous wood chips 500 °C 66
sewage sludge biochar 550 °C 67
shrimp waste biochar 300 °C 68
poultry manure biochar 550 °C 69
cotton stalks 400 °C 70
mulberry wood biochar 530 °C 71
tomato biochar 500 °C 72
grape pruning residues 400 °C 73
softwood pellets biochar 550 °C 74
olive pruning biochar 400 °C 75
mango wood biochar 500 °C 76
mulberry biochar 530 °C 77
wheat straw biochar 550 °C 78
municipal solid waste biochar 500 °C 79
pine and poplar wood biochar 300 °C 80
rice husk and corn stalk biochar 350 °C 81
peanut shell biochar 350 °C 82
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BC application reduces the uptake of Na+ (Figure 2), which in
turn increases the absorption of other nutrients, particularly
K.96 BC supplementation also causes a small increase in soil
EC, and the BC-mediated increase in soil EC releases different
nutrients from soil.71,77 Biochar also replaces Na+ on soil
exchange sites and reduces the availability of Na+, which
improves the availability of Ca and Mg in plants.58 Biochar has
a higher surface area, cation exchange capacity (CEC), and
porosity, which reduces the uptake Na+. Further, BC has large
surface areas which makes it an imperative amendment to
adsorb the Na+ and leads to an increase in the availability of
beneficial nutrients.97 BC also improved the K/Na+ ratio and
the uptake of K, which is an important osmoprotectant that
ensures better plant growth under saline conditions.98 Thus,

BC can improve nutrient homeostasis to counter the toxic
effects of salinity. Most of the aforementioned studies were
conducted under controlled conditions. Therefore, it is
important to conduct wide range of field studies on salt’s
effect on soils to determine the fate of BC on nutrient
homeostasis.
4.3. Biochar Improves Plant Photosynthetic Effi-

ciency to Counter Salinity Toxicity. Photosynthesis is
one of the most important processes in plants needed for the
production of assimilates; however, salinity stress negatively
affects plant photosynthesis by decreasing relative water
content (RWC) and chlorophyll synthesis.21 The application
of BC increases the synthesis of chlorophyll (Figure 2) owing
to the fact BC increases the availability of N and Mg, which are

Figure 2. Biochar application reduces Na+ and Cl− uptake and improves soil fertility, root growth, chlorophyll synthesis, stomatal opening,
osmolyte and hormone synthesis, antioxidant activities, and membrane stability, therefore improving plant performance under saline conditions.

Table 3. Effect of Different Biochars on Growth and Physiological Activities under Salinity Stress

salinity
stress plant species

biochar
application major effects refs

300 mM eggplant 6% BC application increases plant height, growth, fruit yield, WUE, photosynthetic and transpiration rates, and
water potential and reduced ABA synthesis

59

50 mM Glycyrrhiza
uralensis

6% BC addition countered the toxic effects of salinity and improved root and shoot growth, carbon and nitrogen
concentration, and root surface area and volume

65

3000 ppm wheat 4.8 ton/ha BC supply improved plant height, grains production, RWC, membrane stability, soil pH, and uptake
productivity of Ca, Mg, K, and water

57

17 dS m−1 maize 4.5% BC application increased chlorophyll synthesis, leaf fluorescence, and NPK uptake 62
5000 mg
kg−1

borage 5% BC addition increased proline synthesis, RWC, water, osmotic and turgor potential, and membrane stability 8

4.3 dS m−1 potato 825 kg/ha BC addition increased chlorophyll contents, RWC, leaf gas exchange characteristics, proline synthesis, and
nutrient uptake

106

40 mM soybean 3% BC application increased chlorophyll synthesis, total soluble proteins, and P and N uptake 63
150 mM jute 2 g kg−1 BC application increased plant growth, RWC, chlorophyll contents, and uptake of N and P 107
20 dS m−1 quinoa 1% BC application improved root and shoot growth, RWC, membrane permeability and stability, and K uptake 108
5 dS m−1 maize 10 t ha−1 BC application increase leaf area, chlorophyll and carotenoid contents, RWC, maize productivity, and NPK

uptake
109
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building blocks in chlorophyll synthesis.99 The application of
BC also improves stomata movements, CO2 fixation, and
chlorophyll synthesis, which ensures better photosynthetic
efficiency under salinity stress.87,100,101 BC application has
been reported to protect the photosynthetic apparatus from
salinity-induced damage by decreasing ROS production
through an increase in antioxidant activities.89,102

Biochar application also improves enzymatic activities and
chlorophyll synthesis (Table 3), which keeps leaves green and
therefore photosynthesis.86,88 The application of BC also
improves uptake of Mg2+, which ensures better chlorophyll
synthesis and as a result photosynthesis.8,103 Besides this, the
BC supply also reduces NADP reduction rates through the
negative feedback of increasing nicotinamide adenine
dinucleotide phosphate (NADPH) in the plant. Moreover,
BC also provides more energy for photosynthesis by reducing
the NADPH rate and therefore increases photosynthesis.104

Additionally, application of BC also improves Hill reaction
activity, integrity of PS-II, and electron transport efficiency and
decreases ROS production, which in turn improves the overall
photosynthetic efficiency.105 However, more studies are direly
needed to underpin the molecular mechanism of BC-mediated
improvement in plant photosynthesis under saline conditions.
4.4. Biochar Supply Increases Antioxidant Activities

and Genes Expression to Counter Toxic Effects of
Salinity Stress. Under saline conditions, ROS production is
significantly increased, which damages major molecules and
cellular organelles.25 However, the application BC reduces
ROS production by increasing antioxidant activities.2525,40

Biochar application increases the activity of AsA- glutathione
(GSH), which prevents ROS accumulations and protect plants
events plants from the salinity induced toxic effects.88

Nonetheless, sometimes BC can reduce the antioxidant
activities, possibly due to less Na+ accumulation and BC-
mediated reduction in salinity-induced oxidative damage.93,101

Biochar application improves the AsA and GSH concentration
and improves the capacity of plants to detoxify the ROS.110

The increase in ascorbate peroxidase (APX), monodehydroas-
corbate reductase (MDHAR), and glutathione reductase (GR)
activities was also reported by different authors following the
addition of BC application in plants growing under saline
conditions.63,83,107 In another study, Sofy and his colleagues
found that BC application increased catalase (CAT),
peroxidase (POD), and SOD activities while Hasanuzzaman
and his coauthors found that BC amendments improved the
Gly-1 and Gly-II activities, therefore reducing the toxic effects
of salinity.83,107 Most of these studies were conducted at lab
conditions under controlled conditions; therefore, more
studies are direly needed at field conditions to determine the
impact of BC on plant antioxidant activities under saline

conditions. It has been reported that biochar application
reduced hydrogen peroxide (H2O2) and malondialdehyde
(MDA) through increasing SOD and CAT.111 Biochar
supplementation also increases nonenzymatic antioxidant
activities and proline synthesis, which help the plant to cope
with salinity-induced osmotic stress.111

Gene expression plays an important role in countering the
toxic effects of salinity. The application of BC improves the up-
regulation of water transporter genes, which in turn increases
biomass production and carbon assimilation in plants.88

Aquaporins play an imperative role in water uptake,112 and it
is documented that combined use of BC and selenium
nanoparticles up-regulates aquaporin genes, which improves
water uptake and thus prevents the toxic effects of salinity.113

Ion transport proteins like NHX1, HKT1, and SOS1 play a key
role against salinity stress, and application of BC can up-
regulate these genes to counter the salt stress.88

4.5. Biochar Improves Hormone and Osmolyte
Accumulation to Counter Toxic Impacts of Salinity.
Osmolyte accumulation plays an imperative role against the
salinity stress.114 The application of BC increases the
concentration of diverse osmolytes (Table 4, Figure 2), like
proline and glycine betaine, and secondary metabolites, which
strengthens the antioxidant defense systems and protects the
plants from the toxic effects of salinity stress.88 Abscisic acid
synthesis plays an imperative role against stress tolerance, and
application of BC decreases the concentration of ABA, which
in turn improves the plant performance under saline
conditions.115 The improved soil properties following BC
application decrease the sensitivity of plant roots to osmotic
stress owing to reduced Na+ accumulation. The addition of BC
under saline conditions decreases the uptake of Na+, which in
turn reduces the synthesis of ABA and thus brings favorable
changes in plant function.101 Proline is one of the most
important osmolytes that plays a crucial role in plants in
salinity tolerance. The application of BC has been reported to
increase the accumulation of proline and GB, which ensures
better antioxidant activities and therefore protects the plants
from salinity-induced oxidative damages.102 Nonetheless, a few
authors found that BC application reduced the accumulation of
osmolytes owing to the reduction in Na+ uptake and salinity-
induced oxidative damages.105 Other authors also found that
BC application decreases ABA and SA concentration by
decreasing Na+ uptake105 while BC increases the synthesis of
indole acetic acid (IAA), which triggers plant growth in the
conditions of soil salinity.116 Biochar application reduces ABA
synthesis in plants under saline conditions ,which improves
water uptake and maintains better turgor pressure.105 These
are the limited studies available about the effect of BC on
osmolyte accumulation under saline conditions. Therefore,

Table 4. Effect of Different Biochars on Osmolyte Accumulation, Oxidative Stress Markers, And Antioxidant Activities under
Salinity Stress

salinity stress
plant
species

biochar
application major effects refs

0.2 mol L−1 tomato 5% BC application increased the seedling growth and concentration of ABA in xylem sap 69
12 dS m−1 sorghum 10% BC addition increased CAT, POD, and SOD activities, which counter the toxic effects and ROS 117
2.3 dS m−1 tomato 5% BC supplementation increased proline synthesis and total yield 118
150 mM wheat 4.5% BC application improve composition of fatty acid, SOD and POD activity, and uptake of NPK 92
3000 mg kg−1 fava bean 15 t ha−1 BC supply decreased MDA, EL, and H2O2 production and increased CAT, POD, GR, and SOD

activities
2.55 dS m−1 wheat 5% BC application reduced MDA and H2O2 production and increased CAT, POD, and SOD activities 26
150 mM maize 5% BC increased proline synthesis and activity of POD to counter the toxic effects of salinity 119
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transcriptomics, genomics, and metabolomics studies are direly
needed to explore the effect of BC on osmolye and hormone
synthesis and their crosstalk under saline conditions.
4.6. Biochar Brings Favorable Changes in Physi-

ochemical and Biological Properties to Counter Toxic
Effects of Salinity. In recent times, BC has received a
significant attention across the globe as a soil ameliorator to
mitigate the toxic effects of abiotic stresses. The application of
BC improves soil physiochemical and biological properties,
which can counter the toxic effects of salinity stress.120 Biochar
possesses a higher surface area that adsorbs the toxic ions
including Na+ and Cl−, which thereby reduces the toxic effects
of salinity.121 Biochar also decreases the uptake of Na+, which
in turn increases the uptake of Ca, Fe, K, and P and ensures
better plant growth under saline conditions.122 Further, BC
also decreases soil EC, sodium exchange, and the sodium
absorption ratio, which increases the nutrient uptake and
prevents the toxic effects of salinity on soil and plants.123,124

Biochar has a porous structure and large surface area that is
favorable for NH4+ adsorption, and it also reduces the
denitrification losses therefore, ensuring better nutrient use
efficiency (NUE) under saline conditions.125 The application
BC has also been reported to decrease NH3 volatilization
losses, which is also a major reason for the BC-mediated
increase in NUE under saline conditions.126,127 BC application
substantially increases the nutrient uptake, soil organic carbon
level, and microbial activities, which are conducive to plant
growth.128 Nonetheless, this positive effect of BC largely
depends on the type of BC, the application rate, soil
conditions, and the feedstock used to prepare the BC.129

Under saline conditions, soil structure is disturbed; however,
BC possesses an excellent potential, and its application under
saline soils improves soil structure by improving soil
aggregation stability.130 Calcium plays an important role in
improving the stability of soil aggregates. The application of
BC significantly increases the soil Ca concentration, which
improves the soil aggregate stability131,132 and ensures better
availability of nutrients under saline conditions.93 Soil organic
carbon (SOC) is an important indicator of soil fertility,133 and
the application of BC has been reported to increase the SOC,
which decreases sodium absorption ration (SAR) and
exchangeable sodium percentage (ESP) that in turn reduces
the toxic effects of salinity.132

Salinity stress imposes negative effects on soil enzymatic and
microbial activities.134 The application BC improves soil
microbial and enzymatic activities by increasing the SOC
and absorption of nutrients.135 Biochar-mediated increase in
soil microbial activity under saline conditions is also linked
with improved soil aggregate stability, nutrient release, and
stimulated increase in root exudation and soil carbon
sequestration.136 Nonetheless, some authors found that BC
application had no impact on microbial biomass carbon
(MBC) and even that BC application decreases MBC,132

which could be attributed to BC properties, BC type, and
conditions of BC preparation.

Mehdizadeh et al.77 tested the impacts of Morus alba biochar
under saline soils and found that the application of BC (2%)
increased soil pH and soil EC, possibly owing to higher NaCl
absorption in soils. These authors also noted a significant
increase in soil carbon and N, K, Na, and Cl concentration
following the application of BC. He et al.80 also noted an
increase in SOC, NPK, and Mg concentration, and they also
found that BC triggers the polymerization of organic molecules

by holding back or conserving organic matter compounds;
thus, it can increase soil productivity. In a long-term field
experiment, it was found that BC application increased CEC,
NPK, Ca, and Mg uptake which mitigated the adverse impacts
of salinity on plants.137

Generally, BC has a large surface, which increases the supply
of carbon and nutrients to microbes.138 For instance, Tang et
al.139 found the positive impact of BC on microbial activities
through an increase in SOC. Biochar-mediated increase in
microbial activity plays an important in carbon and phosphorus
cycles, which can decrease the toxic effects of salinity-induced
oxidative damage on plants.140 In another study, Lu et al.143

tested the impact of wheat straw BC on soil carbon and
enzymatic activities and found that BC substantially increased
urease, invertase, and phosphatase activity in salt-affected soils.
Nonetheless, soil microbial biomass may respond differently to
BC application, and few authors found an increase in microbial
biomass,141 while other authors found no changes in microbial
biomass in salt affected soils after BC addition.142

The application of BC to saline soils also appreciably
increases the abundance of dominant bacterial groups like
Proteobacteria, Alphaproteobacteria, Rubrobacteridae, Betapro-
teobacteria, Gammaproteobacteria, and Deltaproteobacteria.144

BC application has been found to increase the microbial
population by changing the soil electrical conductivity.145 Soil
pH is an important soil parameter that directly affects the
availability of carbon and nitrogen to plants.146 Shi et al.147

found the beneficial impact of Actinobacteria in improving soil
productivity and plant health, which can improve salt
tolerance. BC application also improved the abundance and
population of soil fungi, which can help to counter the toxic
effects of salinity.144 Tang et al.139 observed that the
abundance Proteobacteria was higher in nutrient rice soils
and was further increased after the application of BC. Further,
an increase in catalase, urease, and phosphatase activities in
saline was linked with improved microbial community
composition.147 Biochar addition also increases the abundance
of ammonia oxidizing microbes indicating its potential to
improve nitrification intensity in rice.148 Wu et al.149 found a
significant increase in community diversity of bacteria, which
can play a significant role in N and carbon cycles in soils.
4.7. Biochar Mitigates Accumulation of Toxic Ions

and Improves Soil Enzymatic Activities to Counter
Salinity Toxicity. The concentration of toxic ions (Na+ and
Cl−) is significantly increased in saline soils, which decreases
the uptake of important nutrients. Nonetheless, BC reduces
the uptake of toxic ions, therefore improving the uptake of
essential nutrients in plants under saline soils. For example, the
application BC (16 Mg ha−1) appreciably increased the
exchange K by 44%.150 In salt-affected soils, the availability
of P is significantly decreases; however, the supply of BC to salt
affected soils increases the P availability owing to the inherent
capacity of BC to increase P availability. BC application also
increases the growth of P-solubilizing bacteria, which in turn
increases the P uptake by plants.151 In saline soils, BC also
traps excessive Na, releases essential nutrients (K, Ca, Mg, and
N), and decreases osmotic stress; however, it largely depends
on BC type, the characteristics of BC, and the conditions of
BC preparation.152,153 Biochar also has many benefits for saline
soils, as the application of BC reduces ESP and SAR, which
promotes plant growth.154 The application of BC reduces soil
ESP by different mechanisms. For instance, BC application
increases soil Ca, which replaces Na in soil solution, and it also
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increases surface charge density, which increases the
concentration of Ca and thus reduces the availability of Na
in salt-affected soils.123 Biochar application also improves soil
porosity, which facilitates Na+ leaching and reduces soil SAR
and ESP. BC also increases the CO2 partial pressure in the
rhizosphere that mobilizes the Ca from the calcareous soils,
which in turn replaces the Na from exchangeable sites.155 The
application of BC also increases the release of Ca, K, and Mg
and decreases Na concentration, which favors photosynthetic
efficacy and improves the plant growth and develop-
ment.156−158 BC application increased CEC, which increased
nutrient retention.159,160 A three-year field study on saline soils
showed that BC application to barley plants improved
nutrients availability, water holding capacity, and SOC.161

Biochar is an imperative soil ameliorative that improves the
activities of various soil enzymes like docosahexaenoic acid
(DHA), alkaline phosphatase (ALP), and catalase (CAT),
which can curb the toxic effects of salinity on plants.162 The
application of BC also increases the activities of soil invertase,
urease, and phosphatase, which can counter the toxic effects of
salinity.163 The study findings of Song et al.164 showed that BC
application increased the sucrose activities by 151%, while
Abou Jaoude et al.165 found that BC application significantly
increased the levels of invertase, urease, and dehydrogenase
under saline conditions. Other authors also found that BC
applied to saline soils significantly increased the soil CAT,
urease, phosphatase, and sucrose activities.166,167,112,168

4.8. Biochar Improves Yield and Quality under
Salinity Stress. The application of BC has been reported to
increase plant growth and development under saline
conditions.169,170 Biochar triggers the plant height, seed
germination, root growth, and subsequently seedling growth
under saline soils.123 The germination, plant growth and
biomass productivity in Brassica chinensis under salty soil was
improved after BC application owing to improved soil
physiochemical and biological properties.64 Chlorophyll
concentration is directly related to photosynthesis, and the
application of BC has been reported to substantially increase
chlorophyll synthesis.171−173

Salinity stress significantly reduces plant growth and
development and leads to a considerable reduction in plant
performance.100 The application of BC has been reported to
increase the growth and biomass yield of different crops,
including rice, maize, tomato, and wheat, growing under salt
stress.93,174 The study findings of different authors showed that
BC-mediated increase in plant growth and yield is linked with
improved soil physiochemical and biological characteristics,
improved CEC, nutrient and water uptake, soil organic matter,
and a reduction in Na+ uptake.96,100 Further, BC also improves
chlorophyll synthesis and antioxidant activities and regulates
the production of assimilates, which ensures better plant
growth under saline conditions.88 The application of BC has
been found to increase nutrient availability and soil pH, and it
also reduces SAR and ESP and increases SOC and microbial
activities, which induce favorable impacts on plant growth and
yield.89 Further, the application of BC also improves the final
quality. For instance, BC application significantly increase the
oil and protein concentration in edible plant parts by
increasing nutrient uptake and decreasing the toxic effects of
salinity.105,175 Salt stress also modify the concentration of oil;
however, BC application appreciably improved plant perform-
ance by increasing the concentration of stearic acid, oleic acid,
and linoleic acid under saline conditions.8

5. INTEGRATED USE OF BIOCHAR AND OTHER
AMENDMENT TO MITIGATE SALINITY STRESS

The application of BC significantly mitigates the adverse
impacts of salinity stress; however, the efficiency of BC can be
further increased by using BC with other amendments. For
instance, BC application with compost significantly can
increase the salt tolerance by increasing the SPAD value,
membrane stability, RWC, and chlorophyll synthesis.42 BC
combined with vermin compost significantly also improved
stomata conductance, chlorophyll synthesis, electron transport,
and root activities and minimized the oxidative damage.164 The
combined use of BC with nano-Si and K effectively improved
the physiological traits, nutrient uptake, antioxidant activities,
proline synthesis, NPK protein concentration, carbohydrates,
and tuber yield of potatoes growing under saline conditions.106

Under saline conditions, the combined application of humic
acid and BC can enhance the growth, antioxidant activities,
and osmolyte accumulation of Solanum melongena.176 The
application of BC, compost, and HA has been reported to
increase nutrient availability and chlorophyll synthesis in salt-
affected barley plants.177 Biochar-mediated increase in the
synthesis of phyto-hormones has been reported to decrease in
Na+ uptak,e178 and coapplication of BC with hormones
alleviated the negative impacts of salinity by reducing Na+
uptake and ABA synthesis and improving synthesis of IAA and
cytokinins.101 Brassica juncea seeds treated with salicylic acid
(10 μmol/L) following BC application showed a reduction in
salinity stress through increased antioxidant activities.179 In
maize and wheat coapplication of BC and phosphorus
significantly increases leaf gas exchange, osmolyte accumu-
lation, antioxidant activities, and α-amylase activity.180

Melatonin is an important hormone that can improve the
photosynthetic rate and chlorophyll synthesis and reduce
salinity-induced damage by increasing antioxidant activities.181

Foliar-applied melatonin with BC also improved the plant
height, leaf size, pods, and seed production.182 Further, the
combined application of ascorbic acid and BC to sorghum
seedlings improved the salt tolerance by stimulating the
antioxidant activities.183 Some authors found that Eupatorium
adenophorum cocomposted BC application improved maize
biomass under saline soils,184 and combined application of BC,
compost and AMF also resulted in improved growth and
grassland restoration.185 In other studies, it was reported that
BC (2%) application with Funneliformis mosseae and
Pseudomonas improved the root morphology, root coloniza-
tion, nutrient uptake, and grain production under saline soils.
On the other hand, BC combined with compost and
Thiobacillus thiooxidans increased the availability and trans-
location of nutrients from soil to plants.186 Moreover, the
combined use of BC and bacteria (Burkholderia phytof irmans
and Enterobacter) also showed promising results and mitigated
the toxic impacts of salinity by reducing Na+ uptake, increasing
nutrient homeostasis,100,119 and stimulating the proline
synthesis and antioxidant activities.68

6. NEGATIVE EFFECTS OF BIOCHAR IN PLANTS
GROWING UNDER SALT STRESS

In the literature, limited studies are available on mechanisms
lying behind the negative impacts of BC application in salt-
affected soils. Biochar can induce toxic effects on plants by
releasing toxic compounds,160 damaging the root system
through an increase in the release of nanoparticles and free
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radicals from BC.68 Biochar can also release toxic substances
(heavy metals, dioxins, and polycyclic hydrocarbons) that can
cause toxicity to seeds, plant roots, and soil microbes.187

Biochar applied to saline soils can also break into fine particles
by the action of tillage, weathering, and biological activities,
which can also impair the plant growth and development.188

The presence of PFRs in BC has been reported to pose
negative impacts on plants, microbes, and animals by causing
oxidative damage and destabilizing the cellular membranes.82

The negative impacts of BC on plant growth in saline soils are
also linked with the deterioration of soil physiochemical
properties. For example, BC with higher alkaline contents
(carbonates abnd alkaline earth metals) can increase the soil
pH and EC, which can impose negative impacts on plant
growth. Therefore, BC with a higher ash concentration
produced from manure and sewage sludge cannot be a suitable
option to ameliorate salt-affected soils. Nonetheless, BC with
higher Ca2+ and Mg2+ content often has higher CEC, which
can be exchanged with Na+ in soil colloids.82 Therefore,
balancing BC salinity and its Ca2+ and Mg2+ concentration for
achieving salt reduction needs further verification. Additionally,
an increase in soil pH and salinity by BC is also linked with
experiment conditions. For instance, at the lab scale, BC
removes Na+ by absorption and cation exchange due to the
absence of water leaching during the study period; however,
Na+ still remains in soil due to absence of leaching. Therefore,
to alleviate the negative impacts BC salinity on salt-affected
soils, the combination of BC and modern irrigation practices
like drip, surface, and subsurface irrigation can be an important
research direction. The preparation of higher water retention
BC with higher surface hydrophilic functional groups and
porosity can play an important role in mitigating adverse
impacts of salinity.189 Additionally, hydrochars and nutrient
rich materials can be combined with carbonaceous materials
with low ash contents to overcome the limitations of BC in
salt-affected soils.190,191

7. LIMITATIONS OF USING BIOCHAR
Biochar is a major source of carbon sink and can also improve
the soil properties; however, it has many limitations.125

Biochar application can cause soil compaction under
inappropriate conditions; nonetheless, this problem can be
solved by adopting proper management practices, including
contour engineering and slop design. Biochar also contains
different heavy metals, metalloids, and dioxins that can have
harmful impacts on soils and plant health.192 Therefore, the
selection of better quality feedstock and a low pyrolysis
temperature (less than 500 °C) can reduce this contamination
problem.193 Further, precise health and safety measures are
needed for BC production, transportation, and storage.95 The
pore size of BC can also alter soil properties like aeration,
habitat, and water retention. The carbon storage capacity of
BC is not fully understood yet; therefore, it is necessary to
study the carbon storage capacity of BC, which also depends
on social, environmental, and economic factors.147 The large
BC processing plants have the capacity to process 23 000 tons
of biomass per day, thus a higher capacity is needed to handle,
transport, and store the biomass. Further, the hard cellulosic
structure of feedstock can also result in higher production
costs.148,194 If BC is not prepared according to environmental
guidelines, then it can cause different problems, including
deforestation, health problems, and greenhouse gas emissions.
The presence of volatile compounds can also pose problems

for seed germination, microbes, and crop productivity.195

Biochar also absorbs pesticides and herbicides and leads to a
reduction in efficacy. In pyrolysis, phytotoxic and carcinogenic
compounds are released and heavy metals are transferred into
less toxic forms; however, this depends on the feedstock type
and pyrolysis conditions.196 The presence of PFR in BC
induced negative impacts on plants, animals, and microbes by
destabilizing membranes and causing oxidative damage.197,198

Likewise, the presence of alkaline components in BC can
increase pH and EC, which have negative impacts on plant
growth.199,200.201 Further, nutrients from BC can also lost
during pyrolysis,202 and the use of BC can also lead to an
increase in greenhouse gas emissions. The ash present in BC is
also a source of dust particles, and they can cause respiratory
diseases if not properly managed.203 In summary, these the
major limitation of using BC on salt affected soils; however,
these limitations can be tackled by using appropriating
measures.

8. CONCLUSION AND FUTURE PROSPECTS
Salinity stress is a serious abiotic stress across the globe, and it
can significantly reduce the crop productivity by disturbing
plant physiological and molecular processes. Salinity-induced
ionic toxicity and osmotic and oxidative stresses negatively
affect plant performance under saline conditions. Nonetheless,
the application of BC improves plant growth under saline
conditions through substantial increase in membrane stability,
nutrient and water uptake, osmolyte and hormone accumu-
lation, antioxidant activities, and soil physiochemical and
biological properties. Globally, efforts are being made to
improve the role BC in plants to mitigate adverse impacts of
salinity, however, many questions need to be answered.

• The role of BC in the mechanism of seed germination is
poorly studied; therefore, it is imperative to determine
how BC affect the germination mechanisms under saline
conditions.

• The role of BC in nutrient uptake is less studied under
saline conditions; thus, it is necessary to explore how BC
affects nutrient uptakes by affecting nutrient signaling
and nutrient channels under salinity toxicity.

• The role of BC in osmolyte and hormone accumulation
is also less studied; therefore, it more in-depth studies
must be performed on this aspect for the promising
future of BC as soil amendment. There is dire need to
conduct studies to determine the impact of osmolyte
synthesis and hormone crosstalk with each other under
saline soils.

• Limited studies are available about the combined use of
BC and different amendments to mitigate salinity
toxicity. Thus, BC can be combined with compost,
hormones, osmolytes, and microbes to mitigate the toxic
effects of salinity. The use of biochar and bacteria could
be an ecofriendly approach to mitigate the adverse
impacts of salinity.

• The physiological mechanism of BC-induced salinity
tolerance are well explored. However, more tran-
scriptomics, metabolomics, and genomic studies are
needed to explore how BC can mitigate the toxic effects
of salinity stress in plants. In the literature, most of the
studies are conducted in indoor conditions under
controlled conditions; therefore, outdoor field studies
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are sorely needed to open a new vision into the present
knowledge of BC to mediate salt tolerance in plants.

• The impact of BC on soil microbial community
structure and abundance must also be explored for
remediating salt-affected soils.

• To improve the use of BC from different feedstock on
salt-affected soils, it is mandatory to conduct studies to
develop the relation among BC structure, properties, and
application. BC application effectively mitigates the
adverse impacts of salinity; however, different functional
group biochar like nanocomposites, nutrient rice BC,
microbial-loaded BC, and BC modified with acidic
agents can provide a new avenue to remediate salt-
affected soils.

• The inherent toxic substances present in the BC are also
a major challenge in remediating salt-affected soils.
Thus, studies must be conducted to determine the
potential toxicity of BC in salt-affected soils.

• For the practical application of BC, it is important to
reduce production and application costs. Therefore,
appropriate steps should be implemented to increase the
engagement from various industries to promote the
commercialization and marketing of biochars.
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