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Abstract

Excessive brain iron negatively affects working memory and related processes but the impact of 

cortical iron on task-relevant, cortical brain networks is unknown. We hypothesized that high 

cortical iron concentration may disrupt functional circuitry within cortical networks supporting 

working memory performance. Fifty-five healthy older adults completed an N-Back working 

memory paradigm while functional magnetic resonance imaging (fMRI) was performed. 

Participants also underwent quantitative susceptibility mapping (QSM) imaging for assessment of 

non-heme brain iron concentration. Additionally, pseudo continuous arterial spin labeling scans 

were obtained to control for potential contributions of cerebral blood volume and structural brain 

images were used to control for contributions of brain volume. Task performance was positively 

correlated with strength of task-based functional connectivity (tFC) between brain regions of the 

frontoparietal working memory network. However, higher cortical iron concentration was 

associated with lower tFC within this frontoparietal network and with poorer working memory 

performance after controlling for both cerebral blood flow and brain volume Our results suggest 
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that high cortical iron concentration disrupts communication within frontoparietal networks 

supporting working memory and is associated with reduced working memory performance in 

older adults.
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1. Introduction

Non-heme iron is crucial for many cellular processes including adenosine triphosphate 

(ATP) generation in mitochondria, neurotransmitter synthesis and myelin generation (Mills 

et al., 2010; Todorich et al., 2009; Raz and Daugherty 2018). However, non-heme iron is a 

potent oxidizer that can contribute to oxidative stress, interfere with neurotransmission and 

lead to cell death (Zecca et al., 2004; Moos et al., 2007; Ke and Qian, 2007; Becerril-Ortega 

et al., 2014; Hare and Double, 2016; Matak et al., 2016). Thus, non-heme iron is typically 

sequestered in iron storage complexes such as ferritin, which release it in a tightly regulated 

manner (Hentze, Muckenthaler and Andrews, 2004; Moos et al., 2007).

Normal aging perturbs the iron sequestration process, leading to non-heme iron 

accumulation outside of storage complexes (Lauffer, 1992; Wayne Martin et al., 1998; Zecca 

et al., 2004). Age related increases in non-heme brain iron have been repeatedly linked with 

poorer working memory performance (cross-sectional: Bartzokis et al., 2011; Darki et al., 

2016; longitudinal: Daugherty, Haacke and Raz, 2015) as well as declines in other cognitive 

and motor domains (cross-sectional: Sullivan et al., 2009; Penke et al., 2012; Rodrigue et al., 

2012; Ayton et al., 2017). Further, longitudinal brain iron accumulation has also been linked 

with corresponding declines in brain structural volumes. A specific pattern that has been 

reported in recent studies has been that age-related iron accumulation in the basal ganglia 

and hippocampus predict subsequent atrophy in these structures and corresponding cognitive 

declines (e.g. Daugherty, Haacke and Raz, 2015; Daugherty and Raz, 2016).

Interestingly, relationships between regional brain iron concentrations and performance (e.g. 

general cognitive ability, working memory, episodic memory and motor performance) have 

been reported even when no relationships are detected between iron and regional brain 

volumes (Sullivan et al., 2009; Penke et al., 2012; Kim et al., 2017; Van Bergen et al., 2018; 

Acosta-Cabronero et al., 2018). Together, this pattern of results suggests that some iron-

mediated cognitive alterations may relate to disruption of functional brain systems that are 

not directly related to changes in brain volume. Consistent with this possibility, results from 

recent studies have shown that striatal iron concentration is negatively associated with 

BOLD magnitude (Kalpouzos et al., 2017), BOLD modulation (Rodrigue et al., 2020) and 

reduced resting-state functional coherence between striatal networks and the rest of the brain 

(Salami et al., 2018) but not with corresponding structural volume (both Kalpouzos et al., 

2017; Salami et al., 2018).

However, the impact of cortical iron on brain networks directly supporting cognitive task 

performance remains unknown. Based on previous literature focused on striatal iron content 
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(Rodrigue et al., 2020; Salami et al., 2018), we hypothesized that excessive brain iron may 

disrupt large-scale functional networks directly supporting task performance in older adults. 

More specifically, we would expect excessive iron to disrupt functional connectivity within 

task-relevant networks because (1) excessive iron is known to interfere with proper 

neurotransmission (Zecca et al., 2004; Becerril-Ortega et al., 2014), which is required to 

support functional connectivity of large scale brain networks (Duncan et al., 2013; 

Kapogiannis et al., 2013) and (2) age-related cognitive declines tend to progress along 

connected brain networks (Greicius and Kimmel, 2012; Damoiseaux et al., 2012; 

Damoiseaux 2017).

Here, we explored this possibility by evaluating the impact of cortical iron concentration on 

neighboring cortical functional-connectivity brain networks directly supporting working 

memory performance in older adults. The cognitive domain of working memory was 

selected due to the established negative association between brain iron concentration and 

working memory performance (Bartzokis et al., 2011; Daugherty, Haacke and Raz, 2015; 

Darki et al., 2016). Working memory is also of functional relevance in that it declines 

significantly with aging and is considered a contributing source of other age-related 

cognitive deficits including long-term memory, decision making and problem solving (Zacks 

et al., 2000; Park and Hedden 2001; Reuter-Lorenz and Sylvester, 2005; Glisky, 2007; 

Blacker et al., 2007; Belleville et al., 2008).

Participants completed an N-Back working memory paradigm while functional magnetic 

resonance imaging (fMRI) was performed and also received a separate QSM scan (Wang 

and Liu, 2015; Wang et al., 2017) for estimation of non-heme brain iron concentration. QSM 

capitalizes on the fact that paramagnetic iron is the dominant source of magnetic 

susceptibility in gray matter, augmenting the magnetic field in a roughly linear manner and 

yielding iron estimates highly correlated with postmortem tissue iron concentrations 

(Langkammer et al., 2012; Sun et al., 2015; Hametner et al. 2018; Fukunaga et al. 2010). 

Importantly, QSM is sensitive to non-heme iron concentrations in both cortical gray matter 

regions (Fukunaga et al. 2010; Liu et al. 2012; Hametner et al. 2018; Kagerer et al. 2020) 

and subcortical structures (Li et al., 2014; Ayton et al., 2017; Van Bergen et al., 2018).

However, the QSM signal is not specific to non-heme iron. In particular, heme iron (which 

binds oxygen to hemoglobin in blood) can contribute to the QSM signal in its deoxygenated 

state. To control for contributions of cerebral blood volume to the QSM signal, pseudo 

continuous arterial spin labeling (PCASL) scans were obtained and CBF was included as a 

covariate in QSM-related analyses. Further, to control for potential structural contributions 

to our QSM-function relationships, structural volume was added as a covariate in QSM-

analyses.

2. Materials and Methods

2.1. Participants

Fifty-six healthy older adults were recruited for the experiment (31 women, age range 61–86 

years). All participants provided informed consent under a protocol approved by the 

Institutional Review Board of the University of Kentucky. Participants were recruited from 
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an existing longitudinal cohort at the Sanders-Brown Center on Aging (Schmitt et al., 2012) 

and the Lexington community. All participants were cognitively intact based on clinical 

consensus diagnosis and scores from the Uniform Data Set (UDS2) used by US ADCs 

(procedure outlined in Morris et al., 2006) or a score of 26 or higher on the Montreal 

Cognitive Assessment (MoCA; Nasreddine et al., 2005). The UDS2 includes a 

comprehensive battery of neuropsychological tests assessing global cognition, memory 

encoding, memory retrieval, semantic memory, working memory, attention, executive 

function, processing speed, and verbal retrieval.

Exclusion criteria were significant head injury (defined as loss of consciousness for more 

than five minutes), heart disease, neurological or psychiatric disorders, claustrophobia, 

pacemakers, the presence of metal fragments or any metal implants that are incompatible 

with MRI, diseases affecting the blood (anemia, kidney/heart disease etc.) or significant 

brain abnormalities detected during imaging. A neuroradiologist (F.D.R.) evaluated the T1W 

and FLAIR images for evidence of stroke or other abnormalities. One participant was 

excluded from the sample due to the presence of an old stroke within the right motor cortex. 

Detailed characteristics of the final group of participants are shown in Table 1.

Table 1. Group demographics and mean cognitive measures. The table lists the total number 

of participants, mean (± sd) for age, male/female distribution, years of education, Mini-

Mental State Exam (MMSE) and Montreal Cognitive Assessment (MoCA) scores.

2.2. Task Design

Participants performed a visual working memory paradigm (N-Back task; adapted from 

Hakun and Johnson, 2017), comprised of three task conditions: a control condition 

(Compare), a 1-Back condition and a 2-Back condition within the context of a blocked 

design (Fig. 1). Task stimuli consisted of eight consonant letters, presented in black, at the 

center of the display, against a white background. For each condition, stimulus/trial duration 

was 2 s and trials were separated by 500 ms of fixation.

The experiment was divided into two 240 s fMRI runs. Each run consisted of three task 

blocks (one of each condition) with fifteen trials each (30 trials per condition total) and four 

fixation blocks (visual baseline). Each task block lasted 40 s and each fixation block lasted 

30 s. During the Compare condition, participants indicated whether two (randomly selected) 

letters presented side-by-side were the same or different via button presses. In seven out of 

the fifteen trials of the Compare condition, the letters matched. During the 1-Back condition, 

participants were asked to judge whether the letter on the current trial matches the one 

presented immediately prior to the present letter. During the 2-Back condition, participants 

decided if the letter on the current trial matches with the one presented two items prior to the 

present letter. For the 1-Back and 2-Back conditions, four out of the fifteen trials of this task 

(randomly selected) comprised a match. Responses were made using MRI compatible 

response buttons (one in each hand). Participants were asked to press the right button for 

“same” judgments and press the left button for “different” judgments. Participants were 

asked to respond as quickly and accurately as possible and completed a brief practice 

session on the N-Back task prior to entering the MRI scanner.
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The experiment, implemented in E-prime 3.0, was run on a Windows-10 based PC. Stimuli 

were presented via an analog projector on a 200 × 100 mm2 screen (visual angle: 20° 

horizontal x 10° vertical), mounted 550 mm away from the participants’ eyes and situated at 

the bore opening of the MRI scanner. The experiment was presented at a resolution of 1280 

× 1024 pixels and participants viewed the projection screen via a mirror attached to the head 

coil of the scanner.

2.3. Behavioral Data Analyses

Behavioral data collected during the scans were first imported to Excel in order to calculate 

D-prime (Stanislaw and Todorov, 1999) for each of the N-Back task conditions. D-prime 

was log transformed in all analyses involving MRI-based measures under the assumption 

that large differences in D-prime are typically associated with smaller differences in MRI-

based measures. Log D-prime was then used in SPSS to conduct subsequent ANOVAs and 

linear regression analyses in conjunction with the QSM and tFC measures of interest.

2.4. Imaging Protocol

Participants were scanned with a Siemens 3T PRISMA Fit scanner (software ver. E11C), 

using a 64-channel head-coil, at the University of Kentucky Magnetic Resonance Imaging 

and Spectroscopy Center (MRISC). The following sequences were collected: 1) a high 

resolution, multi-echo, T1-weighted anatomical image (MEMPR); 2) two fMRI T2* runs, 3) 

double-echo gradient echo field map images for spatial distortion correction of the fMRI 

data; 4) a high-resolution, flow compensated, multi-echo, 3D spoiled GRE sequence for 

Quantitative Susceptibility Mapping (QSM); and 5) a Pseudo Continuous Arterial Spin 

Labelling (PCASL) perfusion image (3D-GRASE acquisition with background suppression). 

Several other sequences were collected during the scanning session related to other scientific 

questions and are not discussed further here.

The MEMPR sequence had four echoes [repetition time (TR) = 2530 ms; first echo time 

(TE1) = 1.69 ms echo time spacing (ΔTE) = 1.86 ms, flip angle (FA) = 7°] and covered the 

entire brain [176 slices, field of view = 256 mm, parallel imaging (GRAPPA), acceleration 

factor = 2, 1 mm isotropic voxels, scan duration = 5.53 min]. The MEMPR sequence was 

used to optimize the Freesurfer cortical segmentation and improve the accuracy of the gray 

matter lobar masks (Van der Kouwe et al., 2008). The two fMRI runs were acquired with an 

echo-planar imaging sequence (EPI; TR = 2500ms, TE = 30ms, flip angle = 90°, resolution 

= 3.0 mm isotropic voxels, 64 × 64 matrix, field of view = 192 mm, 40 axial slices covering 

the whole brain). The GRE field map scan was acquired right after the second EPI sequence 

at the same resolution, field of view and number of axial slices as the EPI sequences. A 

high-resolution, flow compensated, multi-echo, 3D spoiled GRE sequence in the sagittal 

plane with eight echoes (TR/TE1/ΔTE/FA = 24ms/2.98ms/2.53ms/15°) was acquired and 

used to create QSM images. The entire brain was covered [acquisition matrix = 224 × 224 × 

144, parallel imaging (GRAPPA) acceleration = 2, 1.2 mm isotropic voxels and scan 

duration = 6.18 min]. The PCASL sequence parameters were as follows: 36 slices, 

resolution = 3.4 × 3.4 × 4.0 mm, FOV = 220 mm, TR = 5070 ms, inflow time = 4.525 s, 

labelling duration = 2.025 s, nine tagged-untagged pairs and a single T1-corrected, M0 

calibration image for CBF quantification and scan duration = 5.09 min].
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2.5. fMRI Pre-processing

Functional scans were first corrected for field inhomogeneity induced geometric distortions 

using FUGUE (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FUGUE) and the GRE field map data in 

FSL (Jenkinson et al., 2012; Smith et al., 2004). Subsequently the functional scans were 

motion corrected and/or despiked where necessary (https://afni.nimh.nih.gov/pub/dist/doc/

program_help/3dDespike.html), co-registered to their contrast-corrected (using Siemens 

Prescan Normalize option) anatomical image (after averaging the four echoes of the 

MEMPR into a single root mean square image), warped to MNI space, using the MNI 

ICBM152, 1mm, 6th generation atlas (Grabner et al., 2006) and a non-linear transformation 

(3dQwarp; https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dQwarp.html), smoothed 

with a Gaussian kernel of 6.0 mm FWHM and mean-based intensity normalized (all 

volumes by the same factor) using AFNI (Cox 1996). In addition, linear and non-linear 

trends (where necessary) were removed during pre-processing of the data and motion 

parameters were regressed separately for each run from all analyses. Lastly, all TR pairs in 

which the Euclidean Norm of the motion derivative exceeded 0.3 (the AFNI default for 

adults) were censored and removed from the analyses.

2.6. fMRI Analyses

Group-level, whole brain contrasts between N-back conditions were performed to identify 

the broad working memory network and to delineate seeds for subsequent functional 

connectivity analyses. The Group level analysis of the N-Back task was conducted using 

AFNI (Cox 1996) and a linear mixed effects model (3dLME; Chen et al., 2013) with 

participant age added as a covariate. The resulting statistical maps were adjusted for multiple 

comparisons using the false discovery rate approach at qFDR < 0.01. The functional contrast 

of 2-Back/2 + 1-Back/2 > Compare was used to identify brain regions in which activity for 

the N-Back task was greater than that of the visual control task.

2.7. Functional Connectivity Preprocessing

Additional pre-processing steps were performed prior to the functional connectivity analysis, 

according to the basic ANATI-COR regression-based approach (e.g. Jo et al., 2010; Gotts et 

al., 2012; Stoddard et al., 2016). Using each participant’s anatomical scan (root mean square 

MEMPR), segmented ventricular, gray and white matter masks were created (using SPM12; 

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/), for each participant. All masks were 

resampled to the EPI voxel resolution, and ventricle and white matter masks were eroded by 

one voxel (or by two voxels if we observed task-like components in the first three principal 

components of the PCA analysis described below) to prevent partial volume effects with 

gray matter.

Separate nuisance time series were then extracted for ventricles and white matter. In total, 

the nuisance regression for each participant comprised 11 regressors of no interest: six 

motion parameters, one average ventricle time series, one localized estimate of white matter 

(averaging within a sphere of radius 20 mm centered on each voxel), and the first three 

principal components of all voxel time series from a combined ventricle and white matter 

mask, calculated after first detrending with AFNI’s second-order polynomial baseline model 

(Stoddard et al., 2016; comparable to aCompCor in Behzadi et al., 2007). After this nuisance 
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model was subtracted from each participant’s EPI data to obtain the cleaned residual time 

series, a task regression was performed to further remove any evoked responses from the 

blocks during the task (using the BLOCK model in AFNI’s 3dDeconvolve). The resulting 

time series were then extracted separately from blocks of different conditions, with blocks of 

the same type concatenated together for purposes of condition comparisons after adjusting 

for the delay in the BOLD signal in each block (6 s after the start of each block to 4 s after 

the end). Estimates of the level of residual global artifacts present in the residual time series 

(which include factors like head motion, cardiac and respiration effects, etc.) were calculated 

per condition for later use as nuisance covariates in group-level analyses using the global 

level of correlation or “GCOR” (e.g. Gotts et al., 2013; Saad et al., 2013), which is the grand 

average correlation of all gray matter voxels with each other.

2.8. Functional Connectivity Analyses

All positively activated regions from the fMRI, group-level functional contrast of 2-Back/2 + 

1-Back/2 > Compare were used as seed regions of interest (ROIs) for the functional 

connectivity analyses which was conducted as follows: first, a numbered mask was created 

using all the seed ROIs with the voxels of each ROI in the mask assigned a different positive 

integer value. Then, using this mask and the cleaned residual time series in all gray matter 

voxels (described in the functional connectivity pre-processing section), we calculated a 

correlation matrix comprised of Pearsons’s r values and their corresponding Fisher-Z 

transform (see 3dNetCorr; Taylor and Saad, 2013) for the set of seed ROIs included in the 

mask, separately for each N-Back task condition (1-Back, 2-Back and Compare). Then for 

each participant, we subtracted the Compare correlation matrix from the average of the N-

Back task matrices, as in the contrast of 2-Back/2 + 1-Back/2 > Compare used in the fMRI 

group level analysis previously. This resulted in a new correlation matrix corresponding to 

the task-based functional connectivity between all seed ROIs. This new matrix was used to 

calculate average task-based functional connectivity (tFC) of each seed ROI with every other 

ROI (one average tFC value per seed ROI per participant), using the Fischer-Z transformed 

values (which yields normally distributed values). These, per seed, average connectivity 

values were then used in subsequent linear regression analyses in SPSS with age, gender and 

GCOR (described in the functional connectivity pre-processing section; see also Gotts et al., 

2013) added as nuisance covariates to these condition comparisons.

2.9. Volumetric Analyses

Freesurfer 6.0 was used with the recon-all option (all available parcellations) to segment 

each participant’s MEMPR scan. Next, lobar cortical gray matter (GM) masks were created 

as recommended by Freesurfer (https://surfer.nmr.mgh.harvard.edu/fswiki/

CorticalParcellation) by joining together the relevant GM (cortical only) segmented 

structures/masks associated with each of the four lobes. Masks of the caudate and putamen 

were also created from the corresponding Freesurfer segmented structures of the basal 

ganglia. The volume (in mm3) of these GM masks and the Freesurfer estimated intracranial 

volume (eICV, in mm3), were recorded for each participant for use in subsequent volumetric 

analyses. The same Freesurfer-derived cortical and subcortical masks used to extract 

volumetric data were also used to extract QSM and CBF values for the analyses described 

below.
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2.10. Quantitative Susceptibility Mapping (QSM) Processing

GRE images were processed in MATLAB using the Morphology Enabled Dipole Inversion 

toolbox (MEDI toolbox, release of 11/06/2017; J. Liu et al., 2012; Liu et al., 2011a, 2011b; 

T. Liu et al., 2012). This approach generates QSM images by inverting an estimate of the 

magnetic field that is structurally consistent with anatomy in order to generate a distribution 

of local magnetic susceptibility values. The required scans for the MEDI analyses are a 

phase image and a skull-stripped (using BET; Smith, 2002) magnitude image obtained 

during the same scan.

The following steps were performed during MEDI: 1) non-linear fitting to the multi-echo 

data was used to estimate the magnetic field inhomogeneity. 2) Phase unwrapping using the 

magnitude image as a guide (Liu et al., 2013). 3) Removal of the background field by 

applying a projection onto the dipole field (see Liu, Khalidov et al., 2011). 4) The remaining 

field was inverted to calculate the quantitative susceptibility map. Lastly 5) local magnetic 

susceptibility within cerebrospinal fluid (CSF; specifically within the lateral ventricles) was 

used to scale the QSM maps such that positive values corresponded to local magnetic 

susceptibility greater than that of CSF and negative values corresponded to local magnetic 

susceptibility less than that of CSF. CSF within the lateral ventricles was selected as the 

reference for the QSM analyses because CSF susceptibility is fairly uniform and does not 

scale with participant demographic variables such as age and gender.

For this reference step, ventricular masks were created separately for each participant as 

follows: The MEMPR was first registered to the GRE magnitude image using the AFNI 

function align_epi_anat.py (https://afni.nimh.nih.gov/pub/dist/doc/program_help/

align_epi_anat.py.html). Then using this magnitude aligned MEMPR scan in conjunction 

with ALVIN (see Kempton et al., 2011; https://sites.google.com/site/mrilateralventricle/) and 

SPM12, lateral ventricle masks were created for each participant. These masks were then 

eroded by one voxel to prevent partial volume effects with the surrounding subcortical gray 

and white matter, resampled to the QSM voxel resolution (1.2 mm isotropic), visually 

inspected for correctness while overlaid on both the GRE magnitude image and the aligned 

MEMPR image, and used in the MEDI toolbox as the CSF reference mask for each 

participant.

2.11. GM Masks for QSM

The same Freesurfer-derived cortical and subcortical GM lobar masks used to extract 

volumetric data were used to extract QSM data. This approach was adopted due to superior 

registration associated with the use of masks generated on each participant’s own individual 

morphology in native space, allowing for extraction of volumetric and QSM values in the 

same cortical structures (Fig. 2). The following steps were used to register participants’ 

Freesurfer derived masks to their QSM images in native space: each participant’s high-

resolution MEMPR was aligned to their high-resolution QSM magnitude image using the 

AFNI align_epi_anat.py function and a local Pearson correlation cost function. The resulting 

transformation matrices were then applied to each participants’ Freesurfer masks using the 

AFNI function 3dAllineate (https://afni.nimh.nih.gov/pub/dist/doc/program_help/

3dAllineate.html) with a nearest neighbor interpolation method. Lastly, each mask was 
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eroded by one voxel to prevent partial volume effects and then resampled to the QSM voxel 

resolution (i.e. from 1 mm isotropic to 1.2 mm isotropic voxels).

Values from QSM maps were then extracted from each of the magnitude-aligned, resampled 

and eroded GM masks for each participant. Only positive QSM values (susceptibility greater 

than that of CSF in the lateral ventricles) were extracted in order to limit QSM signal from 

myelin, associated with bordering white matter and neuropil, which has negative QSM 

values relative to CSF due to the diamagnetic effect of myelin on susceptibility (e.g. 

Wisnieff et al., 2015; Hametner et al., 2018). Our rationale for use of positive voxels only is 

that this study focused on the effects of iron concentration, as opposed to myelin 

concentration, on cognition and functional connectivity.

To confirm that negative voxels in cortical GM represent QSM signal from myelin, we 

performed secondary analyses using white matter (WM) as our reference region (instead of 

CSF). If myelin is the major source of negative QSM signal in our data then voxels in our 

gray matter ROIs (which contained a mixture of positive and negative values when 

referenced to CSF) should only have positive values when referenced to WM. This is exactly 

what we found. With WM as the reference, all voxels in cortical GM were positive 

(Supplementary Figure 1). However, because myelination varies between people, QSM 

values scaled to myelin do not correlate with age in any of the cortical ROIs. Given that iron 

is well-established to track with age, we opted to use CSF as the reference instead of WM 

and exclude negative voxels reflecting high myelin concentrations. Results from voxelwise 

analyses using this approach demonstrated robust QSM signal in cortex, particularly within 

motor cortex, a region known to accumulate significant iron with age (Supplementary Figure 

2).

Normalized lobar QSM values were then created for each participant by dividing the sum of 

positive QSM values from each mask by the total number of voxels of their corresponding 

GM mask, resulting in a final unit measure of iron concentration in parts per billion by mm3 

(ppb/mm3).

2.12. Pseudo Continuous Arterial Spin Labelling (PCASL) processing

PCASL scans were processed in FSL (Jenkinson et al., 2012; Smith et al., 2004) using the 

following procedure: first, all tagged/untagged pairs were motion corrected to the M0 image 

using FSL MCFLIRT. A perfusion image was subsequently created using asl_file (https://

fsl.fmrib.ox.ac.uk/fsl/fslwiki/asl_file/Tutorial) by calculating the mean difference between 

the tagged and untagged pairs. Oxford_asl (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/oxford_asl) 

was then used with a per-voxel calibration method, (using the M0 image) to create a 

calibrated map of resting state tissue perfusion in absolute units (ml/100 g/min).

2.13. GM Masks for PCASL

The same Freesurfer-derived GM masks used to extract volumetric data and QSM data were 

used to extract PCASL data. Each participant’s high-resolution MEMPR was aligned to their 

PCASL M0 image using the AFNI align_epi_anat.py function and a local Pearson 

correlation cost function. The resulting transformation matrices were then applied to each 

participants’ Freesurfer masks using the AFNI function 3dAllineate with a nearest neighbor 
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interpolation method. Lastly, each mask was eroded by one voxel to prevent partial volume 

effects and resampled to the PCASL voxel resolution (i.e. from 1 mm isotropic to 3.4 mm 

isotropic voxels).

Average CBF values from the calibrated perfusion maps were then extracted using each of 

the M0 aligned, resampled and eroded GM masks for each participant. A total cortical CBF 

mask, comprised by the individual lobar cortical masks, was also used to extract total 

cortical CBF values. Similarly a CBF mask comprised by the caudate and putamen masks 

was used to extract total CBF values from these striatal regions. Total cortical, striatal, or 

specific lobar cortical CBF, values were used as covariates in all QSM analyses as 

appropriate to account for differences across participants in cerebral blood volume.

2.14. QSM within the tFC Seed ROIs

To evaluate the concentration of iron within the tFC ROIs the following steps were 

performed: first, each participants’ QSM magnitude-image-aligned MEMPR was warped to 

MNI space, using the MNI ICBM152, 1mm, 6th generation atlas (Grabner et al., 2006) and a 

non-linear transformation (3dQwarp; https://afni.nimh.nih.gov/pub/dist/doc/program_help/

3dQwarp.html). The inverse transformation matrix was then applied to each tFC seed ROI 

from MNI space back to each participant’s native space using the AFNI function 

3dNwarpApply (https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dNwarpApply.html) 

and a nearest neighbor cost function and then resampled to the QSM voxel resolution. 

Values from QSM maps were extracted from each of these resampled tFC ROIs for each 

participant, using only positive QSM values (referred to as pQSM in the results section) in 

order to avoid contamination from myelin signal (as discussed in the QSM lobar ROI 

section).

Normalized QSM tFC seed ROI values were then created by dividing the sum of positive 

QSM values in each participant’s tFC ROI by the total number of voxels in their 

corresponding tFC ROI mask, resulting in a final unit measure of iron concentration in parts 

per billion by mm3 (ppb/mm3). QSM values from these seed ROIs were used in subsequent 

analyses to evaluate differences in iron concentration between the tFC seeds.

2.15. Statistical Analyses

Statistical analyses were performed using SPSS 24 (IBM, Chicago, IL, USA). The main 

analyses involved independent sample t-tests (2-tailed), repeated measures ANOVAs, 

bootstrapped (10,000 samples) univariate and multivariate ANOVAs and linear regression 

models with bias-corrected accelerated (BCa) 95% confidence intervals (CI). In all analyses, 

gender and age were added as covariates. GCOR (described in the functional connectivity 

pre-processing section) was used as an additional covariate in all regression models in which 

tFC measures were used. Cortical/striatal GM CBF values, or specific lobar GM CBF (e.g. 

parietal CBF) values were used as covariates in QSM analyses as appropriate. eICV 

(described in volumetric analysis section) was used as a covariate in all volumetric analyses 

and was also used to create adjusted measures of cortical (total and/or individual lobe) GM 

volumes, using the residualization approach (Sanfilipo et al., 2004). These are expressed as 

in (Buckner et al., 2004; Raz et al., 2004): Voladj = Vol−b(eICV− meICV). Voladj is the eICV 
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adjusted volume, Vol is the original uncorrected volume, b is the slope from the linear 

regression between Vol and eICV, eICV is the freesurfer derived intracranial volume for a 

participant and m eICV is the mean eICV across all participants. All multiple comparisons 

are reported using the Sidak correction.

3. Results

3.1. Behavioral Results from the N-Back Task

A multivariate ANOVA with N-Back task condition as the independent variable and D-prime 

and Reaction Time (RT) as dependent variables was conducted, controlling for age and 

gender. N-Back task condition was a significant main effect for both D-prime (F(2,151) = 

64.7, SE = 0.25, p < 0.0001; partial η2 = 0.46) and RT (F(2,151) = 46.9, SE = 24.3, p < 

0.0001; partial η2 = 0.38. Pair-wise comparisons (Sidak corrected) indicated that all task 

conditions were significantly different from each other on D-prime. Participants’ had the 

highest D-prime score on the Compare condition (average D-prime = 6.12), followed by the 

1-Back (average D-prime = 4.34; p < 0.0001) and then the 2-Back conditions (average D-

prime = 2.19, p < 0.0001). D-prime was also significantly higher for the 1-Back than the 2-

Back condition (p < 0.0001).

For RT, pair-wise comparisons (Sidak corrected) between the N-Back task conditions 

indicated that all three levels (Compare, 1-Back and 2-Back) significantly differed from each 

other. RTs were shortest during the Compare condition (771.35 ms) followed by the 1-Back 

(900.33 ms; p < 0.0001) and then the 2-Back conditions (1104.4 ms; p < 0.0001). 

Additionally, RTs were shorter during the 1-Back than the 2-Back condition (p < 0.0001).

3.2. fMRI N-Back Activation Results

Whole-brain activations associated with the 1-Back and 2-Back conditions were contrasted 

with activations during the Compare condition (1-Back/2 + 2-Back/2 > Compare) in order to 

localize the overall network of brain regions supporting visual working memory. Activation 

maps were thresholded at qFDR < 0.01 and all positively active regions (activity stronger for 

the N-Back than the Compare condition) from this contrast are shown in Fig. 3 and listed on 

Table 2. The center of mass coordinates from all the positively active regions (Table 2) were 

used as inputs to the Neurosynth database (Yarkoni et al., 2011) and these overlapped 

substantially with the core working memory network identified in previous studies from a 

meta-analysis sample of 1,091 working memory related articles included in the database. 

These positive, task-relevant activations included bilateral portions of the dorsolateral 

prefrontal cortex (DLPFC; Neurosynth meta-analytic coactivation r = 0.44), ventrolateral 

prefrontal cortex (VLPFC; Neurosynth meta-analytic coactivation r = 0.4), anterior cingulate 

cortex (ACC; Neurosynth meta-analytic coactivation r = 0.52) and inferior parietal lobule 

(IPL; Neurosynth meta-analytic coactivation r = 0.44).

Table 2. Brain Regions showing positive activation for the functional contrast of 1-Back/2 + 

2-Back/2 > Compare. The table lists all positively active brain regions from the functional 

contrast of 1-Back/2 + 2-Back/2 > Compare, corresponding hemisphere, area (in number of 

voxels) and MNI center of mass coordinates.
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3.3. Relationship between tFC and D-Prime

Results from the bootstrapped linear regression model indicated a significant positive 

association between average tFC (averaged across all seed ROIs, per participant) and log D-

prime (bootstrapped Beta = 0.83, p = 0.033; SE = 0.38; 95% BCa CI = 0.164 to 1.5; Fig. 4), 

after controlling for age, gender and GCOR.

3.4. Relationship between Cortical QSM and D-prime

A bootstrapped linear regression model was used to evaluate the relationship between 

cortical GM QSM values in each lobe and log D-prime. The results indicated that parietal 

QSM was a significant predictor of log D-prime (bootstrapped Beta = −0.136, p = 0.009; SE 

= 0.049; 95% BCa CI = −0.24 to −0.05; VIF = 1.25; Fig. 5) after controlling for cortical GM 

CBF, adjusted total cortical GM volume, age and gender. That is, greater iron concentration 

in the parietal lobe was associated with poorer working memory performance. QSM in the 

other lobes did not predict working memory performance (ps > 0.3; max VIF = 1.53). 

Adjusted total cortical GM volume was not a significant predictor of log D-prime 

(bootstrapped Beta = 1.46 × 10−7, p = 0.67; SE = 3.2 × 10−7; 95% BCa CI = −4.56 × 10−7 to 

9.7 × 10−7; VIF = 1.69).

3.5. Relationships between Cortical GM QSM and Cortical GM Volumes

Cortical GM QSM values from each lobe were not significant predictors of their 

corresponding cortical GM volumes or total cortical GM volume when controlling for 

corresponding cortical GM CBF, eICV, age and gender (Table 3). The results did not change 

when the Sidak multiple comparisons correction was removed, with none of the lobar-based 

predictors approaching uncorrected significance.

Table 3. Relationship between cortical QSM and corresponding cortical GM volume. The 

table illustrates the results of the bootstrapped linear regression analyses between total 

cortical, frontal, parietal, occipital and temporal lobe QSM values against corresponding 

cortical GM volume.

3.6. Relationship between cortical GM QSM and cortical GM CBF

The correlation between average cortical GM QSM and average cortical GM CBF was not 

significant, controlling for age, gender and eICV (bootstrapped Beta = −0.026, p = 0.12; SE 

= 0.017; 95% BCa CI = −0.054 to 0.014; r2 = 0.05).

3.7. Relationship between Cortical GM QSM and tFC

This relationship was explored in a bootstrapped linear regression model with QSM values 

from each lobe as factors and average tFC (averaged across all seed ROIs) as the dependent 

variable. Results from the linear regression model indicated that lobar QSM was negatively 

associated with average tFC in the parietal mask (parietal QSM: 3.5 ppb/mm3; bootstrapped 

Beta = −0.045, p = 0.005; SE = 0.015; 95% BCa CI = −0.073 to −0.025; VIF = 1.25; Fig. 6) 

after controlling for cortical GM CBF, adjusted cortical GM volume, age, gender and 

GCOR. QSM values from the other lobar masks were not significant predictors of average 

tFC (ps > 0.38; max VIF = 1.55). Additionally, neither adjusted total cortical GM volume 
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nor total cortical GM CBF predicted average tFC in this model (cortical GM volume: 

bootstrapped Beta = 0.007, p = 0.40; SE = 0.009 95% BCa CI = −0.01 to 0.03; VIF = 1.69; 

cortical GM CBF: bootstrapped Beta = 0.0001, p = 0.88; SE = 0.002 95% BCa CI = −0.004 

to 0.005; VIF = 1.37).

To decompose the negative association between parietal lobe QSM and average tFC, we 

conducted a bootstrapped multivariate linear regression between tFC from each seed ROI as 

multiple dependent variables and parietal QSM values as the main factor. Homologous tFC 

ROIs were merged across hemispheres to avoid issues of multicollinearity and to also reduce 

the number of dependent variables in the model. Parietal lobe GM CBF and adjusted parietal 

lobe GM volume were added as covariates, together with age, gender and GCOR.

Parietal lobe QSM was negatively associated with tFC in the VLPFC ROI (bootstrapped 

Beta = −0.044, p = 0.008; SE = 0.016; 95% BCa CI = −0.076 to −0.011) and the IPL ROI 

(bootstrapped Beta = −0.09, p < 0.0001; SE = 0.022; 95% BCa CI = −0.134 to −0.045; Fig. 

7). Parietal lobe QSM did not predict tFC of the DLPFC ROI (bootstrapped Beta = −0.009, p 

= 0.52; SE = 0.015; 95% BCa CI = −0.04 to 0.019) or the ACC ROI (bootstrapped Beta = 

0.004, p = 0.78; SE = 0.016; 95% BCa CI = −0.03 to 0.03) seed ROIs. Importantly, parietal 

lobe GM volume and parietal lobe GM CBF did not predict tFC in any of the seed ROIs 

(Parietal lobe GM volume ps = 0.23; parietal lobe CBF ps = 0.16).

3.8. QSM Differences Between tFC Seed ROIs

The previous analyses indicated that parietal lobe QSM was negatively associated with tFC 

in the IPL and VLPFC ROIs but not the other ROIs. Subsequent analyses were thus 

conducted to determine if IPL and VLPFC ROIs showed higher QSM values than the other 

tFC ROIs. Age, gender and cortical GM CBF were added as covariates in the ANOVA. The 

omnibus ANOVA results indicated significant QSM differences between the tFC seed ROIs 

(F(5,211) = 17.1, p < 0.0001; partial η2 = 0.18; Fig. 8). Bootstrapped, post-hoc comparisons 

indicated that the IPL (2.92 ppb/mm3; 20% of ROI voxels consist of pQSM) seed ROIs had 

significantly higher iron concentration than all other ROIs: ACC (0.72 ppb/mm3; 5% of ROI 

voxels consist of pQSM; p < 0.0001; SE = 0.37; 95% BCa CI = 1.54 to 2.94), DLPFC (0.58 

ppb/mm3; 4.4% of ROI voxels consist of pQSM; p < 0.0001, SE = 0.35; 95% BCa CI = 1.72 

to 3.04) and VLPFC (1.93 ppb/mm3; 13.7% of ROI voxels consist of pQSM; p = 0.05; SE = 

0.5; 95% BCa CI = −0.053 to 1.98). Similarly, the VLPFC ROIs had significantly higher 

iron concentration than the ACC (p = 0.006; SE = 0.41; 95% BCa CI = 0.49 to 2.0) and 

DLPFC (p = 0.002; SE = 0.39; 95% BCa CI = 0.69 to 2.14) seed ROIs. Finally, the ACC and 

DLPFC ROIs did not differ significantly in QSM values (p = 0.41; SE = 0.17; 95% BCa CI 

= −0.16 to 0.49).

3.9. SNR associated with QSM within the lobar GM masks

An additional control analysis was conducted in order to evaluate the signal-to-noise ratio 

(SNR) in cortical and subcortical GM ROIs (Fig. 9) that could influence the QSM measures 

in these regions. For each ROI, SNR was calculated separately for each of the eight echoes 

of a magnitude images, acquired using the 3D spoiled GRE sequence for QSM, and then 

averaged across echoes into a single average SNR measure for each ROI. SNR was 
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calculated by dividing the mean image intensity value within a GM ROI (frontal, parietal, 

occipital, temporal, caudate and putamen ROIs), by the standard deviation of the intensity 

values outside the head (image background).

A repeated measures ANOVA was conducted with anatomical structure as an independent 

variable (with six levels, corresponding to each ROI) and SNR as the dependent variable. 

Age and gender were controlled in this analysis. The results indicated anatomical structure 

as a significant main effect F(5,51) = 9.05, p < 0.0001. Pairwise comparisons, adjusted for 

multiple comparisons using Sidak, indicated the following: SNR in the parietal lobe was 

significantly stronger compared to SNR in the caudate (p = 0.001) but comparable to that of 

the putamen (p = 0.985). Additionally, SNR in the frontal lobe was significantly lower in 

comparison to all other ROIs (ps < 0.0001). Lastly, SNR in the occipital lobe was higher 

than in all other ROIs (ps < 0.0001). As such, with the exception of the frontal lobe, SNR of 

the GRE images used in the QSM pipeline is comparable between cortical and subcortical 

GM ROIs.

4. Discussion

Our results demonstrate that high cortical iron is associated with low functional connectivity 

in a network of brain regions supporting working memory performance in older adults. We 

first identified a task-relevant network in which strength of functional connectivity (tFC) was 

positively associated with working memory performance in healthy older adults. We then 

showed that high iron concentration within this task-relevant network negatively impacted 

tFC and working memory performance after controlling for both brain volume and cerebral 

blood flow. Our results suggest that non-heme-iron mediated disruption of functional brain 

systems may be an early marker of age-related declines in working memory.

A body of previous work has linked excess brain iron concentration in basal ganglia 

structures with reduced working memory performance in older adults (cross-sectional: 

Bartzokis et al., 2011; Darki et al., 2016; longitudinal: Daugherty et al., 2015) and 

subsequent atrophy in basal ganglia structures 2 years later (Daugherty et al., 2015) and up 

to 7 years later (Daugherty and Raz, 2016). More recently, cross-sectional studies have 

reported negative associations between striatal iron concentration and BOLD magnitude in 

frontostriatal regions (Kalpouzos et al., 2017; Rodrigue et al., 2020) and striatal resting state 

functional connectivity with the rest of the brain (Salami et al., 2018).

However, the impact of cortical iron concentration on cortical functional connectivity 

networks directly supporting task performance has not been demonstrated. To address this 

question, we first identified task-relevant working memory brain regions in our sample. 

According to the Neurosynth database (Yarkoni et al., 2011), these frontoparietal brain 

regions overlapped substantially with the working memory network identified in a meta-

analysis of 1,091 studies (e.g. Pessoa et al., 2002; Mitchell, 2007; Chein et al., 2010; 

Rottschy et al., 2012). Of central relevance to the goals of our study, mean strength of tFC 

within this frontoparietal network was positively associated with in-scanner working 

memory accuracy, after controlling for potential response biases by using D-Prime.
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We then explored the impact of QSM derived brain iron concentration on this task-relevant 

frontoparietal network supporting working memory performance. Results indicated that high 

QSM-based iron concentration in the parietal lobe was associated with poorer working 

memory task performance and lower mean tFC strength in the IPL with the rest of the 

frontoparietal network. Collectively, our findings suggest that iron concentration may 

interfere with the exchange of information within the task-relevant working memory 

network in older adults. In contrast, we found no significant relationships between cortical 

GM volume, working memory performance and/or tFC. Additionally, we found no 

relationship between QSM-derived cortical GM iron concentrations and cortical GM 

volumes, even at uncorrected significance levels. This pattern is consistent with a view that 

high cortical iron concentration may negatively affect brain functional networks 

independently of its potential neurodegenerative effects.

Our results are pertinent to the recent Free Radical Induced Energetic and Neural Decline in 

Senescence model (FRIENDS; Raz and Daugherty, 2018). The FRIENDS model holds that 

age-related alterations in iron sequestration and transport reduce mitochondrial bioenergetic 

processes, lowering energy available for metabolically expensive processes such as 

neurotransmission. The model suggests that non-heme, iron-mediated generation of reactive 

oxygen species may disrupt metabolic and functional brain systems prior to inducing 

neurodegenerative processes associated with shrinkage of brain structures. Our finding that 

excessive iron is associated with reduced functional network connectivity, but not regional 

brain volumes, is broadly consistent with predictions of the FRIENDS model.

Our results indicated that iron concentration in the parietal lobe predicted lower tFC and 

working memory performance. Results from our follow-up analyses revealed a plausible 

explanation for this finding: iron concentration was significantly higher in the IPL ROIs of 

the parietal lobe compared to prefrontal cortex ROIs (DLPFC, VLPFC and ACC) of the 

functional working memory network in our participant cohort. This finding is consistent 

with a view that increasing regional iron concentration is associated with increasing regional 

functional connectivity disruption with the rest of the task network.

However, the specific finding of higher iron concentration observed in the IPL compared to 

prefrontal ROIs should be considered preliminary: 1) SNR was significantly lower in the 

frontal lobe, compared to all other lobes, which could explain the lack of significant 

correlations between QSM in this region, tFC and working memory performance; 2) the tFC 

seed ROIs are defined functionally at a much lower resolution compared to the QSM data 

(approximately 6 mm isotropic after smoothing, motion correction etc). As such extracting 

QSM values from gray matter only areas within these seed ROIs is not as reliable as those 

extracted from the high resolution, gray matter segmented MEMPR images. The lower 

resolution of the tFC seed ROIs is the main reason we evaluated lobar GM QSM instead of 

QSM extracted from these seed ROIs. Nonetheless, there appears to be some evidence that 

iron concentration in the parietal lobe (and motor cortex) may be higher than in prefrontal 

regions (e.g. Hallgren & Sourander, 1958; Buijs et al., 2016; Betts et al., 2016). A systematic 

investigation of regional differences in cortical iron accumulation in relation to different 

cognitive process, is a topic of considerable future interest.
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Strengths of our study include the direct linking of MRI functional connectivity patterns 

with in-scanner task performance, the demonstration that this functional relationship is 

negatively affected by iron concentration, the control for both cerebral blood volume and 

GM structural volume in our QSM-functional models, the use of statistically rigorous 

bootstrapping to reduce the risk of Type I errors and demonstration of comparable SNR 

related to QSM signal in cortical task-relevant regions as subcortical regions. Further, the 

use of the same Freesurfer-derived GM lobar masks for extracting QSM data, volumetric 

data and CBF data maximize the likelihood that our cross-modal MRI data were extracted 

from the same cortical regions.

Limitations of our study include that QSM is not a direct measure of iron concentration and 

can be affected to a lesser extent by the presence of other metals, as well as calcification 

(ferrocalcinosis). In addition, QSM cannot differentiate between non-heme and heme iron 

bound to deoxygenated hemoglobin in blood (e.g, Wang and Liu, 2015). To this end, 

differences in cerebral blood volume (as measured by CBF), may contribute to the QSM 

signal (e.g. Bianciardi et al., 2014; Balla et al., 2014). Importantly, however, it should be 

noted that lobar GM CBF measures were not correlated with the functional connectivity 

patterns in our data nor with lobar GM QSM values. Thus, any potential contribution of CBF 

to QSM signal is unlikely to contribute to the negative relationship we observed between 

QSM and functional connectivity. Further, inclusion of CBF as a covariate in our models did 

not affect our observed QSM-FC relationships. We also note that no causal inferences can be 

made between QSM-based iron concentration, tFC and/or working memory performance. A 

longitudinal version of this study would be better suited for causal inference and one is 

planned with the same participants in two years.

Further, it should be noted that non-heme iron concentration varies between cortical layers 

(e.g. Kwan et al., 2012; Bulk et al., 2018). However, the relatively large voxel size of our 

scans prevents us from making inferences relating to QSM signal from specific cortical 

layers in gray matter and their relative contributions to the QSM effects we report. Lastly, 

the current study had a modest sample size which might have affected our ability to detect 

smaller effects between QSM, tFC and working memory performance. Future studies with a 

larger sample size should be used to identify possible subtler effects.

In conclusion, our results indicate a potential functional anatomic basis for the negative 

effects of iron on working memory previously reported in the literature. Specifically, our 

findings suggest that excess cortical iron may interfere with coordinated information 

processing within the frontoparietal network supporting working memory performance in 

healthy older adults.
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Fig. 1. 
Example stimuli and sample trials from the N-Back task. The letter “S” next to trial panels 

indicates match trials in which a “same” response was required while the letter “D” 

appearing next to trial panels depicts a non-match trial in which a “different” response was 

required. A. Example trial displays from the Compare, visual control condition. B. Example 

trial displays from the 1-Back condition. C. Example trial displays from the 2-Back 

condition.
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Fig. 2. 
Lobar cortical GM masks for QSM. A representative example of a single participant’s 

Freesurfer segmented parietal lobe cortical mask (in green) overlaid on their MEMPR image 

(A) and their QSM image (B). The QSM image depicts iron concentration in parts per 

billion (ppb) relative to CSF. Brighter areas on the QSM image have more iron concentration 

than CSF and darker areas less iron concentration than CSF (scaled between - 100 to 100 

ppb). The rostral boundary of the parietal lobe mask (central sulcus) is indicated with a 

dashed red line to highlight the anatomical correspondence of GM structures captured by the 

mask across image modalities.
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Fig. 3. 
N-Back task activation map. The activation map reflects the voxelwise functional contrast of 

2-Back/2 + 1-Back/2 > Compare. Positive activations (yellow-orange) indicate regions 

showing higher average N-Back activity than the control task. The 3D cortical meshes 

shown were created from the MNI ICBM152, 1 mm, 6th generation atlas using Freesurfer 6 

and were partially inflated to aid identification of activations within sulci. Notes: ACC: 

Anterior cingulate cortex; DLPFC: Dorsolateral prefrontal cortex; VLPFC: ventrolateral 

prefrontal cortex; IPL: Inferior parietal lobule. The central sulci are demarcated (dashed 

white lines) to aid visual localization.
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Fig. 4. 
The relationship between N-Back performance and functional connectivity. The scatter plot 

depicts average task-based functional connectivity against performance (log D-prime, 

averaged across the 1-Back and 2-Back conditions of the N-Back task). Values are 

standardized residuals after controlling for age, gender and GCOR. The dashed line 

represents the linear best fit.
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Fig. 5. 
The relationship between parietal lobe QSM and performance. The scatter plot shows QSM 

parietal lobe values (iron concentration in ppb/mm3) against N-Back task performance (log 

D-prime, averaged across the 1-Back and 2-Back conditions). Values are standardized 

residuals after controlling for age, gender, cortical GM CBF and adjusted cortical GM 

volume. The dashed line represents the linear best fit.
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Fig. 6. 
The relationship between average tFC and parietal lobe QSM. The plot shows average tFC 

(averaged across all seed ROIs) against QSM from the parietal lobe (iron concentration in 

ppb/mm3). Values are standardized residuals after controlling for age, gender, GCOR, 

cortical GM CBF and adjusted cortical GM volume. The dashed line represents the linear 

best fit.
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Fig. 7. 
The relationship between QSM in the parietal lobe and average tFC from the VLPFC and 

IPL seed ROIs. The figure depicts parietal lobe QSM (iron concentration in ppb/mm3) 

against average tFC from A. bilateral VLPFC and B. bilateral IPL seed ROIs (tFC between 

these seeds and every other seed ROI in the network). Values are standardized residuals after 

controlling age, gender, GCOR, parietal lobe GM CBF and adjusted parietal lobe GM 

volume. The dashed line represents the linear best fit.
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Fig. 8. 
Iron concentration for each tFC seed ROI merged across hemispheres. The bar chart depicts 

QSM (iron concentration in ppb/mm3) for the VLPFC, IPL, ACC and DLPFC seed ROIs. 

The error bars denote + /−1 standard error of the mean.
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Fig. 9. 
Average SNR for cortical and subcortical gray matter ROIs. SNR was calculated separately 

for each echo of a magnitude image, part of the 3D spoiled GRE sequence used for QSM. 

SNR from all echoes was then averaged together for each ROI, across participants. The error 

bars denote +/−1 standard error of the mean.
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Table 1

Group Demographics and Mean Cognitive Measures

n 55

Age (years) 72.07 ± 5.32

M:F 24:31

Education (years) 16.51 ± 2.40

MMSE
1 28.93 ± 1.26

MoCA
2 26.67 ± 2.662

Mean ± standard deviation is shown for participants.

1
MMSE: Mini-Mental State Exam, collected for 47 participants.

2
MoCA: Montreal Cognitive Assessment, collected for 55 participants.
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Table 3

Relations between cortical GM QSM and corresponding cortical GM volume

Lobe Bstrapped Beta/r2 p Std. Error 95% BCa CI

Total cortical 139.7/0.0009 0.83 611.3 −1252.1 to 1406.1

Frontal −656.8/0.01 0.54 1055.2 −3030.8 to 1484.6

Parietal −33.5/0.00003 0.97 975.6 −1909.6 to 1973.6

Occipital −89.3/0.004 0.60 193.7 −498.5 to 437.2

Temporal 90.6/0.001 0.82 387.6 −659.7 to 720.8
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