
Complete Genome Sequence of Escherichia coli Podophage
Peacock

Erin Ruhlman,a Ryan Bockoven,a* Russell Moreland,a Mei Liu,a Jolene Ramseya

aCenter for Phage Technology, Texas A&M University, College Station, Texas, USA

ABSTRACT Escherichia coli is typically a commensal bacterium of the mammalian
intestinal tract. Here, the isolation and annotation of the 39,233-bp T7-like E. coli
podophage Peacock genome are described.

Escherichia coli is a Gram-negative, rod-shaped bacterium found in the mammalian
intestinal tract. It has been widely studied due to its high growth rate and genetic

plasticity (1). Although E. coli is typically a commensal organism, pathogenic strains can
arise, for instance, through the acquisition of virulence factors through horizontal gene
transfer (2). Antibiotics remain the standard of treatment even though many strains
have become resistant (3). Investigating E. coli bacteriophages might provide insight
into potential alternative treatments.

Phage Peacock was isolated from filtered (0.2-�m pore size) wastewater treat-
ment plant influent samples collected in College Station, TX, using E. coli 4s as a
host (4). The host was cultured aerobically on lysogeny broth/agar at 37°C with the
soft agar overlay method, and genomic DNA was extracted from this phage, as
previously described, using the shotgun library preparation modification to the
Promega Wizard DNA clean-up system (5, 6). A Peacock DNA library was prepared
with the TruSeq Nano low-throughput kit and sequenced on an Illumina MiSeq
platform with paired-end 250-bp reads using V2 500-cycle chemistry. The 570,679
total sequence reads from the index containing the phage genome were evaluated
using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and trimmed
using the FASTX-Toolkit v0.0.14 (http://hannonlab.cshl.edu/fastx_toolkit/). The Peacock
genome was assembled in a single raw contig with SPAdes v3.5.0 and had 513.9-fold
coverage (7). PCR across the contig ends (forward primer 5=-TGTATGGGTATCATCGGG
ACA-3= and reverse primer 5=-CCTCCTTGGACTTAGGGTCATA-3=) and Sanger sequencing
were used to manually verify that the correct and complete phage sequence was
present in the assembly. All annotation tools described below are in Galaxy and Web
Apollo, hosted by the Center for Phage Technology (https://cpt.tamu.edu/galaxy-pub)
(8, 9). Gene calling for the genome was completed using Glimmer v3.0 (10) and
MetaGeneAnnotator v1.0 (11). No tRNAs were detected using ARAGORN v2.36 (12).
Gene functions were predicted using InterProScan v5.33-72 (13), BLAST v2.2.31 at a
0.001 maximum expectation value (14), and TMHMM v2.0 (15) at default settings. The
NCBI nonredundant and UniProtKB Swiss-Prot/TrEMBL databases were used in BLAST
functional analysis (16). LipoP v1.0 was used to assess lipobox presence in spanins (17).
Rho-independent termination sites were annotated from TransTermHP v2.09 (18).
Genome-wide DNA sequence similarity was calculated using progressiveMauve v2.4.0
(19). Unless otherwise stated, all tools were executed using default parameters. To
determine phage morphology, samples were negatively stained with 2% (wt/vol) uranyl
acetate and viewed using transmission electron microscopy at the Texas A&M Micros-
copy and Imaging Center (20).

The 39,233-bp genome of the podophage Peacock has a G�C composition of 50.1%
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and a 92.4% coding density. Of the 55 protein-coding genes identified, 30 functions
were predicted, and 27 of those had direct BLASTp hits to phage T7 (GenBank accession
number NC_001604). Using PhageTerm, Peacock was predicted to have 179-bp direct
terminal repeats (21). Peacock has 85% nucleotide sequence identity with Escherichia
phage Vec13 (GenBank accession number MH400309), a T7-like phage, and shares 47
proteins with this phage. An overcome classical restriction (ocr) protein (NCBI accession
number QEG09667), known to inhibit type I DNA restriction enzymes by mimicking a
B-form DNA structure, was also identified (22).

Data availability. The genome sequence and associated data for phage Peacock
were deposited under GenBank accession number MK903279, BioProject accession
number PRJNA222858, SRA accession number SRR8892143, and BioSample accession
number SAMN11408679.
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