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Abstract

This study suggested a new four-parameter Exponentiated Odd Lomax Exponential (EOLE)

distribution by compounding an exponentiated odd function with Lomax distribution as a

generator. The proposed model is unimodal and positively skewed whereas the hazard rate

function is monotonically increasing and inverted bathtubs. Some important properties of

the new distribution are derived such as quintile function and median; asymptotic properties

and mode; moments; mean residual life, mean path time; mean deviation; order statistics;

and Bonferroni & Lorenz curve. The value of the parameters is obtained from the maximum

likelihood estimation, least-square estimation, and Cramér-Von-Mises methods. Here, a

simulation study and two real data sets, “the number of deaths per day due to COVID-19 of

the first wave in Nepal" and ‘‘failure stresses (In Gpa) of single carbon fibers of lengths 50

mm", have been applied to validate the different theoretical findings. The finding of an order

of COVID-19 deaths in 153 days in Nepal obey the proposed distribution, it has a signifi-

cantly positive relationship between the predictive test positive rate and the predictive num-

ber of deaths per day. Therefore, the intended model is an alternative model for survival

data and lifetime data analysis.

Introduction

Probability distributions have been used extensively not only in statistics and mathematics, but

also in applied sciences, engineering, and life sciences. Thus, the advancement of probability

distributions always continues to grow at a fast pace to simulate real-life conditions and ana-

lyze real-life data more efficiently. While doing so, this past decade, many generalized distribu-

tions being proposed based on different modification methods with more parameters and

flexibility than the existing one. However, there are numerous problems to solve and analyze

in real data because any classical or standard probability distributions do not address the dif-

ferent data characteristics [1]. Thus, a new family of distributions or distributions has been

proposed to generalize several distributions by compounding well-known distributions which

provide greater flexibility in modeling as a practical viewpoint [2].
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In the literature, a new parametric distribution has been derived by adding a parameter in

exponential and Weibull distribution, yielding a new two-parameter exponential and three

parameters Weibull distribution [3]. Marshall–Olkin extended Lomax distribution has been

derived by extending the Marshall and Olkin family of distributions based on the Lomax dis-

tribution [4]. A five-parameter McDonald Lomax distribution has been derived from the

Lomax distribution [5]. Likewise, the new sub-models have been formed by using a Lomax dis-

tribution as a generator with two additional positive parameters. In this paper, some special

models, such as Lomax-normal, Lomax-Weibull, Lomax-logistic, and Lomax-Pareto distribu-

tions have been derived [6, 7]. A new distribution has been generalized, then it became the

Kumaraswamy-G Poisson distribution, which has three extra positive parameters [8]. The

three-parameter power Lomax distribution, which is more flexible than previous Lomax distri-

butions, and it has been derived with decreasing and inverted bathtub hazard rate functions

[9]. Moreover, a new two-parameter half Logistic Poisson distribution has been derived, and it

expanded into generalized half-logistic Poisson distribution with three parameters. The pro-

posed distribution is increasing, decreasing, upside-down, and bathtub-shaped hazard rate

function [10, 11]. Similarly, a three-parameter Kumaraswamy half logistic distribution has

been derived from the Kumaraswamy-G family by compounding with half logistic distribution

as a baseline distribution [2].

Furthermore, exponentiated Weibull Lomax distribution has been derived from the expo-

nentiated Weibull-G family [12]. The alpha power inverted exponential distribution has been

derived from the inverted exponential distribution with alpha as a power. The proposed distri-

bution is more versatile in numerous real data analyses [13]. An odd generalized exponential

family has been compounding with inverted Lomax distribution in modeling, formed four-

parameter model is an odd generalized exponentiated inverse Lomax distribution [14]. Like-

wise, the odd Lomax-exponential (type III) distribution has been derived from the Lomax ran-

dom variable as a generator [15]. Lomax exponential distribution has been formed after the

new modification of the Lomax distribution which is very flexible in life data modeling with

decreasing and increasing hazard shapes (non-monotonic) [16]. Similarly, inverse Lomax as a

generator has been used in continuous distributions and formed the inverse Lomax-exponen-

tiated-G family [17]. Moreover, a new Poisson inverted exponential distribution is derived

from the Poisson-G family [18]. A three-parameter half logistic Nadarajah-Haghighi extension

of exponential (NHE) distribution has been derived by compounding a continuous distribu-

tion NHE with half logistic-G family [19], and compounding Rayleigh distribution with expo-

nentiated-G Poisson family by power transformation technique formed exponentiated

Rayleigh Poisson distribution [20].

In literature, different distributions have been derived and estimated the parameters by dif-

ferent techniques like as; maximum likelihood estimators, least squares estimators, weighted

least squares estimators, percentile estimators, the maximum product spacing estimators, the

minimum spacing absolute distance estimators, the minimum spacing absolute log-distance

estimators, Cramér von Mises estimators, Anderson Darling estimators, right-tailed Anderson

Darling estimators, method of moments estimators and Bayes estimators [21–25].

Corona Virus Disease 2019 (COVID-19) pandemic has devastated the world and is accom-

panied by economic, social, and behavioral challenges and responses. More than 1.5 million

people have died worldwide and more than 1,800 people have died in Nepal by the end of

December 2020 [26, 27]. Already, several mathematical and statistical models have been pro-

posed to explain the path of the pandemic. However, it is important to note that the character-

istics of the data fluctuate which may lead to classical probability distributions that may not be

able to be captured in all cases. For example, the data are highly skewed, either to the right or

to the left, with the possibility of some outlying observations, and therefore a classical
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distribution such as the normal distribution cannot be used to fit them. Therefore, flexible dis-

tribution is required to capture such data. As a result, we have proposed an Exponentiated

Odd Lomax Exponential (EOLE) distribution to analyze the deaths cases of COVID-19 first

wave in Nepal. It is more flexible, with four parameters, better equipped to handle complex

data, and thus achieves our goal.

In this study, the cumulative distribution function, probability density function, reliability/

survival, hazard rate functions, reverse hazard rate function, and cumulative hazard rate func-

tion are explicitly presented in section material and methods. Likewise, we derive some impor-

tant statistical properties such as quintile function and median, asymptotic properties and

mode, moments, mean residual life, mean path time, mean deviation, order statistics, and Bon-

ferroni & Lorenz curve. In an estimation technique, we have to employ three well-known esti-

mation methods to estimate the model parameters namely, the Maximum Likelihood

Estimation (MLE), Least-Square Estimation (LSE), and Cramér-Von-Mises (CVM). We con-

ducted a simulation study in the result and discussion section, and two real data sets were used

to verify the theoretical findings in various aspects. Finally, derive our conclusion of this study

with further discussion.

Materials and methods

Exponentiated odd Lomax exponential distribution

Exponential distribution plays a significant role in statistics and probability theory. In this dis-

tribution, events occur continuously and independently at a constant average rate. It is a spe-

cial case of gamma, Weibull, Rayleigh, and Erlang distribution. It is a continuous analog of the

geometric distribution, which has the main property of being memoryless. As a result, the

exponential distribution is used as a baseline probability distribution having a cumulative dis-

tribution function

GðxÞ ¼ 1 � e� ax; x > 0; a > 0: ð1Þ

We have, �GðxÞ ¼ 1 � GðxÞ; �GðxÞ ¼ e� ax and
GðxÞ
�GðxÞ ¼ eax � 1.

The distribution is extended by an auxiliary parameter, it forms an exponentiated function

[28, 29]. Let, θ> 0 is an auxiliary parameter on odd function, called the exponentiated odd

function, which is WðxÞ ¼ GðxÞ
�GðxÞ

h iy
¼ eax � 1ð Þ

y
. Similarly, the T-X family of distribution is an

extended form of beta generated distribution by taking any non-negative continuous random

variable T as a generator instead of beta random variable [30], which is

F xð Þ ¼
Z WðxÞ

a
r tð Þdt ð2Þ

The r(t) as a generator that has used the probability density function of the Lomax distribu-

tion. The Lomax distribution (also known as Pareto type II distribution) is a widespread distri-

bution with applications in the field of actuarial science, reliability modeling, life testing,

economics, network analysis, and operations research [31]. Therefore, The PDF of Lomax dis-

tribution as a generator is

r tð Þ ¼
l

d
1þ

t
d

� �� �� lþ1ð Þ

; t > 0; l > 0; d > 0:

We compound the PDF of the Lomax distribution as a generator and exponentiated odd

[W(x)] function because the exponential distribution has a single scale parameter and the
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Lomax distribution has one of each scale and shape parameter. When both functions are com-

pounded, it becomes two of each scale and shape parameter, making it is more robust and flex-

ible distribution. As a result, it captures different types of data such as; skewed, truncated, non-

truncated, and others. Therefore, the CDF of an exponentiated odd Lomax exponential distri-

bution is

F x; a; l; y; dð Þ ¼

Z eax � 1ð Þy

0

l

d
1þ

t
d

� �� �� lþ1ð Þ

dt ¼ 1 � 1þ
1

d
eax � 1f g

y

� �� l

: ð3Þ

The corresponding PDF of the proposed distribution is

f ðxÞ ¼
ayl

d
eax eax � 1ð Þ

y� 1
1þ

1

d
eax � 1f g

y

� �� ðlþ1Þ

; x � 0; a > 0; l > 0; y > 0; d > 0:

ð4Þ

Here, α> 0, δ> 0 are scale parameters and λ> 0, θ> 0 are shape parameters. The shape of

PDF (4) is platykurtic and positively skewed at α = 1.0, λ = 1.0 and α = 1.5, λ = 1.5, symmetrical

at α = 2.0, λ = 2.0 and it is leptokurtic after increase α and λ whereas θ = 2.5 and δ = 2.0 are

fixed [Fig 1, (left panel)].

Likewise, the survival function is complementary to the CDF which gives the chance to live

just before during ‘x’. Mathematically, R(x) = 1 − F(x). Hence, the survival function of the pro-

posed distribution is

RðxÞ ¼ 1þ
1

d
eax � 1f g

y

� �� l

: ð5Þ

The hazard rate function is the conditional density given that the event has not yet occurred

before time x. Mathematically, let x be a survival time of a component or item and we want to

calculate the probability that it will not survive for an additional time Δx, then hazard rate

function is, hðxÞ ¼ lim
Dx!0

Probðx�X�DxÞ
Dx:RðxÞ ¼

f ðxÞ
1� FðxÞ ; x > 0: Therefore, the hazard rate function of the

Fig 1. Probability density function (left panel), hazard rate function (right panel) with different parameter’s value.

https://doi.org/10.1371/journal.pone.0269450.g001
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proposed model is

hðxÞ ¼
ayl

d
eaxðeax � 1Þ

y� 1
1þ

1

d
eax � 1f g

y

� �� 1

: ð6Þ

Likewise, the shape of hazard function (6) a is monotonic increase at (α = 1.0, λ = 1.0), (α =

1.5, λ = 1.5) and (α = 2.0, λ = 2.0). After increasing the value of α and λ then it change mono-

tonic increase and inverted bathtub shaped at (α = 2.5, λ = 2.5) and (α = 3.0, λ = 3.0) whereas

θ = 2.5 and δ = 2.0 are fixed [Fig 1, (right panel)].

Similarly, the reversed hazard rate function is the ratio of density to the distribution func-

tion which is useful in reliability analysis. It is

rðxÞ ¼
f ðxÞ
FðxÞ

¼
ayl 1

d
eaxðeax � 1Þ

y� 1
1þ 1

d
eax � 1f g

y
h i� ðlþ1Þ

1 � 1þ 1

d
eax � 1f g

y
h i� l : ð7Þ

Likewise, the cumulative hazard rate function is not the probability function, however, it

measures the risk. Therefore, it is defined as

HðxÞ ¼ � ln RðxÞ ¼ l ln 1þ
1

d
eax � 1f g

y

� �

: ð8Þ

Statistical properties

In this section, some properties of the EOLE distribution have been derived.

Useful expansions

Distribution is derived from the generalized binomial series. For, |Z|< 1, n> 0; we have,

ð1þ zÞ� n ¼
X1

i¼0

ð� 1Þ
i nþ i � 1

i

 !

zi; and ð1 � zÞn ¼
X1

j¼0

ð� 1Þ
j n

j

 !

zj: ð9Þ

Quantile and median

The quantile functions are used in theoretical aspects of a probability distribution. It is an

alternative to PDF and CDF, which is used to obtain statistical measures like median, skew-

ness, and kurtosis. It has been also used to generate random numbers. The quantile function is

given by Q(u) = F−1(u). Therefore, the corresponding quantile function of the proposed distri-

bution is

QðuÞ ¼
1

a
ln 1þ d ð1 � uÞ�

1
l � 1

n oh i1
y

� �

; 0 < u < 1: ð10Þ

Where, u ~ U(0,1). In particular, the median is derived by setting u ¼ 1

2
in Eq (10), we get;

Median ¼
1

a
ln 1þ d

1

2

� �� 1
l

� 1

( )" #1
y

2

4

3

5:
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Asymptotic behavior and mode

To examine the asymptotic behavior, we have to check, lim
x!0

f ðxÞ ¼ lim
x!1

f ðxÞ. If both limits are

converging into zero, then the proposed model satisfied the properties of asymptotic behavior

and it existed the mode value.

Therefore,

lim
x!0

ayl

d
eaxðeax � 1Þ

y� 1
1þ

1

d
eax � 1f g

y

� �� ðlþ1Þ

¼ 0:

lim
x!1

ayl

d
eaxðeax � 1Þ

y� 1
1þ

1

d
eax � 1f g

y

� �� ðlþ1Þ

¼ 0:

Further, we have to calculate the mode by taking the logarithmic in Eq (4), we get;

ln f ðxÞ ¼ ln
ayl

d

� �

þ axþ ðy � 1Þlnðeax � 1Þ � ðl � 1Þln 1þ
1

d
eax � 1f g

y

� �

: ð11Þ

Now, differentiate concerning in Eq (11) and apply the condition f(x) 6¼ 0 and f 0(x) = 0, the

mode of proposed distribution is

1þ
ðy � 1Þeax

eax � 1
�
yðl � 1Þeaxðeax � 1Þ

y� 1

ðeax � 1Þ þ df g
¼ 0: ð12Þ

Eq (12) is a nonlinear equation that cannot be solved analytically. It can be solved numeri-

cally by using the Newton-Raphson method.

Moments

The moments of probability distribution suggest the characteristics of the distribution like

mean, standard deviation, skewness, and kurtosis. Let, X be a random variable following the

EOLE distribution, then the moment of the proposed distribution is

m0r ¼ EðXrÞ ¼

Z1

0

xrf ðxÞdx: ð13Þ

Alternatively, we define the moments of proposed distribution from the quantile function

[32, 33]. The rth raw moment of the proposed distribution is

m0r ¼

Z1

0

QGðuÞ½ �
rf ðxÞdx: ð14Þ
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Where, QG(u) is the quantile function (10), then Eq (14) is

¼

Z1

0

1

a
ln 1þ d 1 � uð Þ

� 1
l � 1

� �n o1
y

� �� �r

du

¼
1

ar

Z1

0

d 1 � uð Þ
� 1

l � 1
� �n o1

y

�
1

2
d 1 � uð Þ

� 1
l � 1

� �n o2
y

þ
1

3
d 1 � uð Þ

� 1
l � 1

� �n o3
y

þ . . .

� �r

du

¼
1

ar

Z1

0

d
r
y 1 � uð Þ

� 1
l � 1

n or
y
X1

p¼0

apðrÞ d 1 � uð Þ
� 1

l � 1
� �n op

y

du:

ð15Þ

By simplification, we get rth raw moments of proposed distribution is

¼
1

ar

X1

l¼0

X1

p¼0

X1

q¼0

� 1ð Þ
q
apðrÞ

lþ 1
ð� dÞ

pþr
y

pþ r
y
q

 ! q
l
þ l � 1

l

0

@

1

A: ð16Þ

Where, αp(r) is the coefficient of d 1 � uð Þ
� 1

l � 1
� �n op

y

in the expansion of

X1

i¼1

d

i
1 � uð Þ

� 1
l � 1

� �� � i
y

( )r

[33, 34].

In particular, the first four moments of X obtained by substituting the value of r = 1, 2, 3

and 4 in Eq (16).

EðXÞ ¼
1

a

X1

l¼0

X1

p¼0

X1

q¼0

� 1ð Þ
q
apð1Þ

l þ 1
ð� dÞ

pþ1

y

pþ 1

y
q

0

@

1

A

q
l
þ l � 1

l

0

@

1

A:

EðX2Þ ¼
1

a2

X1

l¼0

X1

p¼0

X1

q¼0

� 1ð Þ
q
apð2Þ

l þ 1
ð� dÞ

pþ2

y

pþ 2

y
q

0

@

1

A

q
l
þ l � 1

l

0

@

1

A:

EðX3Þ ¼
1

a3

X1

l¼0

X1

p¼0

X1

q¼0

� 1ð Þ
q
apð3Þ

l þ 1
ð� dÞ

pþ3

y

pþ 3

y
q

0

@

1

A

q
l
þ l � 1

l

0

@

1

A:

EðX4Þ ¼
1

a4

X1

l¼0

X1

p¼0

X1

q¼0

� 1ð Þ
q
apð4Þ

l þ 1
ð� dÞ

pþ4

y

pþ 4

y
q

0

@

1

A

q
l
þ l � 1

l

0

@

1

A:
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Conditional moments

The conditional moment is also of interesting for increasing the failure rate model. Condi-

tional moment is

E Xr=X > xð Þ ¼
1

RðxÞ

Z1

t

xrf ðxÞdx: ð17Þ

Alternatively, we can define the conditional moments from the quantile function, which is

E Xr=X > xð Þ ¼
1

RðxÞ

Z1

u

QðuÞrdu: ð18Þ

Where, u = F(x) is CDF and, R(x) is survival function of the proposed model, then condi-

tional moments is

E Xr=X > xð Þ ¼
1

arRðxÞ

X1

l¼0

X1

p¼0

X1

q¼0

� 1ð Þ
q
apðrÞð� dÞ

pþr
y

l þ 1

pþ r
y
q

 ! q
l
þ l � 1

l

0

@

1

A 1 � FðxÞf g
lþ1ð Þ

h i
:

In particular,

E X=X > xð Þ ¼
1

aRðxÞ

X1

l¼0

X1

p¼0

X1

q¼0

� 1ð Þ
q
apð1Þð� dÞ

pþ1

y

l þ 1

pþ 1

y
q

0

@

1

A

q
l
þ l � 1

l

0

@

1

A 1 � FðxÞf g
lþ1ð Þ

h i
;

E X2=X > xð Þ ¼
1

a2RðxÞ

X1

l¼0

X1

p¼0

X1

q¼0

� 1ð Þ
q
apð2Þð� dÞ

pþ2

y

l þ 1

pþ 2

y
q

0

@

1

A

q
l
þ l � 1

l

0

@

1

A 1 � FðxÞf g
lþ1ð Þ

h i
;

E X3=X > xð Þ ¼
1

a3RðxÞ

X1

l¼0

X1

p¼0

X1

q¼0

� 1ð Þ
q
apð3Þð� dÞ

pþ3

y

l þ 1

pþ 3

y
q

0

@

1

A

q
l
þ l � 1

l

0

@

1

A 1 � FðxÞf g
lþ1ð Þ

h i
;

and

E X4=X > xð Þ ¼ 1

a4RðxÞ

X1

l¼0

X1

p¼0

X1

q¼0

� 1ð Þ
q
apð4Þð� dÞ

pþ4

y

l þ 1

pþ 4

y
q

0

@

1

A

q
l
þ l � 1

l

0

@

1

A 1 � FðxÞf g
lþ1ð Þ

h i
:

Mean residual life

The Mean Residual Life (MRL) is the average outstanding life, X − x given that the item has

survived to time x. Thus, the expected additional lifetime given that a component has survived

until the time x is called the MRL. It is defined as,

mðxÞ ¼ E X � x=X > x½ � ¼
1

RðxÞ

Z1

t

xf ðxÞdx � x: ð19Þ
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Alternatively, we can define the MRL of proposed distribution from the quantile function is

mðxÞ ¼ E X � x=X > x½ � ¼
1

RðxÞ

Z1

u

QðuÞdu � x: ð20Þ

¼
1

aRðxÞ

X1

l¼0

X1

p¼0

X1

q¼0

� 1ð Þ
q
apð1Þð� dÞ

pþ1

y

lþ 1

pþ 1

y
q

0

@

1

A

q
l
þ l � 1

l

0

@

1

A 1 � FðxÞf g
lþ1ð Þ

h i
� x:

Where, F(x) is CDF and, R(x) is survival function of the proposed distribution.

Mean past lifetime

The mean Past Lifetime (MPL) is the conditional random variable x − X/X� x. This showed

that the time elapsed from the failure of the component given that its lifetime is less or equal to

x. It can be calculated as,

kðxÞ ¼ E x � X=X � x½ � ¼

Z t

0

FðxÞdx

FðxÞ
¼ x �

Z t

0

xf ðxÞdx

FðxÞ
: ð21Þ

It can be alternatively defined from the quantile function, which is

kðxÞ ¼ x �

Zu

0

QðuÞdu

FðxÞ
: ð22Þ

¼ x �
1

a

X1

l¼0

X1

p¼0

X1

q¼0

� 1ð Þ
q
apð1Þð� dÞ

pþ1

y

l þ 1

pþ 1

y
q

0

@

1

A

q
l
þ l � 1

l

0

@

1

A FðxÞ½ �
l
:

Mean deviation

The Mean Deviation (MD) from mean and median measures the scatter from the center value

either mean or median. The MD is defined as,

MDðmÞ ¼
Z1

0

jx � mjf ðxÞdx and; MDðmdÞ ¼

Z1

0

jx � mdjf ðxÞdx ð23Þ
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We obtained MD(μ) and MD(md) using the following relationships:

MDðmÞ ¼
Zm

0

m � xð Þf ðxÞdxþ
Z1

m

x � mð Þf ðxÞdx

¼ mFðmÞ �
Zm

0

xf ðxÞdx � m 1 � FðmÞ½ � þ

Z1

m

xf ðxÞdx∵
Z1

m

f ðxÞdx ¼
Z1

0

f ðxÞdx �
Zm

0

f ðxÞdx

2

4

3

5

¼ 2mFðmÞ � 2mþ 2

Z1

m

xf ðxÞdx: ∵
Zm

0

xf ðxÞdx ¼
Z1

0

xf ðxÞdx �
Z1

m

xf ðxÞdx

2

4

3

5

ð24Þ

Likewise, MDðmdÞ ¼

Zmd

0

md � xð Þf ðxÞdxþ
Z1

md

x � mdð Þf ðxÞdx

¼ mdFðmdÞ �

Zmd

0

xf ðxÞdx � md 1 � FðmdÞ½ � þ

Z1

md

xf ðxÞdx

¼ 2mdFðmdÞ � m � md þ 2

Z1

md

xf ðxÞdx:

ð25Þ

We have to calculate

Z1

m

xf ðxÞdx in terms of quantile function such as

Z1

u

QðuÞdu.

Z1

m

xf ðxÞdx ¼
1

aRðmÞ

X1

l¼0

X1

p¼0

X1

q¼0

� 1ð Þ
q
apð1Þð� dÞ

pþ1

y

l þ 1

pþ 1

y
q

0

@

1

A

q
l
þ l � 1

l

0

@

1

A 1 � FðmÞf g
lþ1ð Þ

h i
:

Likewise,

Z1

md

xf ðxÞdx ¼
1

aRðmdÞ

X1

l¼0

X1

p¼0

X1

q¼0

� 1ð Þ
q
apð1Þð� dÞ

pþ1

y

l þ 1

pþ 1

y
q

0

@

1

A

q
l
þ l � 1

l

0

@

1

A 1 � FðmdÞf g
lþ1ð Þ

h i
:

Finally, the Eqs (24) and (25) becomes,

MDðmÞ ¼ 2mFðmÞ � 2mþ 2
1

aRðmÞ

X1

l¼0

X1

p¼0

X1

q¼0

� 1ð Þ
q
apð1Þð� dÞ

pþ1

y

l þ 1

pþ 1

y

q

0

@

1

A

q
l
þ l � 1

l

0

B
@

1

C
A 1 � FðmÞf g

lþ1ð Þ
h i

:
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and

MDðmdÞ ¼ 2mdFðmdÞ � m � md þ 2
1

aRðmdÞ

X1

l¼0

X1

p¼0

X1

q¼0

� 1ð Þ
q
apð1Þð� dÞ

pþ1

y

lþ 1

pþ 1

y

q

0

@

1

A

q
l
þ l � 1

l

0

B
@

1

C
A 1 � FðmdÞf g

lþ1ð Þ
h i

:

Order statistics

Order statistics have been extensively applied in many fields of statistics such as reliability

and life testing. Let, X1, X2, . . ., Xn random sample from (4) and X1:n� X2:n� . . .� Xn:n

corresponding order statistics. The probability density function of rth order statistics say Xr:n; 1

� r� n [33] is given by;

fr:nðxÞ ¼
n!

ðr � 1Þ!ðn � rÞ!
f ðxÞ FðxÞ½ �

r� 1
1 � FðxÞ½ �

n� r
ð26Þ

We apply the preposition of (1) and (2) in Eq (26) then the equation becomes,

f
r:n
ðxÞ ¼

n!

r � 1ð Þ! n � rð Þ!

X1

i¼0

X1

j¼0

Fije
aðiþjÞxðrÞ 1 �

X1

i¼0

X1

j¼0

Zije
ajxðrÞ

" #r� 1
X1

i¼0

X1

j¼0

Zije
ajxðrÞ

" #n� r

ð27Þ

When, r = n then from Eq (27), the pdf of the largest order statistics Xn:n is given by

fn:nðxÞ ¼ n
X1

i¼0

X1

j¼0

Fije
aðiþjÞxðnÞ 1 �

X1

i¼0

X1

j¼0

Zije
ajxðnÞ

" #n� 1

; xðnÞ > 0:

Similarly, r = 1, then from Eq (27), the pdf of smallest order statistics x1:n is given by

f1:nðxÞ ¼ n
X1

i¼0

X1

j¼0

Fije
aðiþjÞxð1Þ

X1

i¼0

X1

j¼0

Zije
ajxð1Þ

" #n� 1

; xð1Þ > 0:

Bonferroni and Lorenz curve

Bonferroni and Lorenz curve has been proposed by Bonferroni [33]. To measure poverty and

income, Bonferroni and Lorenz curves are widely used. Also, such types of curves are widely

used in other fields like demography, medicine, reliability, insurance and many others.

Methods of estimation

We have to estimate the value of unknown parameters of the proposed model by maximum

likelihood estimation, method of least square, weighted least square, and Cramér von miss

technique.

Maximum Likelihood Estimation (MLE)

Let, x1, x2, . . ., xn are random sample from EOLE distribution with parameters (α, θ, λ and δ),

then likelihood function of proposed distribution is the product of nth time of sample PDF
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which is ‘ðx;F
~
Þ ¼

Yn

i¼1

f ðxi;F
~
Þ. Where, F

~
is the parameter space which belongs to (α, θ, λ and

δ). Therefore, the log-likelihood function of the proposed distribution is

lnð‘Þ ¼ n ln
ayl

d

� �

þ a
Xn

i¼1

xi þ ðy � 1Þ
Xn

i¼1

ln eaxi � 1ð Þ � lþ 1ð Þ
Xn

i¼1

ln 1þ
1

d
eaxi � 1ð Þ

y

� �

ð28Þ

The parameters are obtained from maximum likelihood estimation by partial differentiate

(28) with respect to corresponding parameters. Let, xi ¼ eaxi and ui ¼ eaxi � 1 we have;

@lnð‘Þ
@a

¼
n
a
þ
Xn

i¼1

xi þ y � 1ð Þ
Xn

i¼1

xixi
ui

� �

� lþ 1ð Þy
Xn

i¼1

xixiui
y� 1

dþ uyi

� �

; ð29Þ

@lnð‘Þ
@y

¼
n
y
þ
Xn

i¼1

lnðuiÞ � lþ 1ð Þ
Xn

i¼1

uyi lnðuiÞ
dþ uyi
� �

( )

; ð30Þ

@lnð‘Þ
@l

¼
n
l
�
Xn

i¼1

ln 1þ
uyi
d

� �

; ð31Þ

@lnð‘Þ
@d

¼ �
n
d
þ

lþ 1ð Þ

d

Xn

1¼1

uyi

dþ uyi
� �

( )

: ð32Þ

Finally, solve non-linear equations
@lnð‘Þ
@a
¼ 0,

@lnð‘Þ
@b
¼ 0,

@lnð‘Þ
@l
¼ 0 and

@lnð‘Þ
@d
¼ 0 for α, θ, λ and

δ. We get the maximum likelihood estimate value (â, ŷ, l̂ and d̂) of the parameters (α, θ, λ and

δ). Likewise, for the interval estimation of parameters (α, θ, λ and δ), we have to calculate the

observed information matrix. The observed information matrix is

I ¼

Iaa Iay Ial Iad
Iay Iyy Iyl Iyd
Ial Iyl Ill Ild
Iad Iyd Ild Idd

2

6
6
6
6
4

3

7
7
7
7
5

ð33Þ

The elements of the observed information matrix are in Appendix B of S1 Appendix. Let

F
~
¼ a; y; l; dð Þ

T
denote the parameter space and the corresponding MLE of F

~
as

F̂
~
¼ â; ŷ; l̂; d̂
� �T

, then F̂
~
� F

~

� �
! N4 0; I F

~

� �� �� 1
� �

follows the asymptotic multivariate

normal distribution, where I F
~

� �
is the Fisher’s information matrix. For practical proposed,

we directly calculate the observed information matrix from Eq (28) and convert it into Hussain

matrix. Finally, we calculate the variance-covariance matrix from the inverse of the Hussain
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matrix is

� H F
~

� �

F
~
¼ F̂

~

� �� 1

¼

varðâÞ covðâ; ŷÞ covðâ; l̂Þ covðâ; d̂Þ

covðâ; ŷÞ varðŷÞ covðŷ; l̂Þ covðŷ; d̂Þ

covðâ; l̂Þ covðŷ; l̂Þ varðl̂Þ covðl̂; d̂Þ

covðâ; d̂Þ covðŷ; d̂Þ covðl̂; d̂Þ varðd̂Þ

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð34Þ

Furthermore, the asymptotic normality of MLEs, approximate 100(1 − γ)% confidence

intervals of α, θ, λ and δ can be constructed as;

â � zg=2SEðâÞ; ŷ � zl=2SEðŷÞ l̂ � zg=2SEðl̂Þ and d̂ � zg=2SEðd̂Þ

where zγ/2 is the upper percentile of standard normal variate.

Method of Least-Square Estimation (LSE)

Initially, the least square estimation and weighted least square estimate were introduced to esti-

mate the parameters of beta distribution [35, 36]. This technique has been used to estimate

unknown parameters of proposed distribution by minimizing the concerning parameters α, θ,

λ and δ, which is

U x; a; y; l; dð Þ ¼
Xn

k¼1

F xkð Þ �
k

nþ 1

� �2

¼
Xn

k¼1

1 � 1þ
1

d
eaxk � 1ð Þ

y

� �� l

�
k

nþ 1

" #2

: ð35Þ

The parameter’s values are obtained from the least square method by partial differentiation

in Eq (35) concerning corresponding parameters.

Let, xk ¼ eaxk and uk ¼ eaxk � 1, and tk ¼ 1þ 1

d
eaxi � 1ð Þ

y
, then Eq (35) becomes;

@U
@a
¼

2ly

d

Xn

k¼1

xkxku
y� 1

k t
� ðlþ1Þ

k 1 � t� lk �
k

nþ 1

� �

; ð36Þ

@U
@y
¼

2l

d

Xn

k¼1

xku
y

k lnðukÞt
� ðlþ1Þ

k 1 � t� lk �
k

nþ 1

� �

; ð37Þ

@U
@l
¼ 2
Xn

k¼1

t� lk ln 1þ
uyk
d

� �

1 � t� lk �
k

nþ 1

� �

; ð38Þ

@U
@d
¼ �

2l

d
2

Xn

k¼1

uykt
� ðlþ1Þ

k 1 � t� lk �
k

nþ 1

� �

: ð39Þ

We solve non-linear equations @U
@a
¼ 0, @U

@y
¼ 0, @U

@l
¼ 0 and @U

@d
¼ 0 to estimate the unknown

parameters of the proposed distribution by minimizing the function concerning parameters α,

θ, λ and δ.
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Weighted least-square estimation

The weighted least-squares estimation is a technique to determine the unknown parameters by

minimizing concerning parameters α, θ, λ and δ is

W X; a; y; l; dð Þ ¼
Xn

k¼1

wk F xkð Þ �
k

nþ 1

� �2

;

¼
Xn

k¼1

nþ 1ð Þ
2 nþ 2ð Þ

kðn � kþ 1Þ
1 � 1þ

1

d
ðeaxk � 1Þ

y

� �� l

�
k

nþ 1

" #2

:

ð40Þ

Where, wk ¼
1

VðXðkÞÞ
¼

nþ1ð Þ2 nþ2ð Þ

k n� kþ1ð Þ
is the weight for the proposed model. Hence, the weighted

least-square estimators of α, θ, λ and δ respectively can be obtained by partial differentiate

with respect to corresponding parameters in Eq (40) and set the result equal to zero

@W
@a
¼

2ly

d

Xn

k¼1

xkwkxku
y� 1

k t
� ðlþ1Þ

k 1 � t� lk �
k

nþ 1

� �

; ð41Þ

@W
@y
¼

2l

d

Xn

k¼1

wkxku
y

k lnðukÞt
� ðlþ1Þ

k 1 � t� lk �
k

nþ 1

� �

; ð42Þ

@W
@l
¼ 2
Xn

k¼1

wkt
� l

k ln 1þ
uyk
d

� �

1 � t� lk �
k

nþ 1

� �

; ð43Þ

@W
@d
¼ �

2l

d
2

Xn

k¼1

wku
y

kt
� ðlþ1Þ

k 1 � t� lk �
k

nþ 1

� �

: ð44Þ

We solve non-linear equations @W
@a
¼ 0, @W

@y
¼ 0, @W

@l
¼ 0 and @W

@d
¼ 0 to estimate unknown

parameters of proposed distribution by minimizing function concerning parameters α, θ, λ
and δ.

Method of Cramér-Von-Mises (CVM)

Cramér-von-Mises is minimum distance estimators [36]. It provides empirical evidence that

the bias of the estimator is smaller than the other minimum distance estimators. The CVM

estimators are achieved and the function has minimized C(α, θ, λ, δ)

C X; a; y; l; dð Þ ¼
1

12n
þ
Xn

k¼1

F xk:nja; y; l; dð Þ �
2k � 1

2n

� �2

;

Cðx; a; y; l; dÞ ¼
1

12n
þ
Xn

k¼1

1 � 1þ
1

d
ðeaxk � 1Þ

y

� �� l

�
2k � 1

2n

" #2

:

ð45Þ
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Cramér-Von-Mises estimators of α, θ, λ and δ respectively can be obtained by partial differ-

entiate with respect to corresponding parameters in Eq (45) and set the result equal to zero

@C
@a
¼

2ly

d

Xn

k¼1

xkxku
y� 1

k t
� ðlþ1Þ

k 1 � t� lk �
2k � 1

2n

� �

; ð46Þ

@C
@y
¼

2l

d

Xn

k¼1

xku
y

k lnðukÞt
� ðlþ1Þ

k 1 � t� lk �
2k � 1

2n

� �

; ð47Þ

@C
@l
¼ 2
Xn

k¼1

t� lk ln 1þ
uyk
d

� �

1 � t� lk �
2k � 1

2n

� �

; ð48Þ

@C
@d
¼ �

2l

d
2

Xn

k¼1

uykt
� ðlþ1Þ

k 1 � t� lk �
2k � 1

2n

� �

: ð49Þ

We solve non-linear equations @C
@a
¼ 0, @C

@y
¼ 0, @C

@l
¼ 0 and @C

@d
¼ 0 to estimate unknown

parameters of proposed distribution by minimizing the function concerning parameters α, θ,

λ and δ.

Results and discussion

Data analysis has been done in two-phase. Firstly, we have done a simulation study and sec-

ondly, we have done real data analysis. In real data analysis, two data sets have been used to

validate the proposed model: (i) The first data set is the number of deaths per day due to the

COVID-19 first wave in Nepal. (ii) The second data set is failure stresses (in GPa) of single car-

bon fibers of lengths 50 mm.

Simulation study

In a simulation study, we estimate the parameters of the proposed distribution by maximum

likelihood estimation. The performance of ML estimators is assessed through their average

bias and Mean Square Error (MSEs) for different sample sizes. For the estimation purpose,

10000 random samples of sizes 50, 200, 500, 750 are generated with different combinations of

(α, θ, λ and δ). The iterative technique is used to estimate the ML parameters of each sample

size. We observed that average bias and MSEs for individual parameters fall to zero when sam-

ple size increases as our expectation, which provides the consistency of the estimators.

(Table 1).

Real data analysis

I. Number of deaths per day due to COVID-19 in Nepal. The COVID-19 is a worldwide

pandemic of coronavirus disease in 2019 including Nepal. The first COVID case was con-

firmed on 23 January 2020 and the first death was on 14 May in Nepal. Due to the COVID-19

pandemic, the government has emphasized a nationwide lockdown from March 24, 2020, to

July 21, 2020. Following that, the government concentrated its efforts on the PCR test and

other health-related initiatives. Every day, the ministry of health and population have been

provided the data regarding COVID-19 issues, such as test positive rate, the number of deaths,

the number of infected, and many others. During the research period, researchers collected

the data daily from 23 January 2019 to 24 December 2019 all over the country. Every day, the

ministry of health and the population of Nepal (MOHP) has been reported the data [26].
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Among these data, we select the number of deaths to validate the proposed model. A total of

1,808 deaths were recorded in Nepal at the end of 24 December 2020 due to COVID-19 first

wave. Every day, on average, 5.4� 6 people were died due to COVID-19 (from 23 January to

24 December). The summary finding of daily deaths has been presented in the following table

(Table 2).

Table 1. MLE, average bias and MSEs of EOLE distribution.

Parameter values α = 0.5, θ = 1.0, λ = 1.5, δ = 1.0 α = 2.5, θ = 2.0, λ = 2.5, δ = 1.0

Parameters n MLE Bias MSEs MLE Bias MSEs

α 50 0.8712 -0.1287 0.2652 0.2920 -0.7079 0.9834

200 0.7571 -0.2428 0.2441 0.2732 -0.7267 0.9574

500 0.6517 -0.3483 0.1286 0.2819 -0.7581 0.9455

750 0.7096 -0.3903 0.1148 0.1209 -0.8791 0.9386

θ 50 1.6965 0.2918 10.1400 0.2372 -1.2627 2.9282

200 1.7918 0.1965 5.9954 0.2275 -1.2724 2.0381

500 1.6601 0.1601 1.0341 0.2439 -1.2860 1.9289

750 1.8159 0.1159 0.1943 0.0654 -1.4345 1.2644

λ 50 1.4130 -0.4100 1.7804 0.1606 -1.8393 3.5623

200 1.4805 -0.4750 1.0475 0.1263 -1.8736 3.4641

500 1.5249 -0.5194 0.2396 0.1267 -1.8932 3.0623

750 1.5899 -0.5869 0.2277 0.1096 -2.1096 2.7886

δ 50 2.9011 -0.4011 20.3715 1.0076 -1.4923 14.5634

200 1.3166 -1.1833 8.6108 0.8873 -1.6126 10.5828

500 0.6411 -1.8588 4.3313 0.6477 -1.8522 9.6764

750 0.5673 -1.9326 4.0774 0.7146 -1.9853 6.5956

Parameter values α = 1.5, θ = 1.5, λ = 2.0, δ = 3.0 α = 1.5, θ = 2.0, λ = 1.5, δ = 2.0

α 50 2.7191 0.7190 29.9028 1.6033 0.6033 0.7699

200 3.3451 0.3450 21.5646 1.4243 0.4243 0.6646

500 2.5954 0.2954 20.7377 1.6188 0.4188 0.6493

750 2.8148 0.0814 19.0672 1.4047 0.4047 0.3487

θ 50 2.5606 0.0606 0.2102 1.2169 -0.2830 4.0344

200 2.5193 0.0193 0.1046 1.4164 -0.3835 2.0576

500 2.3216 -0.1789 0.0578 1.5773 -0.9226 1.7287

750 2.3722 -0.1977 0.0255 1.9673 -2.4673 1.7180

λ 50 2.7600 -0.2399 5.2628 1.2179 -0.5820 1.7154

200 3.0469 -0.2469 1.3171 1.3851 -0.6148 0.5215

500 2.4598 -0.5401 0.8365 1.3787 -0.6212 0.1036

750 2.4022 -0.5977 0.5152 1.2461 -0.7538 0.0435

δ 50 3.9810 0.4810 41.5684 8.1752 23.9737 21.4625

200 3.2986 -0.2013 14.7965 5.3497 11.9746 15.6388

500 3.2422 -0.5722 13.2541 14.4746 5.6752 14.9338

750 3.0160 -0.5951 12.3718 26.4737 2.8497 11.7818

https://doi.org/10.1371/journal.pone.0269450.t001

Table 2. Descriptive statistic of the number of death due to COVID-19.

Minimum Q1 Median Mean Q3 Maximum

0.0 0.0 1.0 4 10 30

https://doi.org/10.1371/journal.pone.0269450.t002
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To validate the proposed model, at least two deaths occurred every day as consideration for

sample data. In the last 153 days, every day, at least two people have died, as reported below

[26].

2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 4, 2, 5, 5, 3, 2, 4, 4, 8, 4, 4, 3, 2, 3, 7, 6, 6, 11, 9, 3, 8, 7, 11, 8, 12, 12, 14,

7, 11, 12, 6, 14, 9, 9, 11, 6, 6, 5, 5, 14, 9, 15, 11, 8, 4, 7, 11, 10, 16, 2, 7, 17, 6, 8, 10, 4, 10, 7, 11, 11,

8, 7, 19, 9, 15, 12, 10, 14, 22, 9, 18, 12, 19, 21, 12, 12, 18, 8, 26, 21, 17, 13, 5, 15, 14, 11, 17, 16, 17,

23, 24, 20, 30, 18, 18, 17, 21, 18, 22, 26, 15, 13, 13, 6, 9, 17, 12, 17, 22, 7, 16, 16, 24, 28, 23, 23,19,

25, 29, 21, 9, 13, 16, 10, 17, 20, 23, 14, 12, 11, 15, 9, 18, 14, 13, 6, 16, 12, 11, 7, 3, 5, 5.

To fit the data, we have to check our data set by graphical representation like TTT plot and

box plot.

Total time test plot

TTT plot is an important graphical method for checking whether or not our data set can be

applied in a particular model. Plots can be easily obtained by using the TTT function of ade-

quacy model package on R software. It is used to validate the hazard rate function [37, 39]. The

empirical version of the TTT plot is

T
r
n

� �
¼

Xr

i¼1

yi:n þ ðn � rÞyr:n

Xr

i¼1

yi:n

;

where, yr:n (r = 1, 2, . . ., n) and yi:n (i = 1, 2, . . ., n) are the order statistics of the sample. The

shape of the TTT plot is either convex for decreasing failure rate, concave for increasing failure

rate or bathtub shaped. Here, the TTT plot of the illustrative data set is concave for increasing

failure rate. It indicates that the data set is valid for further analysis [Fig 2 (left panel)] [37].

Box plot

The summary finding of the data set is present by using the box plot. It provides a clear picture

of the descriptive characteristics of the illustrative data set [Fig 2 (right panel)].

Fig 2. TTT plot (left panel) and box plot (right panel).

https://doi.org/10.1371/journal.pone.0269450.g002
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Parameter estimation

We computed the value of the parameter by maximizing the log-likelihood function in Eq

(28), minimizing the least square method in Eq (35), weighted least square Eq (40), and the

Cramér Von Mises method in Eq (45) directly by using maxLik () function on R software [38,

39]. Finally, we have to present the estimated value of â; ŷ; l̂ and d̂
� �

; which were computed

by different methods (Table 3).

Distribution characteristics

After estimating the value of the parameter, we determined the characteristics of the proposed

distribution from the illustrative data set. The finding of descriptive statistics showed that the

mean is greater than the median, which is also higher than the mode, and value of skewness is

positive, which shows that the proposed model is positively skewed. In the case of kurtosis, the

distribution is approximately symmetrical, but towards platykurtic (Table 4).

Validation of estimation methods

Various methods have been used in the literature to estimate unknown parameters. Among

them, we used four methods named: MLE, LSE, WLSE, and CVM. Again, we have to check

the validation of the different methods by using different goodness of fit criteria. The well-

known criteria are Kolmogorov-Simnorov (KS) test, Anderson’s darling (A2) test, and Cramér

Von Mises (W) test. The p-values of the KS test, A2 test, and W test are insignificant with find-

ing of MLE, but significant with the finding of LSE, WLSE, and CVM. Therefore, MLE has sat-

isfied the good behavior of goodness of fit (Table 5).

Furthermore, we compared the empirical distribution and theoretical cumulative distribu-

tion of the proposed model, indicating that the curve of empirical distribution is closer with

the finding of MLE but does not closer with other findings (LSE, WLSE, and CVM) in the

illustrative data set [Fig 3 (left panel)]. Also, we plot the theoretical PDF of the intended model

by using different estimated values [Fig 3 (right panel)]. In both graphical demonstrations, the

estimated value of MLE is more appropriately fitted than others.

Table 3. Estimated parameters’ value from four different methods.

Parameters MLEs LSE WLSE CVM

â 0.02665 0.12531 0.04270 0.000392

(0.0096) (0.01889) (0.00137) (-)

ŷ 1.54569 4.80472 5.09900 1.143173

(0.12369) (0.9120) (0.07107) (0.4552)

l̂ 28.60349 0.06219 0.13710 1.007677

(4.99647) (0.0025) (0.00250) (0.25886)

d̂ 7.52539 0.00063 0.0000018 0.001703

(5.2967) (-) (-) (0.02582)

Standard error in parenthesis.

https://doi.org/10.1371/journal.pone.0269450.t003

Table 4. Descriptive characteristic of the proposed model.

Mean Median Mode Standard deviation Skewness Kurtosis

0.03148474 0.02592923 0.07018629 0.01871639 0.7133013 2.363588

https://doi.org/10.1371/journal.pone.0269450.t004
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Relationship between the predictive probability of number of deaths and

test Positive rate

Again, we have to estimate the parameter value of EOLE distribution by using the test posi-

tive rate per day from the MLE technique. The estimated parameter’s value of EOLE distri-

bution with Standard Error (SE) are â ¼ 0:0676 ð0:035Þð Þ; ŷ ¼ 2:726 0:410ð Þ
� �

;

l̂ ¼ 1:556 0:514ð Þ
� �

and, d̂ ¼ 1:105 2:113ð Þ
� �

.

Furthermore, we have to predict the probability of test positive rate and probability of num-

ber of deaths per day. Finally, we have to determine the relationship among these variables.

The finding revealed that, there is a positive relationship among these variables, which is statis-

tically significant (r = 0.2762, p-value = 0.00054) with a 95% confidence interval (0.12291–

0.41662).

The finding concludes that the test positive rate will increase; the death rate should be

increased [Fig 4].

Model comparisons/selections

Model selection is an important and integral part of data analysis. It is important to increase

computing power to fit more realistic, flexible, and complex models. We compared our pro-

posed model with eleven competitive models namely; exponentiated half logistic exponential

(EHLE) [40], Marshall-Olkin logistic exponential (MOLE) [41], Lomax exponential Weibull

(LEW) [42], exponentiated generalized inverted exponential (EGIE) [43], generalized inverted

generalized exponential (GIGE) [44], generalized odd inverted exponential exponential

Table 5. Comparison with a p-value of KS, A2 and W statistics in different methods.

Methods KS (p-value) A2(p-value) W(p-value)

MLE 0.044551 (0.5448) 0.52371(0.7225) 0.060119(0.814)

LSE 0.17277(0.0001079) 13.388(3.922×10−6) 2.2771(2.67×10−6)

WLSE 0.37789(2.2×10−16) 35.44(3.922×10−6) 7.5955(2.2×10−16)

CVM 0.15457(0.0006679) 13.196(3.922×10−6) 2.1222(6.064×10−6)

https://doi.org/10.1371/journal.pone.0269450.t005

Fig 3. Plot the empirical distribution function with estimated CDF (left panel), histogram with estimated PDF (right

panel).

https://doi.org/10.1371/journal.pone.0269450.g003
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(GOIEE) [45], Marshall–Olkin power generalized Weibull (MOPGW) [46], odd Lomax expo-

nential (OLE) [47], type I half-logistic Fréchet (TIHLF) [48], Lindley inverse Weibull (LIW)

[36] and half logistic Nadarajah Haghighi extension of exponential (HLNHE) [19]. To com-

pare the proposed models with other competitive models, firstly we determine the value of

parameters by maxlik function () from R software by solving the nonlinear equation [38, 39].

The estimated parameter value of each distribution along with standard error are present in

the following table (Table 6). The PDF of each competitive model is in Appendix C of S1

Appendix.

We have compared different goodness of fit criteria like as; (i) values of log-likelihood, (ii)

Akaike’s information criterion, (iii) Bayesian information criterion, (iv) corrected Akaike’s

information criterion, and (v) Hannan-Quinn information criterion. Each criteria can be

calculated as following relation; AIC ¼ � 2‘ðŷÞ þ 2p; BIC ¼ � 2‘ðŷÞ þ p‘nðnÞ;
CAIC ¼ AIC þ 2pðpþ1Þ

n� p� 1
; and HQIC ¼ � 2‘ðŷÞ þ 2p‘nð‘nðnÞÞ. Where, p is the number of

parameters in the model and n is the total sample under consideration.

According to -2LL, AIC, BIC, CIAC and HQIC, the least value among the competitive

models is superior to others. The finding reveals that the value of the intended model has

smaller as compared to all other eleven competitive models. Therefore, the proposed model is

superior than others followed by MOPGW. The model GIGE is the least fitted model in the

given illustrative data set (Table 7).

Furthermore, we have compared the empirical distribution and theoretical cumulative dis-

tribution of the proposed model, indicating that both curves are closer in the illustrative data

set. Likewise, the theoretical CDF of nine competitive models namely, EHLE, MOLE, LEW,

EGIE, GIGE, MOPGW, OLE, LIW, and HLNHE compared to the theoretical CDF the pro-

posed model [Fig 5 (left panel)]. Also, the theoretical PDF of the intended model is compared

Fig 4. Relationship between predictive prob-ability of number of death and test positive rate.

https://doi.org/10.1371/journal.pone.0269450.g004
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with all other competitive models [Fig 5 (right panel)]. The finding suggests that the proposed

model is adequately fit in illustrative data set than all other competitive models.

II. Failure stresses (In Gpa) of single carbon fibers of lengths 50 mm data set. The sec-

ond data set “on failure stresses (in GPa) of single carbon fibers of lengths 50 mm” [49] has

Table 6. Estimated value of parameters: Proposed as well as competitive models.

Models α̂ β̂ λ̂ δ̂ γ̂ θ̂

EOLE 0.02665 - 28.60349 7.52539 - 1.54569

(0.0096) (4.9964) (5.296) (0.0096)

EHLE 0.09536 1.90552 1.75018 - - -

(0.40547) (0.2216) (7.4483)

MOLE 1.28741 - 0.14677 - - 5.58735

(0.2403) (0.0449) (3.0400)

LEW 6.89946 1.05636 - - - 0.085955

(0.00049) (-) (0.00695)

EGIE 7.62274 0.23071 44.14876 - - -

(-) (0.01863) (-)

GIGE 2.3108 - 4.8503 - 2.4017 -

(0.3062) (-) (-)

GOIEE - - 0.61419 - 4.31244 0.15720

(0.1901) (2.0892) (0.0137)

MOPGW 0.78360 1.91966 0.01048 - - -

(0.2434) (0.2191) (0.0037)

OLE 3.64656 14.66365 - - - 0.12644

(0.9066) (4.1751) (0.0187)

TIHLF 111.25627 0.46544 23.3395 - - -

(2.6417) (0.0149) (1.9467)

LIW 8.6377 0.7461 - - - 4.1896

(0.8695) (0.1045) (1.4514)

HLNHE 0.04697 1.63999 1.33342 - - -

(-) (0.2991) (-)

Standard error in parenthesis.

https://doi.org/10.1371/journal.pone.0269450.t006

Table 7. Calculated value of -2LL, AIC, BIC, CIAC, and HQIC of different models.

Models ℓðθ̂Þ -2LL AIC BIC CIAC HQIC

EOLE -496.8049 993.6098 1001.609 1013.732 1001.879 1006.534

EHLE -499.7089 999.4178 1005.418 1014.509 1005.579 1009.111

MOLE -499.7126 999.4252 1005.425 1014.517 1005.586 1009.118

LEW -512.8346 1025.669 1031.669 1040.761 1031.830 1035.362

EGIE -507.7668 1015.534 1021.534 1030.625 1021.695 1025.227

GIGE -520.2300 1040.460 1046.460 1055.551 1046.621 1050.153

GOIEE -498.4237 996.8474 1002.847 1011.939 1003.008 1006.540

MOPGW -497.9371 995.8742 1001.874 1010.966 1002.035 1005.567

OLE -499.5843 999.1686 1005.169 1014.260 1005.330 1008.862

TIHLF -502.0950 1004.190 1010.190 1019.281 1010.351 1013.883

LIW -514.9643 1029.929 1035.929 1045.020 1036.090 1039.622

HLNHE -506.3778 1012.756 1018.756 1027.847 1018.917 1022.449

https://doi.org/10.1371/journal.pone.0269450.t007
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been used to validate the proposed distribution. The illustrative data set were used by different

authors to validate other distributions like, a new extension of the generalized half logistic dis-

tribution [50] and weighted Lindley distribution [51].

1.339, 1.434, 1.549, 1.574, 1.589, 1.613, 1.746, 1.753, 1.764, 1.807, 1.812, 1.84, 1.852, 1.852,

1.862, 1.864,1.931, 1.952, 1.974, 2.019, 2.051, 2.055, 2.058, 2.088, 2.125, 2.162, 2.171, 2.172,

2.18, 2.194, 2.211, 2.27, 2.272,2.28, 2.299, 2.308, 2.335, 2.349, 2.356, 2.386, 2.39, 2.41, 2.43,

2.431, 2.458, 2.471, 2.497, 2.514, 2.558, 2.577, 2.593, 2.601, 2.604, 2.62, 2.633, 2.67, 2.682, 2.699,

2.705, 2.735, 2.785, 3.02, 3.042, 3.116, 3.174.

Now, we have used an illustrative data set to estimate the parameters value of the proposed

model. The estimated value of the parameters â; ŷ; l̂ and d̂
� �

are (0.120098, 6.208652,

3.391613 and 0.003138) respectively. Furthermore, we used the KS test, Anderson’s darling

test (A2), and Cramér Von Mises test (W) to assess the goodness of fit. The test values for each

statistic are 0.038742 (p-value = 0.8227), 0.21115 (p-value = 0.9871), and 0.025715 (p-value =

0.9886), respectively. The p-values of each statistic support the null hypothesis, indicating that

the proposed model has a better fit in the recommended data set. Similarly, we compared the

proposed model to other competitive models using -2LL, AIC, BIC, CIAC, and HQIC. Firstly,

we estimate the values of the model’s parameters and present them in the table (Table 8).

The lowest value of -2LL, AIC, BIC, CIAC, and HQIC in the proposed model, among all

competitive models, indicates that the proposed model is superior to others (Table 9).

Similarly, the built model is appropriately fit in terms of graphical appearance than other

competitive models [Fig 6].

Conclusion

This study suggested a new four-parameter Exponentiated Odd Lomax Exponential (EOLE)

distribution by compounding an exponentiated odd function with Lomax distribution as a

generator. Some important properties of the new distribution are investigated such as quintile

function and median; asymptotic properties and mode; moments; mean residual life, mean

path time; mean deviation; order statistics; and Bonferroni & Lorenz curve. Further, we have

employed three well-known estimation methods to estimate the model parameters namely, the

maximum likelihood estimation, least-square estimation, and Cramér-Von-Mises methods.

Fig 5. Estimated fitted CDF (left panel), Estimated fitted densities (right panel).

https://doi.org/10.1371/journal.pone.0269450.g005
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Table 8. Estimated parameter values of all competitive models.

Models α̂ β̂ λ̂ δ̂ γ̂ θ̂

EOLE 0.1201 - 3.3916 0.00314 - 6.2086

(0.08131) (4.7154) (0.0122) (1.0895)

EHLE 1.172 88.795 2.168 - - -

(8.931) (27.318) (16.395)

MOLE 5.7126 - 0.4646 - - 30.9984

(0.7186) (0.0318) (8.7419)

GOIEE - - 11.8619 - 14.1011 2.5457

(-) (-) (0.1892)

MOPGW 1.5665 4.1652 0.01511 - - -

(0.5538) (0.4992) (0.0071)

OLE 1.7423 249.616 2.2136 - - -

(0.5431) (-) (0.1738)

HLNHE 1.3485 3.4176 0.0118 - - -

(0.32677) (0.41701) (0.01005)

Standard error in parenthesis.

https://doi.org/10.1371/journal.pone.0269450.t008

Table 9. Comparison of -2LL, AIC, BIC, CIAC, and HQIC value among models.

Models ℓðθ̂Þ -2LL AIC BIC CIAC HQIC

EOLE -35.05741 70.1148 78.1148 86.8123 78.78146 80.5465

EHLE -38.3148 76.6296 82.6296 89.1527 83.0230426 85.2034

MOLE -36.0807 72.1614 78.1609 84.6845 78.5543426 80.7352

GOIEE -38.3202 76.6404 82.6403 89.1635 83.0337426 85.2142

MOPGW -39.1957 78.3914 84.3914 90.9145 84.7848426 86.9652

OLE -44.9061 89.8122 95.8123 102.335 96.2057426 98.386

HLNHE -53.7108 107.422 113.4216 119.945 113.815043 115.995

https://doi.org/10.1371/journal.pone.0269450.t009

Fig 6. Estimated fitted CDF (left panel), Estimated fitted densities (right panel) of carbon fiber data set.

https://doi.org/10.1371/journal.pone.0269450.g006
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To verified the different theoretical finding we have applied a simulation study and two real

data sets, ‘‘Number of deaths per day due to COVID-19 first wave in Nepal” and ‘‘failure

stresses (in GPa) of single carbon fibers of lengths 50 mm”. It has a significantly positive rela-

tionship between predicted test positive rate and the predicted number of deaths per day.

Finally, we analyzed the illustrative data set and found that the proposed model provides a rea-

sonably better fit as compared to some other well-known models. Therefore, the EOLE distri-

bution can be used as an alternative model in the future to analyze survival and lifetime data.
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