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Simple Summary: Diffuse intrinsic pontine gliomas are malignant brain tumors which arise from
the pons in children. These tumors are incurable and nearly all the patients die within a year after
diagnosis. To identify effective therapeutics, the molecular mechanisms of tumorigenesis need be
comprehensively understood and advanced mouse DIPG models have to be developed for further
therapeutic assessment. Over the past decade, remarkable research progress has been made, leading
to several ongoing clinical trials. In this review, we update the molecular findings and summarize
innovative mouse models generated in the past few years, that are used to understand DIPG and
help identify potential treatments. We also prospect future directions for the development of next
generation DIPG mouse models.

Abstract: Diffuse intrinsic pontine gliomas (DIPGs) account for ~15% of pediatric brain tumors,
which invariably present with poor survival regardless of treatment mode. Several seminal studies
have revealed that 80% of DIPGs harbor H3K27M mutation coded by HIST1H3B, HIST1H3C and
H3F3A genes. The H3K27M mutation has broad effects on gene expression and is considered a tumor
driver. Determination of the effects of H3K27M on posttranslational histone modifications and gene
regulations in DIPG is critical for identifying effective therapeutic targets. Advanced animal models
play critical roles in translating these cutting-edge findings into clinical trial development. Here, we
review current molecular research progress associated with DIPG. We also summarize DIPG animal
models, highlighting novel genomic engineered mouse models (GEMMs) and innovative humanized
DIPG mouse models. These models will pave the way towards personalized precision medicine for
the treatment of DIPGs.

Keywords: diffuse intrinsic pontine glioma; molecular biology; patient derived xenografts; geneti-
cally engineered mouse model; humanized mouse model

1. Introduction

Diffuse intrinsic pontine glioma (DIPG), a high-grade glioma that arises in the pons is
predominantly seen in children. This central nervous system (CNS) malignancy represents
the leading cause of brain-tumor related death [1]. Ionizing radiation extends overall
survival to a median of 11 months [2]. Numerous clinical trials have failed to identify
effective agents, or therapeutic combinations against DIPG [3]. A key to identifying
improved treatments is to enhance our biological understanding of this tumor.

DIPG molecular signature has been profiled over the last decade. Landmark studies
from multiple groups identified an epigenetic oncogenic histone H3K27M mutation in
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~80% of DIPGs [4–6]. This mutation was defined as a new entity labeled “diffuse midline
glioma H3K27M-mutant” in the 2016 World Health Organiztion (WHO) tumor classifi-
cation [7]. A number of molecular aberrations, which are potential targets for treatment
have been identified. They include RB phosphorylation (~30%) [8], p53, Wee1, STAT3,
PPM1D (9–23%) and EGFRvIII overexpression [9–13], platelet-derived growth factor re-
ceptor A (PDGFRA) (30%) and MET (26%) amplification [8,14], and ACVR1 (21%) [15–18],
PI3K-mTOR or -MAPK (62%) activation [8]. These aberrations are either independent or
concurrent with H3K27M mutations in DIPGs. More recently, multiple pathways, such
as Notch signaling [19], glycolysis and tricarboxylic acid (TCA) metabolic pathways [20],
Wilms’ tumor protein (WT1) overexpression [21,22] and FGFR2-VPS35 fusion [23] were
delineated. These pathways are also potential therapeutic targets. Altogether, these abnor-
malities indicate the molecular complexity of DIPGs. Thus, to identify effective targeting
therapeutics or combinations of such, reliable and personalized animal models are desirable
for precise preclinical evaluation prior to clinical trials.

Various animal models have been developed for the identification of potential thera-
peutics against DIPGs. One reason for this development was that historically, surgical biop-
sies for DIPGs were not performed due to the critical nature of the brainstem, limitations of
surgical techniques and histological heterogeneity within the tumor [24]. Multiple murine
gliomas induced with various carcinogens were transplanted, so called “allografts”, into
the brainstem as models for DIPGs [25]. The results from these models, however, failed to
translate into clinical trials due to differences in tumorigenesis mechanisms between these
murine gliomas and DIPGs in children. Recently, several groups have safely performed
biopsies and obtained tumor specimens from DIPG patients [26]. Moreover, adequate
autopsy DIPG specimens have been obtained for experimental purposes. With availability
of these invaluable specimens, more accurate patient-derived orthotopic xenograft (PDOX)
DIPG mouse models were and continue to be generated for pre-clinical therapeutic test-
ing [27–29]. More importantly, these specimens helped generate multiple cell-based models,
which have provided significant insights into genetic and epigenetic alterations driving
DIPGs. These insights, in conjunction with current cutting-edge gene editing techniques,
have allowed and prompted scientists to generate robust genetically engineered mouse
models (GEMMs), to understand DIPG tumorigenesis and to provide precise molecular
models for pre-clinical testing. One caveat is that the majority of xenograft models are
produced in immunodeficient athymic or NOD-SCID gamma (NSG) mice, which lack
normal immunity. Consequently, these mouse models do not mimic the human tumor
microenvironment including infiltration by immune cells. Recent work has shown that
immune cells discovered in pediatric DIPG tumor specimens are distinct and differ from
those in adult glioblastomas [30]. Generation of humanized DIPG mouse models is ur-
gently needed to explore these differences, an understanding of which will accelerate
therapeutic discovery.

In this review, we summarize current research on DIPG molecular profiling and DIPG
animal models, with emphasis on innovative GEMMs and humanized DIPG mouse models.
We also discuss the potential of advanced personalized humanized models for pre-clinical
therapeutic evaluation, which will pave the way towards personalized precision medicine
for DIPG treatment.

2. Molecular Characteristics of DIPG

Diffuse intrinsic pontine glioma (DIPG) was identified in 1926 [31]. For decades, its
biological behavior was thought to be similar to adult malignant gliomas, thus therapeutic
regimens for adult tumors were copied in children. These treatments failed to improve
patient outcomes [3], which led researchers to ask if pediatric malignant gliomas including
DIPGs fundamentally differ from adult gliomas.

Recently several groups have developed safe and feasible methods to collect biopsy tis-
sue samples from pediatric DIPG patients with minimum mortality [26,32], though routine
DIPG biopsy continues to be debated. Furthermore, autopsy samples can be acquired for ei-
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ther direct molecular profiling or development of patient-derived primary cell lines and/or
xenografts to gain insight into tumor driving mechanisms [33]. These tissues sources, as
well as high-throughput genetic technologies enabled researchers to acquire data, which
provided insight into DIPG molecular signatures. For instance, recurrent amplifications
of PDGFRA, MET and retinoblastoma protein (RB) are unique for pediatric DIPG [8,34].
These findings prove that DIPG is molecularly distinct from adult malignant gliomas.
Other groups using high-throughput genetic sequencing technologies have identified that
~80% DIPGs contain somatic point heterozygous H3.1K27M or H3.3K27M mutations [4–6],
recognized to be major oncogenic drivers in these tumors [6,35,36].

DIPGs with H3.1K27M or H3.3K27M mutations, coded by HIST1H3B, HIST1H3C
and H3F3A, respectively [37] have different clinical manifestations and gene expression
profiles. H3.1K27M tumors are usually restricted to the pons, and show a mesenchymal-
like phenotype, with an overall survival of 15 months. Tumors with H3.3K27 mutation
are found in the pons and other midline locations such as the thalamus, with an overall
survival of 9 months [38–40]. These tumors display an oligodendroglial-like phenotype
and are more resistant to radiation therapy [40]. Both H3.1K27M and H3.3K27M muta-
tions primarily influence the epigenome and are required for DIPG tumorigenesis and
maintenance [41,42]. These mutations predominantly reduce genome-wide levels of re-
pressive H3K27me3 [37,43,44] through inactivation of Polycomb Repressive Complex 2
(PRC2) [45]. Further studies have confirmed that H3K27M suppresses PRC2 through tight
binding to EZH2, a core subunit of PRC2 [46]. H3K27me3 levels are differentially associ-
ated with H3.1K27M or H3.3K27M mutations, with H3.3K27M epigenome maintaining a
certain amount of H3K27me3, while H3.1K27M almost completely excludes genomic-wide
H3K27me3 [47]. Moreover, H3K27M DIPG shows slightly elevated H3K27ac [45,48,49],
which colocalizes with H3K27M mutations at enhancer or promoter areas [45]. Multiple
pre-clinical therapeutic evaluations have shown that inhibition of histone deacetylases
is effective and has survival benefits in DIPG xenograft animal models [50], indicating
therapeutic potential targeting H3K27ac in H3K27M mutant DIPGs. Interestingly, global
H3K4me3 levels are relatively stable regardless of histone H3 mutation [42], however,
promoter H3K4me3 level is higher in H3K27M mutants than in WT tumors, at specific gene
loci including Lin28b, a marker for neural stem cells [51]. More recently, H3K36me2 and
H4K16ac were identified as important histone marks in DIPGs [52]. These findings indi-
cated complicated crosstalk among posttranslational histone modifications, the underlining
mechanisms are still under investigation.

In addition to epigenomic alterations in H3K27M mutant DIPG, numerous aberrations
of gene expression, DNA copy number variations and signal pathways have been uncov-
ered. These may occur concurrently or independently with H3K27M mutation. p38 MAPK
is activated in both H3.3K27M and H3.1K27M cultured cells with H3.1K27M tumor cells
more sensitive to p38 MAPK inhibition [49]. WNT [49,53], mTOR [53,54] and RTK-RAS-
PI3K signaling pathways [53,55] were also active in both tumor subtypes. Interestingly,
H3.1K27M and H3.3K27M DIPGs have their own associated mutations as summarized in
Figure 1.

The diversity in genetics, chromatin landscape and metabolic reprogramming of
DIPGs clearly shows that individualized therapeutics will be critical for effective treatments.
To this end, developing personalized animal models for pre-clinical assessment is an
important step to identify and determine the best therapeutic agents.
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Figure 1. Venn diagram illustrates molecular characteristics of histone H3 wild type (H3WT),
H3.1K27M and H3.3K27M diffuse intrinsic pontine gliomas. Abbreviation: TCA, tricarboxylic acid.

3. Murine Models of DIPG

Animal models for brain tumors are critical for understanding potential tumorigenesis
mechanism, and to assess the efficacy of novel therapeutic molecules or compounds for
clinical application. Several species including zebrafish [56], rats [57,58], mice [59–61],
dogs [62], hamsters [63], monkeys [64] and non-human primates [65] have been used to
develop brain tumor models. Mice are the most popular animal because they are easy to
handle and manipulate and have a short lifespan. Thus, here we focus on summarizing
mouse brainstem tumor models that expand biological understanding of DIPG.

3.1. Syngeneic Brainstem Glioma Models

The first animal models for brainstem glioma were developed in rats at 2002. Rat
glioma F98 and 9 L cells were implanted using a stereotactic head frame [59]. Following
this study, multiple rat syngeneic cell lines including C6, F98, 9 L with or without luciferase
modification were inoculated into the brainstem of neonatal or adult rats to generate
brainstem tumor models [25,57,66–68]. These models were developed using stereotactic
head frames targeting the pons (Figure 2A). Experimental rats developed pontine tumors,
with appropriate location and microenvironment. However, most of these cell lines were
developed from cerebral cortical tumors and heavily passaged in culture [58], thus they
were not the best model to represent biological behavior of childhood DIPGs. These
models are now being replaced by xenograft models using human DIPG cells directly from
biopsy/autopsy or primary culture [69].
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Figure 2. Schematic diagrams illustrate the development mouse models for DIPG. (A) Allograft
mouse models. (B) Patient derived xenograft (PDX) or patient derived orthotopic xenograft (PDOX)
mouse models using primary culture cells with or without modification using CRISPR-Cas9 gene
editing, and viable tumor biopsy or autopsy specimens.

3.2. Patient-Derived Orthotopic Xenograft (PDOX) DIPG Mouse Models

Human glioblastoma (GBM) xenografts were developed by Hashizume et al. in 2010
in mouse or rat brainstem as models for DIPG [60,70]. Adult GBM cells including U87,
U251MG and GS2 were inoculated into the pons using a stereotactic headframe to develop
brainstem tumors for therapeutic testing. In these studies, brainstem microenvironment
and blood-brain barrier were taken into consideration, however, as most of these cell
lines were derived from adult cerebral cortical GBM, biological features of DIPG were
ignored. A few studies with ionizing irradiation, which is standard care for pediatric
DIPG, were tested using these models and showed temporary efficacy [28]. However,
other therapeutic tests did not show efficacy in multiple clinical trials. For instance,
temozolomide, a DNA methylation agent for adult GBM treatment, and PD-0332991, a
CDK4/6 inhibitor were reported effective in murine brainstem models using adult GBM
cell lines [60,61,71], however, clinical trials using TMZ and CDK4/6 inhibitor did not
markedly extend survival for children with DIPG [72,73]. These findings indicate that
glioma cells from adult tissue and from non-pontine locations are not suitable for predicting
DIPG therapeutic response.

Due to limitations of the models discussed above, human DIPG cells obtained from
autopsy and biopsy samples were developed by Monje et al. in 2011. These cell sources
provided new biological insights into DIPG molecular characteristics and were key in
moving forward the development of patient-derived orthotopic xenograft (PDOX) DIPG
models. The first pediatric DIPG in vitro cell culture and in vivo xenograft mouse models
were developed using early postmortem tumor tissue [74], in which pontine histopathology
was similar to that of DIPG. Following this work, primary cultured cells from DIPG biopsy
specimens and an orthotopic mouse model using these cells were successfully developed
by Hashizume et al. in 2012 [70]. These pioneering studies led to the development of
numerous primary cultured DIPG cells and PDOX models for testing novel therapeutics
(Figure 2B). A DIPG model in NOD-SCID mice was created by Harutyunyan et al. in 2019
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using CRISPR-Cas9 gene editing to manipulate H3K27M expression in patient derived
primary culture DIPG cells. This model was used to observe molecular alterations and
tumorigenesis in the absence and presence of the H3K27M mutation [41]. Recent studies
have shown that promoter H3K27Ac is elevated in DIPG with H3K27M mutation [45,48].
Several PDOX models for DIPG were used to test panobinostat, a histone acetylation
inhibitor, which showed promising results [48,75]. Excitingly, panobinostat has been
registered in multiple clinical trials for DIPG (NCT02717455, NCT04341311, NCT03566199).
In addition to panobinostat, more compounds and novel small molecules have been tested
in various DIPG PDOX models as summarized in Table 1.

Table 1. Patient derived DIPG cell lines for in vitro culture and for in vivo generation of orthotopic mouse models.

Cell Source H3 Mutation Name of Cell Line Novel Therapeutic Compounds Tested

Autopsy

H3WT
VUMC-DIPG-10 [76],

DIPGM(T) [74,77] OTSSP167 [76], veliparib, olaparib, niraparib [77]

H3.1K27M SU-DIPG-IV [17,45,77–82] LDN212854 [17], JQ1 [45], Panobinostat, GSK-J4 [81],
veliparib, olaparib, niraparib [77], Corin [80], PTC-209 [82]

H3.3K27M

JHH-DIPG1 (T)
[19,54,76,81,83,84]

Delta-24-RGD [83], TMZ [84] *, GSK-J4 [81], Panobinostat,
OTSSP167 [76], TAK228 [54], MRK003 [19]

SU-DIPG-VI (T) [85], XIII,
XVII [19,54,78–82,86,87]

LDN-193189, LDN-214117, LDN-212854 [79], TAK228 [54],
6-thio-Dg [86], BGB324 [87], Panobinostat [81], GSK-J4

[81], Corin [80], MRK003 [19], PTC-209 [82]

Biopsy

H3WT CCHMC-DIPG-1 (T) [82,86] PTC-209 [82], 6-thio-Dg [86]

H3.1K27M
HSJD-DIPG-018 [79] GSK343 [88], EPZ6438 [88]

VUMC-DIPG-B [81] Panobinostat, GSK-J4 [81]

H3.3K27M

SF8628 (T) [13,17,45,89],
SF7761(T)

[19,45,54,84,87,90,91]

TAK228 [54], MK-1775 [13], JQ1 [45], TMZ [84],
Panobinostat, GSK-J4 [81,90], BGB324 [87], CUDC-907

[89], MRK003 [19], GSK343 [88], EPZ6438 [88]

HSJD-DIPG-007 (T) [79], 008,
012, 014 [78–80,87,90,92,93]

Bevacizumab [93], OTSSP167 [76], BGB324 [87],
Panobinostat [92], LDN-193189, LDN-214117,

LDN-212854 [79], GSK343, EPZ6438 [88], Corin [80]

VUMC-DIPG-A (T) [81,87]
[76], F(T) [88,91] OTSSP167 [76], BGB324 [87], Panobinostat [81]

TP54, 80 (T) [83], TP83, 84 [83] Delta-24-RGD [83]

NEM 157, 163, 165, 168 [81] Panobinostat, GSK-J4 [81], Delta-24-RGD [83] *

QCTB-R059(T) [79,91],
CHRU-TC68 [16] LDN-193189, LDN-214117, LDN-212854 [16,79]

CCHMC-DIPG-2 [82] PTC-209 [82]

Note. T: tumorigenic; OTSSP167: MELK inhibitor; LDN212854, LDN-193189, LDN-214117: BMP receptor inhibitor; GSK-J4: KDM6B-specific
inhibitor; PTC-209: BMI-1 inhibitor; TMZ: Temozolomide; TAK228: oral dual TORC1/2 inhibitor; MRK003: γ-secretase inhibitor; BGB324:
Bemcentinib; GSK343: EZH2 inhibitor; EPZ6438: Tazemetostat; MK-1775: Adavosertib; JQ1: BET bromodomain inhibitor; CUDC-907: dual
PI3K and HDAC inhibitor; * clinical trial.

Overall, stereotactic biopsy of DIPG is considered safe and effective [94,95], and
techniques to develop primary cell cultures and orthotopic DIPG models from autopsy
specimens have improved. This has led to the development of PDOX mouse models
with primary cultured DIPG cells. These models will help identify effective therapeutic
pharmaceutical agents or compounds for clinical trials.

3.3. Genetically Engineered Mouse Models (GEMM) for DIPG

Xenograft models cannot answer some fundamental questions, for instance, (i) what
cells does DIPG originate from? (ii) is a specific genetic or epigenetic alteration sufficient
to drive DIPG formation? and (iii) what role do oncogenes or tumor suppressors play in
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DIPG tumorigenesis? Genetically engineered mouse models (GEMMs) can be used to help
answer these critical questions.

GEMMs are ideal to investigate DIPG cell origin for insight into tumorigenesis mech-
anisms. Several systems, including replication-competent avian sarcoma-leukosis virus
long terminal repeat splice acceptor (RCAS/Tv-a) (Figure 3A), Sleeping Beauty/PiggyBac
transposon in combination with lentivirus (Figure 3B) and Nestin-Cre/LoxP recombi-
nation (Figure 3C) systems have been utilized to generate multiple GEMMs. GEMMs
developed with these systems can be used to investigate DIPG tumorigenesis [41] and
potential populations of cells from which DIPG can originate including: nestin-expressing
progenitor cells (nestin+/vimentin+/Olig2+) [74]; oligodendrocyte progenitor cells (Olig2+/
Sox2+/APC−) [96]; and at least two distinct types of Pax3− expressing progenitor cells (im-
mature Pax3+/Nestin+/Sox2+ progenitor and differentiated Pax3+/NeuN+ neuron) [97].
In addition to these GEMMs, nestin positive progenitor cells which line the floor of the
fourth ventricle genetically engineered with ectopic PDGFB, TP53 loss and with or without
the H3.3K27M mutation with the RCAS/Tv-a system (Figure 3A), were also shown to
have biological similarity with DIPG [37,98,99]. Given the fact that the majority of human
DIPGs are believed to arise from the ventral pons, and its tumorigenesis is complicated
and regulated by dynamic tempo-spatial genomic and epigenomic events, cell origin for
DIPG is a key question which is yet to be determined.

GEMMs are robust tools to identify tumor drivers. Somatic point heterozygous
mutation on HIST1H3B or H3F3A and multiple deregulation of genes such as TP53, PDGFB,
PDGFRA, and ACVR1 are important genomic alterations. While HIST1H3B or H3F3A which
codes for the H3K27M mutation was initially considered a tumor driver, human embryonic
stem cell derived neural progenitor cells (hES-NPCs) transformed using a combination of
lentivirus encoding H3.3K27M did not form tumors in mouse pons. hES-NPCs engineered
with H3K27M, TP53 loss and PDGFB mutation formed tumors in mouse pons, with
biological characteristics similar to DIPG [100]. Another GEMM created via in utero
electroporation to deliver Piggy/Bac transposable-H3.3K27M, TP53 CRISPR/Cas9 and
PDGFRA into the lower rhombic lip of NPCs in vivo (Figure 3B), formed brainstem tumors
with biological characteristics similar to DIPG [101]. Recently, a novel inducible GEMM
was developed in which H3.3K27M was transduced into an H3F3A locus in combination
with loss of TP53 and a PDGFRA mutant. This combination was driven by a tamoxifen-
inducible Cre recombinase in neonatal nestin-positive cells throughout the developing brain
(Figure 3C) and formed spontaneous malignant brain tumors which mimic H3.3K27M
DIPG [51]. Using a similar approach, H3.1K27M and ACVR1G328V were knocked into
their respective loci driven by Cre recombinase in Oligo2+ oligodendrocyte precursor
cells (OPCs). These genetically engineered cells showed glial differentiation arrest and
high proliferation but, were insufficient to drive tumor formation. However, spontaneous
high-grade gliomas were formed in the brainstem and thalamus if additional endogenous
PIK3CAH1047R was knocked in [15]. These GEMMs indicate that the oncohistone mutation
of H3.1K27M or H3.3K27M in combination with PDGFRA, TP53 loss, PDGFB, ACVR1
mutation have a synergistic effect on driving DIPG.

Numerous dynamic genomic and epigenomic alterations contribute to DIPG tumori-
genesis. GEMMs can be used to identify therapeutics that target for specific gene alterations
or combinations of changes. For instance, a high-grade brainstem glioma was generated
by overexpression of PDGFB in combination with Ink4a-ARF loss in the posterior fossa of
neonatal Nestin Tv-a mice. This model was used to test perifosine, an AKT inhibitor and
irradiation [99]. The model was also used to test PD-0332991 (PD), a CDK4/6 inhibitor,
which did prolong survival [98]. Another GEMM for DIPG driven by PDGFB, H3.3K27M,
and TP53 loss using the RCAS/tv-a system was developed to test BMS-754807, a potent
and reversible small molecule multi-kinase inhibitor, which showed significant efficacy
in vitro [102]. A GEMM model of hES-NPCs engineered with H3K27M, TP53 loss and
PDGFB mutation was used to test menin inhibitor MI-2, which showed significant efficacy
in decreasing tumor growth [101].
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Figure 3. Genetically engineered mouse models (GEMMs) for DIPG using RACS/tv-a, SB/PiggyBac
transposon with lentivirus, and Nestin-Cre/LoxP recombination systems. Schematic illustration
demonstrating generation of GEMMs for DIPG. (A) Vectors were constructed with replication-
competent avian sarcoma-leukosis virus long terminal repeat splice acceptor (RCAS/Tv-a). These
viral vectors were either amplified with DF1 cells prior to inoculation ((A) top panel) or directly
inoculated ((A) bottom panel) into the pons of Nestin-Cre engineered Ntv-a or Ntv-a; Ink4a-ARF−/−;
Ntv-a; p53fl/fl, and Ntv-a; PTENfl/fl mice. (B) Vectors constructed with the Sleeping Beauty Piggy/Bac
transposon in combination with lentivirus system were injected into postnatal day 1 (P1) or 2
(P2) C57BL/6 mice ((B) top panel) or transduced into neural progenitor cells (NPCs) ((B) middle
panel) followed by orthotopic NPC pontine inoculation, vectors were also administered via in utero
electroporation (IUE) ((B) bottom panel). (C) Mouse models with various molecular backgrounds
associated with DIPG were developed with the Nestin-Cre/LoxP recombination system and bred to
generate GEMMs for spontaneous DIPG.

In all, GEMMs for DIPG are an important supplement to PDOX for investigation of
tumorigenesis mechanisms in an immunocompetent microenvironment, to determine cell
origin and to test novel therapeutic compounds. However, GEMMs generally focus on a
few genes, only represent tumors with engineered backgrounds and lack heterogeneity
of patient tumor samples. Due to the differential tumor associated microenvironment
between mice and humans, tumor biological behavior may differ from original human
DIPGs. Thus, precise DIPG animal models which incorporate human immunity must
be developed.

3.4. Fidelity of PDOX and Recapitulation GEMMs of Human DIPG

Mouse models that faithfully maintain molecular characteristics of original tumors are
critical to evaluate therapeutic efficacy of novel therapies. To this end, models with high
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biological and molecular fidelity and recapitulation of human DIPG are also important
and essential.

PDOX DIPG models directly transfer fresh biopsy or autopsy tumor tissue into im-
munodeficient mouse brains without manual manipulation, for instance, cell culture, trans-
fection or transduction etc. Their fidelity has been comprehensively analyzed with cutting-
edge high throughput sequencing techniques, and the results show that these models
faithfully recapitulate the molecular signature of initial derived pediatric DIPG [103–107].
Results from a recent report support and further emphasize that PDOX DIPG models reca-
pitulate parental tumor tissues, through robust and integrative analysis with histopathology,
DNA methylation, exome and RNA-sequencing [108]. Primary cultured DIPG cells are
also important sources for indirect PDOX DIPG models [109], which retain biological
and molecular characteristics of original derived tissues (Table 2). For example, PDOX
DIPG models, PED17 created with both fresh tissue and primary cultured cells in Mayo
Clinic, which faithfully recapitulate patient derived tumor characteristics through mul-
tiple passages [109]. This finding is supported by recent analysis from a large panel of
DIPG cells [108].

Table 2. Summary of PDOX and GEMM models’ fidelity and recapitulation of human DIPG, analyzed with histol-
ogy/pathology and/or high-throughput characterization.

Model Cell Resource or Genetic Engineering Histology Molecular
Analysis Fidelity Reference

PDOX
Biopsy: DIPG tissue, PED17

HE; IHC
RNA-seq, WGS,
WES-seq DNA

methylation-seq
High

[103,105,108]
Autopsy: DIPG tissue [73]

Cultured DIPG cells, PED17 [108,109]

GEMM

H3.3K27M + TP53 loss +PDGFRA activation IF RNA- & ChIP-seq High [99]

Pax3+; PDGFB+

Pax3+; p53−; PDGFB+

H3.3K27M+; Pax3+; p53−; PDGFB+
IHC; IF N/A

Low
Moderate

High
[96]

ACVRR206H; H3.1K27M
ACVRR206H/G328V; H3.1K27M; p53−

ACVRR206H/G328V; H3.1K27M; p53−; PDGFA+
IHC RNA-seq

Low
Moderate

High
[17]

ACVRG328V; PIK3CAH1047; Oligo2+

ACVRG328V; HIST1H3BK27M; PIK3CAH1047;
Oligo2+

IHC RNA-seq Low
High [15]

H3.3WT; PDGFRA; p53cKO

H3.3K27M; PDGFRA; p53cKO IHC RNA- & ChIP-seq Low
High [101]

H3.3WT; PDGFAWT; Trp53−

H3.3K27M; PDGFA+; Trp53−
IHC RNA- & ChIP-seq,

WES
Low
High [110]

Abbreviations: HE: hematoxylin and eosin; IHC: immunohistochemistry; WGS: whole-genome sequence; WES: whole-exome sequence;
ChIP: chromatin immunoprecipitation; KO: knockout; N/A: not applicable.

GEMM models are generally used to investigate DIPG cell origin for insight into tu-
morigenesis mechanisms. “Hot” spot mutation on HIST1H3B or H3F3A in combination with
deregulation of multiple genes including TP53 loss, PDGFB and PDGFRA overexpression,
ACVR1 mutations are genetically engineered to create pediatric DIPG models as described
in Figure 3. The fidelity of these models was compared in several studies (Table 2). GEMM
with H3.3K27M+; Pax3+; p53−; PDGFB+ has the highest molecular and biological fidelity
of pediatric DIPG, in comparison to either Pax3+; PDGFB+ or Pax3+; p53−; PDGFB+ [97].
Models created with engineered ACVRR206H/G328V; H3.1K27M; p53−; PDGFA+ more faith-
fully recapitulate pediatric DIPG than ACVRR206H/G328V; H3.1K27M and ACVRR206H/G328V;
H3.1K27M; p53− [17]. The fidelity of the models engineered with H3.3K27M; PDGFA+;
Trp53− is higher than the ones engineered with H3.3WT; PDGFAWT; Trp53− [101].
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PDOX and GEMM are two different categories of DIPG models with differential
fidelity. In general, PDOX models created with fresh tumor tissues have the highest
biological and molecular fidelity, in comparison to the PDOX models with cultured DIPG
cells and GEMM DIPG models.

4. Humanized Mouse Models for DIPG Precision Medicine

Recently, serval studies have shown that the tumor immune microenvironment (TIME)
has critical roles in DIPG: (i) Tumor-infiltrating cells (TILs) including Treg, CD4 T cells, NK,
B cells, monocytes and eosinophils have been identified in H3K27M mutant DIPGs [110];
(ii) Expression of indoleamine 2,3 dioxygenase 1 (IDO1), an immunosuppressive enzyme
that metabolizes tryptophan, is low in cultured DIPG cells. However, in vitro induction of
IDO1 with IFNγ showed potential therapeutic value [111]; (iii) the disialoganglioside GD2
is highly expressed in patient-derived H3K27M mutant glioma cell cultures. Anti-GD2
CAR T cells incorporating a 4-1BBz costimulatory domain demonstrated robust antigen-
dependent cytokine generation and killed DIPG cells in vitro [112] and (iv) a humanized
anti-CD47 antibody, Hu5F9-G4, demonstrated therapeutic efficacy [113].

These cutting-edge findings require testing using reliable animal models prior to
translation into clinical trials. For many years, chimpanzees were used to bridge the gap
between rodent models and humans. However, the biomedical use of chimpanzees is
prohibited in Europe and the United States. Therefore, to overcome the limitations of
translating laboratory rodent discoveries into clinical applications, development of mouse
models that closely recapitulate human biological systems, labeled as “humanized” mice is
critical for pre-clinical investigation. In this section, we will discuss recent progress in the
development and potential use of humanized DIPG mouse models.

Humanized mice are defined as immunodeficient mice engrafted with human tis-
sues [114], which include PDX or PDOX models. Discovery of nude mice in the 1960s
and severe combined immunodeficient (SCID) mice in the 1980s [115] were key ad-
vances for xenografts. Following these models, non-obese diabetic (NOD)/SCID and
NOD/SCID /β2mnull and NOD/Rag1nullPfpnull mice were subsequently developed from
NOD/SCID and NOD/Rag1nullmice [115], which contribute to humanized mouse gen-
eration. Another landmark advance in the generation of humanized mice was the gen-
eration of NOD/SCID/γcnull mice and Rag1/2nullγcnull mice through introducing IL2ra
into NOD/SCID and RAG1/2−/− mice in the 2000s [115]. These mice show multiple
immunodeficiencies including impaired T, B and nature killer (NK) cells, and reduced
macrophages and dendritic cell immune function, which show a high rate of human cell
including DIPG engraftment. More recently, several humanized mouse models were used
to test novel potential therapeutics for DIPG. NRG (NOD.Cg-Rag1tm1Mom Il2rgtm1Wjl/SzJ)
mice, which had DIPG cells implanted in the pons, were used to test therapeutic efficacy
of a DNA-damaging reagent 6-thio-2′deoxyguanosine (6-thio-dG). The results demon-
strated promising therapeutic efficacy [86]. NOD-SCIDγ (NSG) mice were used to test
anti-CD47 antibody Hu5F9-G4 through orthotopic injection of several DIPG cells. The
results showed intraperitoneal treatment with this antibody significantly reduced tumor
growth and showed significant survival benefit [113]. NSG NOD-SCID IL2rg−/− (NSG)
mice were used for testing anti-GD2 CAR-T cell immunotherapy [112], with the results
leading to an active clinical trial (NCT04196413).

Humanized mice are also defined as immunodeficient mice engrafted with hemato-
poietic cells [114,115]. There are several strategies for establishment of these humanized
mouse models (Figure 4). The first one is humanized mice receiving human peripheral
blood mononuclear cells (PBMCs) engrafted to establish the Hu-PBL-SCID model. This
model is suitable for short-term research and investigation of the relationship between
immune function of lymphocytes in peripheral blood and tumor biological behavior [116].
The second strategy is the transfer of human hematopoietic stem cells (HSCs) into mice with
the IL-2rγnull mutation to develop the Hu-SRC-SCID model [117]. HSCs can be obtained
from granulocyte colony-stimulating factor-mobilized PBMCs, adult bone marrow, fetal
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liver and umbilical cord [118]. This model also supports engraftment of complete human
immune system through injection of CD34+ HSCs (Hu-CD34+ model), which is appropriate
for investigating tumor growth and immune system development [119]. The third model
is a bone marrow/liver/thymus (BLT) model which is developed via transplanting human
fetal liver and thymus under the kidney capsule. More recently, a novel and revolutionary
humanized mouse model NOD-SCID IL2rgnull SCF/GM-CSF/IL3 strain engrafted with
human thymus, liver, and hematopoietic stem cells (termed Bone marrow, Liver, Thymus
[BLT]) (NSG-SGM3-BLT) was used to develop an orthotopic model through injection of
SF8628, a H3.3K27M mutant cell in the pons, to test IDO1 induction by CD4+ and CD8+ T
cells. The results showed that these T cells directly increase IDO1 expression in intracranial
DIPG tumor and are thus a promising adjuvant immunotherapy [111].
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Figure 4. Humanized mouse models for DIPG. Immunodeficient mice received peripheral blood
mononuclear cells (PBMCs), or hematopoietic stem cells (HSCs) and transplantation of liver/thymus,
or genetically modified human cytokines prior to orthotopic intracranial inoculation of DIPG cells,
from patient biopsy or autopsy specimens or primary cultured cells, into the pons to develop
humanized DIPG models.

In addition, mice transgenically engineered to express human genes are also hu-
manized mice. One example is MISTRG mice, in which seven genes including M-CSFh/h

IL-3/GM-CSFh/h SIRPah/h TPOh/h RAG2−/− IL2Rg−/− were knocked into mouse genomic
loci [120]. MISTRG mice are humanized with high immunodeficiency, which prevents
immune rejection of the human grafts. These mice are a robust tool to investigate engrafted
tumors and innate immune response, which is potentially useful for the development of
humanized DIPG models.

Altogether, these advanced humanized mouse models provide a more realistic human
tumor immune microenvironment with potential for better drug response and prediction
for clinical trials and will help to identify effective therapeutic regimens for DIPG.

5. Summary and Perspectives

In summary, we review up-to-date genomic and epigenomic profiling advances in
DIPG. In addition to H3K27M mutation, numerous aberrations of gene expression, DNA
copy number variations, abnormal signal pathways and posttranslational histone modifica-
tions also contribute to DIPG tumor biology. This highlights the complexity and challenges
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of identifying effective therapeutics for individual patients. We also summarize mouse
models for DIPG with a specific highlight on GEMMs and recent innovative humanized
mouse models. Currently, neither therapeutic strategies nor compounds developed using
DIPG mouse models have been approved for the treatment of DIPG. However, several
promising clinical trials are in progress. We believe that because of rapid advances in
biological techniques such as high-throughput proteomics analysis, next-generation and
single cell sequencing, advanced gene-editing tools etc., more novel molecules or signal
pathways and epigenetic factors as potential therapeutic targets will be identified. Testing
these targets in novel GEMMs and innovative humanized mouse models, will pave the
way to precision medicine necessary for effective treatments, that have the potential to
improve outcomes for children with these tumors.
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