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Rationale: The optimal modality, intensity, duration, frequency, and dose–response of

exercise as a therapy for Parkinson’s Disease (PD) are insufficiently understood.

Objective: To assess the impact of a high-intensity tandem bicycle program on clinical

severity, biomarkers, and functional MRI (fMRI) in PD.

Methods: A single-center, parallel-group clinical trial was conducted. Thirteen PD

patients aged 65 or younger were divided in two groups: a control group and an

intervention group that incorporated a cycling program at 80% of each individual’s

maximum heart rate (HR) (≥80 rpm), three times a week, for 16 weeks. Both groups

continued their conventional medications for PD. At baseline and at the end of

follow-up, we determined in all participants the Unified Parkinson’s Disease Rating Scale,

anthropometry, VO2max, PD biomarkers, and fMRI.

Results: VO2max improved in the intervention group (IG) (+5.7 ml/kg/min),

while it slightly deteriorated in the control group (CG) (−1.6 ml/kg/min) (p =

0.041). Mean Unified Parkinson’s Disease Rating Scale (UPDRS) went down by

5.7 points in the IG and showed a small 0.9-point increase in the CG (p =

0.11). fMRI showed activation of the right fusiform gyrus during the motor task

and functional connectivity between the cingulum and areas of the frontal cortex,

and between the cerebellar vermis and the thalamus and posterior temporal gyrus.

Plasma brain-derived neurotrophic factor (BDNF) levels increased more than 10-fold

in the IG and decreased in the CG (p = 0.028). Larger increases in plasma

BDNF correlated with greater decreases in UPDRS (r = −0.58, p = 0.04).
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Conclusions: Our findings suggest that high-intensity tandem bicycle improves motor

function and biochemical and functional neuroimaging variables in PD patients.

Trial registration number: ISRCTN 13047118, Registered on February 8, 2018.

Keywords: Parkinson disease, exercise, tandem bicycle, magnetic resonance imaging, biomarkers

INTRODUCTION

Parkinson’s disease (PD) has a prevalence rate of 1–2 per 1,000
of the population worldwide (1). Despite L-DOPA treatment
and optimal medication, around 36–50% of patients with PD
will present motor complications such as dyskinesia and motor
fluctuations (2, 3), and 78% will eventually develop dementia
(4), leading to various degrees of disability and reduced quality
of life. In working-age adults, PD also affects their economic
productivity (5). All these issues have motivated an intense
search for effective adjuvant therapies to complement current
medications and improve management of PD. Exercise has
been proven to improve motor function and mobility (6, 7)
and enhance clinical functions including strength, gait, and
balance (8). It also has a positive impact on cognitive function
(9), patient-reported quality of life, and mental health (7, 10).
The postulated mechanisms reported include enhanced cerebral
oxygenation (11), improved plasticity of cortical striatum (12),
release of humoral factors and neurotransmitters (7, 13, 14),
and stimulation of dopaminergic neurons still functioning (15).
More specific studies suggested that high-speed, complex goal-
directed exercise such as cycling (high velocity, complexity, and
repetition) can induce activity-dependent neuroplasticity (6, 16).
High-cadence tandem cycling has shown to reduce PD symptoms
in both upper and lower extremities and to increase brain
activation as measured by functional MRI (fMRI) (6, 17–19).

A tandem bicycle has a drive train that mechanically
links the pedals through a timing chain. When one of the
riders is a PD patient, the higher cadence and consistency in
pedaling that a healthy partner may deliver aids to achieve
and maintain a pedaling rate that is greater than the former’s
preferred voluntary rate. Forcing the pace facilitates mechanically
augmented moderate- and high-intensity aerobic exercise and
provides sensory motor input possibly impacting motor speed
and control via neurophysiological mechanisms. Some literature
has shown that forced (tandem) cycling at a high cadence
improves motor function and promotes functional improvement
in PD. However, the mechanisms that underline those benefits
are still being debated (6).

Abbreviations: PD, Parkinson’s disease; IG, intervention group; CG, control

group; UPDRS, Unified Parkinson’s Disease Rating Scale; VO2max, maximal

oxygen consumption; fMRI, functional magnetic resonance imaging; BDNF, brain-

derived neurotrophic factor; L-DOPA, L-3,4 dihydroxyphenylalanine; RANTES,

regulated on activation, normal T expressed and secreted; MPO, myeloperoxidase;

NCAM, neural cell-adhesion molecule; PDGF, platelet-derived growth factor

isotype BB-BB; MP-RAGE, 3D magnetization-prepared rapid gradient echo;

DPARSF, data processing assistant for resting-state fMRI; sICAM-1, intercellular

adhesion molecule-1; sVCAM-1, soluble vascular adhesion molecule-1; nM-EDL,

non-motor aspects of experiences of daily living; M-EDL, motor aspects of

experiences of daily living.

Low-intensity progressive cycling training can improve motor
function in PD, especially akinesia (20).

However, the mechanisms underlying the improvement of
motor function in PD patients after cycling are not known.

Several blood-borne molecules have been involved in
mediating the effects of exercise on PD. One of them is brain-
derived neurotrophic factor (BDNF), a protein with a potent
effect on dopaminergic neuron survival and morphology (21,
22). Other potential mediators include regulated on activation,
normal T expressed and secreted (RANTES), a chemokine
correlated with motor involvement in PD patients (23); cathepsin
D, a protease whose activity has been related to cell death in
primate models of PD (24); myeloperoxidase (MPO), an enzyme
with neurotoxic effects in a rodent model of PD (25); neural
cell-adhesion molecule (NCAM) (26), a potential neurotrophic
mediator; and platelet-derived growth factor isotype BB (PDGF-
BB), whose regenerative properties have been demonstrated in a
rat model of PD (27).

These mechanisms of action of exercise at the molecular and
cellular level should also be reflected by changes in patterns of
brain activation in functional neuroimaging studies. fMRI has
revealed signature alterations in PD, including hyperactivation of
cerebellar (28, 29) and primary motor cortex (30, 31). Recently,
accelerated loss of hippocampal volume (32), graymatter atrophy
of posterior cingulate cortex (33), and reduced connectivity in
the prefrontal-limbic network (34) have also been linked to mild
cognitive impairment and depressive symptoms in PD. Some
studies have shown increased exercise-induced activity in the
ventral striatum and increased repetitive transcranial magnetic
stimulation-evoked dopamine release in the caudate nucleus
(17). Nonetheless, the influence of highly challenging exercise
therapy on fMRI features of PD is insufficiently known.

Despite abundant evidence addressing the clinical impact of
exercise on PD, the optimal modality, frequency, and intensity
of exercise practice as an adjuvant therapy in PD have not been
established. The same can be said about themechanistic pathways
that result in the reported improvements.

Some of the heterogeneity of results regarding benefits of
exercise in PD may arise from the fact that voluntary and self-
paced exercise elicit distinct neural responses and may yield
different outcomes (35). Animal and human trials with forced
exercise (i.e., practiced above the intensity preferred by the
subject) have shown positive results (36, 37). Furthermore, a prior
trial proved a tandem bicycle intervention to be feasible in PD
and to improve general physical performance measures (37).

With this context, we aimed to assess the impact of a high-
intensity exercise program based on tandem bicycle training and
on diverse aspects of PD including standardized scales of clinical
symptoms, biochemical markers, and functional neuroimaging.
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MATERIALS AND METHODS

Participants
Thirteen patients with idiopathic PD confirmed by a neurologist
specializing in movement disorders according to the Movement
Disorder Society Clinical Diagnostic Criteria (38) accepted to
participate in the study. Inclusion criteria were a PD Hoehn and
Yahr stage 1–3, age 65 or less, stable dopaminergic oral therapy,
negative exercise stress test, and no contraindications to exercise.
Exclusions were surgery for PD, cancer, joint diseases, coronary
disease, hyperthyroidism, chronic obstructive pulmonary
disease, asthma, hypertension, vision defects, history of stroke,
anemia, anticoagulant use, pacemaker, insulin pumps, mini-
mental score below 24, or the presence of any contraindication
for magnetic resonance imaging.

Study Design
A single-center, parallel-group clinical trial was conducted.
Participants were divided in two groups: a control group
(CG) and an intervention group (IG) that incorporated
high-intensity exercise. Both groups continued with their
conventional pharmacological anti-PD medications. Motor
function, anthropometric measurements (weight, height, body
mass index, waist circumference, percent body fat, percent
lean body mass measured by bioelectrical impedance analysis),
estimated maximal oxygen consumption (VO2max), biomarkers,
and functional neuroimaging were assessed before and after
complete the intervention in both groups.

The study was conducted at the indoor facilities of the
“Vida Activa” wellness center of Fundación Santa Fe University
Hospital. VO2max and Unified Parkinson’s Disease Rating
Scale (UPDRS) were measured while individuals were “on”
anti-Parkinson’s medications. The physicians who took all
measurements were blinded to patient group.

Intervention
The exercise protocol included a conditioning phase of 8 weeks
as a progressive adaptation process to exercise. The conditioning
phase was intended to allow participants to learn how to ride a
tandem bicycle as none of them had used it before, to understand
each participant’s individual physical needs related to the exercise
and to improve the equipment based on individual needs in order
to provide greater comfort during exercise and allow some time
for its progressive adaptation to the body.

The conditioning phase consisted of session of 30–40min
length, one session per week for the first 4 weeks and two sessions
per week for the last 4 weeks. Each session began with 5min
of warmup (low resistance pedaling at 30–40 rpm), followed by
20min of cycling at 50–60% of their individual’s maximum heart
rate (HR) (40–60 rpm) and ended with a cool down period of
5min of cycling at 30–40 rpm. Participants performed 10min of
stretching exercise after each session. Rating of perceived exertion
(on the Borg scale) and HR (speed and cadence) were monitored
by a general practitioner physician during each session.

We considered the conditioning phase to be very important
in order to improve patient engagement, increase patient’s
confidence and self-efficacy, and build a social network among

patients and their families that increases adherence to the
intervention and helps prevent exercise-related injury.

After the conditioning phase, patients participated in a high-
intensity forced cycling program on a stationary tandem bicycle,
three times a week for 16 weeks. Each training session consisted
of a 10-min warm-up (low resistance pedaling at 30–40 rpm),
followed by 20min cycling at 80% of each individual’s maximum
HR while pedaling at 80 rpm or faster and ended with a cool
down period of 5min of cycling at 30–40 rpm. Participants
performed 10min of stretching exercise after each session. To
rate perceived exertion (on the Borg scale) and HR, speed and
cadence were monitored by a general practitioner during each
session. HR was collected with a PolarTM heart rate monitor
worn on the chest; pedaling variables were measured using a
bicycle speedometer and odometer. Healthy physical educators
partnered with each patient to provide motivation and to assist
individuals to keep the pace and cadence to reach 80% of their
individual’s maximum HR during each session. All participants
successfully completed each exercise session.

Clinical Assessment
We measured in all participants at study start and end the
UPDRS, estimated maximal oxygen consumption (VO2max),
and anthropometry.

Functional Magnetic Resonance Imaging
Subjects were scanned on a General Electric Signa Excite 1.5 T
scanner at a University Hospital. T1 images were acquired using
3D magnetization-prepared rapid gradient echo (MP-RAGE)
sequence, repetition time (TR) = 13.12ms, echo time (TE)
= 4.2ms, flip angle = 15◦, field of view (FOV) = 240 ×

240mm, voxel size= 1mm isotropic. Resting and task fMRI data
were acquired using gradient-echo echoplanar imaging (EPI)
sequence, with TR = 3,000ms, TE = 60ms, flip angle = 90◦,
FOV = 240 × 240mm, voxel size = 3.75 × 3.75 × 7mm. Each
run of resting fMRI scan lasted 6min, producing 180 volumes of
3D images. For the hand motor task, subjects were required to
tap with the index fingers for periods of 30 s alternating with 30 s
of rest.

Data were analyzed using the package SPM12, Department
of Imaging Neuroscience Group, London, UK. The images were
realigned spatially to the first series of each subject to correct the
head movement; slice timing correction ascending (39), and slice
10 was taken as a reference. Functional images were normalized
to standard stereotaxic space Atlas Montreal Neurological
Institute (MNI). Finally, images were spatially smoothed with
a three-dimensional 7-mm full width half maximum isotropic
Gaussian kernel filter to improve S/N ratio. For each task we
use parametrical analysis of first and second level. The model
parameters were canonical hemodynamic response function
(HRF) with time and derivatives, six multiple regressors for
motion head to reduce intra- and intersubject variability, and
high-pass filter of 128.

The second-level analysis consisted in a full factorial design;
the first factor was the time of observation (pretreatment and
post-treatment), the second factor was the group (IG and
CG). We used an alpha of 0.05 without correction for all
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analyses. The greater cluster with 10 voxels was included. The
locations of the statistical findings are reported in a space
coordinate (x, y, z) developed by the Consortium of Brain
Mapping, Montreal Neurological Institute. Imaging data from
resting fMRI were preprocessed using Statistical Parametric
Mapping 8 (SPM5, http://www.fil.ion.uclac.uk/spm) and Data
Processing Assistant for Resting-State fMRI (40, 41). In brief, the
preprocessing included slice timing, head movement correction,
spatial normalization, band-pass filtering (0.01–0.08Hz), and
global normalization. We decided to exclude the initial 10
volumes as part of the standardized process of the software (FSL,
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) used for the task block
analysis in order to allow magnetization to reach an equilibrium
and reduce the noise before reaching the steady-state of imaging;
the remaining volumes were then corrected and realigned to the
first volume to correct displacement due to head motion (42).

Next, the individual T1-weighted images were co-registered
to the mean realigned functional images using a linear
transformation; the T1 was segmented into gray matter,
white matter, and cerebrospinal fluid tissue maps followed
by non-linear normalization into the Montreal Neurological
Institute space. Temporal band-pass filtering (0.01–0.08Hz) was
performed on the residual time series of each voxel to reduce
the effect of low-frequency drift and high-frequency noise (41).
The final step in preprocessing was a spatial smoothing with an
isotropic Gaussian kernel of 4 mm FWHM.

The functional connectivity was estimated with a procedure
based on seeds or region of interest (ROI). The time sequence is
extracted from each seed and that date is used as regressor for
a linear correlative analysis. The correlation coefficient among
all seeds was calculated, and subsequently, a symmetric and
weighted matrix of connectivity for each subject was created. We
used a whole brain approach, and the seeds were specified by the
parcellation of automatic anatomical labeling or AAL atlas (43).

In order to identify changes in networks among pre- and post-
test in the connectivity matrices of functional connectivity, a
network-based statistic (NBS) was done. NBS allows to identify
any potential connected structures formed by an appropriately
chosen set of supra-threshold links, and the topological extent
of any such structure is then used to determine its significance
(44, 45). The parameters to analysis were 5,000 permutations and
p-value of 0.05.

Imaging data were preprocessed using SPM8 (http://www.
fil.ion.ucl.ac.uk/spm) and DPARSF (http://rfmri.org/DPARSF).
Functional connectivity was obtained with the seed method and
the atlas AAL. The matrix of correlation of 116 regions of interest
was analyzed by network-based statistic (44) (NBS, https://www.
nitrc.org/projects/nbs/).

Biochemical Measurements
Biomarkers were measured with a MILLIPLEX R© MAP human
neurodegenerative disease panel (HNDG3MAG-36K, Millipore,
USA). Antibody-coated, fluorescently labeled magnetic beads
were incubated overnight with diluted plasma samples. After
addition of a biotinylated detection antibody and extensive
washing, streptavidin–phycoerythrin was added and the
fluorescence of beads and phycoerythrin captured in a Luminex

TABLE 1 | Baseline characteristics of study participants.

Control group Intervention group

Sex M/F 3:4 4:2

Age (years) 56.0 57.8

Time since diagnosis (range in years) 2–24 2–14

Body mass index (kg/m2) 26.7 27.5

% body fat 22.8 19.6

% muscle mass 52.1 56.3

Waist circumference (cm) 91.5 94.0

VO2max (ml O2/kg/min) 18.7 19.4

MAGPIX R© (Millipore, USA) apparatus. Data were analyzed
with the Xponent R© (Austin, TX, USA) software. The lower limit
of detection was 2 pg/ml for BDNF, PDGF-AA, and RANTES; 24
pg/ml for soluble intercellular adhesion molecule-1 (ICAM-1),
MPO, cathepsin D, PDGFAB/BB, and NCAM; and 61 pg/ml for
soluble vascular adhesion molecule-1 (sVCAM-1).

Ethical Aspects
The study was approved by the Ethics Committee of Fundación
Santa Fe de Bogotá, according to minute CCEI-2342 of
November 25, 2014. All study patients provided written informed
consent. Please also see below the declaration on Ethics Approval
and Consent to Participate.

Statistical Analysis
Within-group changes in continuous variables (UPDRS,
VO2max, anthropometric measures, and biomarker levels)
were performed using paired Student’s t-tests. Between-group
comparisons in the change in continuous variables were
performed using analysis of covariance (ANCOVA), with
baseline values as covariates and intervention group as fixed
factor. Changes in continuous variables were correlated using
Spearman’s correlation coefficient.

RESULTS

The CG had three male and four female patients. The IG had
four male and two female patients. None of the baseline variables
differed significantly between groups (Table 1).

Clinical Severity
The CG experimented a deterioration in VO2max during the
study duration (from 18.7 to 17.1 ml/kg/min, intragroup p
= 0.092), while VO2max increased in the IG (from 19.4 to
25.1 ml/kg/min, intragroup p = 0.008; Figure 1). The between-
group comparison in the change in VO2max reached statistical
significance (p = 0.041). Changes in weight, BMI, percent body
fat, percent lean body mass, and waist circumference did not
differ between groups (Table 1).

Baseline mean UPDRS was 57.7 in the CG and 54.8 in the
IG. Patients in the CG experienced a mean 0.9-point increase
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FIGURE 1 | Change in (A) total Unified Parkinson’s Disease Rating Scale and (B) VO2max in the study groups. IG, intervention group; CG, control group.

(intragroup p = 0.67), while those in the IG had a mean 5.7-
point decrease (intragroup p = 0.12; Figure 1). The p-value for
the between-group difference was p= 0.11.

Mean score in Part I of UPDRS [non-motor aspects of
experiences of daily living (nM-EDL)] increased in both the CG
(+2.7 points) and IG (+0.3 points) (between-group p = 0.12).
Part II of UPDRS [motor aspects of experiences of daily living
(M-EDL)] remained constant in both groups (+0.1 points in
CG, +0.3 points in IG, p = 0.96). Part III of UPDRS (motor
examination) was reduced by 6.7 points in the IG, while it went
down by only 2.1 points in the CG. However, the difference did
not reach statistical significance (p= 0.32). Mean score in Part IV
of UPDRS (motor complications) also remained constant (+0.1
points in the CG,+0.5 points in the IG, p= 0.61).

fMRI
We found similar baseline activations in both groups in the
motor right-hand task, including the left pre-central gyrus and
cerebellum. The IG exhibited greater activation of the right
fusiform gyrus and decreased activation of the left pre-central
gyrus at study end, relative to the CG. In the verb generation task,
pretreatment activations were similar in the IG andCG, involving
portions of frontal cortex like the left pars triangularis. Final
images revealed lower activation of this area in the IG compared
to the CG. Network-based strategy (NBS) revealed post-exercise
increases in functional connectivity between the right posterior
cingulum and the middle frontal and superior orbital gyri, as well
as between the vermis and the thalamus and posterior temporal
gyrus (Table 2 and Figure 2).

Changes in Biomarkers
In the IG, mean BDNF increased from 27.2 to 218.7 pg/ml
(intragroup p = 0.002), PDGF-AA from 22.9 to 192 pg/ml
(intragroup p = 0.038), and PDGF-AB/BB from 16.3 to 366
pg/ml (intragroup p = 0.013; Table 3). Contrastingly, no
biomarker changed significantly in the CG. Finally, the between-
group comparisons of change in BDNF (between-group p

= 0.005) and RANTES (between-group p = 0.030) reached
statistical significance.

Correlation Between Changes in
Biomarkers and Changes in Clinical
Variables
Larger increases in BDNF were associated with greater
improvements in UPDRS (correlation between change in plasma
BDNF and change in the total UPDRS r = −0.58, p =

0.040). Changes in BDNF were also positively correlated with
improvements in VO2max (r = 0.58, p = 0.047; Figure 3).
Changes in NCAM were negatively correlated with changes in
percent body fat (r =−0.79, p= 0.001).

Adverse Events
We did not encounter any physical or psychological adverse
events during the course of the study.

DISCUSSION

To our knowledge, this pioneer study is the first to integrate
clinical variables, fMRI, and biomarkers to assess the impact of
a high-intensity tandem bicycle intervention in patients with
PD. Despite some results not reaching statistical significance
due to limited sample size, findings from this study suggest
that high-intensity tandem bicycle induces improvements in
clinical, biochemical, and functional neuroimaging variables in
PD patients.

VO2 max improved in the IG, but remained constant in the
CG, a difference that reached statistical significance. A similar
trend was observed for UPDRS, even though in this case, the
difference was not statistically significant. In fMRI, exercise
promoted activation of the right fusiform gyrus during the motor
task and functional connectivity between the cingulum and areas
of the frontal cortex, and between the cerebellar vermis and
the thalamus and posterior temporal gyrus. Plasma BDNF levels
increased more than 10-fold in the IG and decreased in the
CG, a significant difference. Larger increases in plasma BDNF
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TABLE 2 | Functional magnetic resonance imaging main activations by task, group, and condition.

Control group Intervention group

Region t-value x y z Region t-value x y z

RIGHT HAND TASK

Baseline Left pre-central gyrus 7.0 −36 −19 65 Left pre-central gyrus 6.7 −36 −19 65

Left cerebellum (crus 1) 4.3 −30 −70 −31 Right fusiform gyrus 6.6 21 −85 −10

Right cerebellum (VI) 4.1 24 −76 −22 Left cerebellum (crus 1) 5.2 −21 −85 −16

Left inferior parietal

lobule

3.7 −51 −46 53 Left posterior medial

frontal gyrus

4.1 −9 −7 53

Post-

treatment

Left pre-central gyrus 9.0 −36 −19 65 Right fusiform gyrus 7.2 24 −85 −10

Left post-central gyrus 6.0 −51 −22 50 Left cerebellum (VI) 5.4 −21 −82 −16

Left inferior parietal

lobule

4.1 −51 −43 53 Left pre-central gyrus 5.2 −36 −19 65

Left posterior medial

frontal gyrus

4.7 −3 −1 59 Left mid-cingulate

cortex

4.1 −12 −4 50

Left cerebellum (VI) 4.0 −33 −67 −19

VERB GENERATION TASK

Baseline Left fusiform gyrus 4.1 −27 −82 −13 Left inferior frontal

gyrus (pars triangularis)

5.3 −39 29 26

Left inferior frontal

gyrus (pars triangularis)

4.0 −39 14 14 Left superior medial

gyrus

4.8 −9 17 47

Left inferior frontal

gyrus (pars orbitalis)

4.2 −48 20 −4

Left middle frontal

gyrus

4.5 −36 5 56

Left posterior medial

frontal gyrus

4.2 −6 2 62

Post-

treatment

Left posterior medial

frontal gyrus

5.9 −6 −1 65 Right fusiform gyrus 4.2 27 −82 −1

Left inferior frontal

gyrus (pars triangularis)

5.6 −36 26 29 Left insula lobe 3.7 −27 20 11

Left pre-central gyrus 5.3 −39 −7 35 Left inferior frontal

gyrus (pars triangularis)

3.5 −39 29 26

Right fusiform gyrus 4.4 21 −85 −10 Left middle frontal

gyrus

3.0 −15 −10 56
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FIGURE 2 | Activations and connectivity in functional magnetic resonance imaging. (a) Activations in right hand motor task by group and condition. (b) Activations in

verb generation task by group and condition. (c) Comparison between conditions with network-based strategy in resting functional magnetic resonance imaging.

TABLE 3 | Changes in plasma concentrations of biomarkers, by study group.

Control group Intervention group Between-groups p-value

Baseline Final Intragroup p-value Baseline Final Intragroup p-value

BDNF (pg/ml) 260.0 149.6 0.35 20.63 207.1 0.028 0.005

Cathepsin D (pg/ml) 4,824 3,559 0.92 3,637 3,716 0.50 0.63

sICAM-1 (pg/ml) 1,899 1,546 0.23 2,145 1,546 0.043 0.41

MPO (pg/ml) 28,150 3,559 0.14 46,992 3,733 0.080 0.78

PDGF-AA (pg/ml) 143.3 83.4 0.50 23.8 157.6 0.028 0.13

RANTES (pg/ml) 837.3 1,210 0.18 202 2,850 0.18 0.03

NCAM (pg/ml) 6,387 5,731 0.87 8,152 8,198 0.75 0.43

PDGF-AB/BB (pg/ml) 576.9 399.2 0.74 16.4 336.4 0.028 0.96

sVCAM-1 (pg/ml) 2,916 2,645 0.25 2,968 3,202 0.46 0.36

correlated with greater decreases in UPDRS. These findings are
similar to those from previous studies showing that high-cadence
tandem cycling improvesmotor function andmobility in patients
with PD (6).

Several previous clinical studies have documented the positive
impacts of exercise on PD (5–9, 19, 20). A systematic review of
104 studies concluded that there is good evidence supporting
benefits of exercise on UPDRS (35), especially on the M-
EDL subscale and motor examination, but this effect may vary
according to exercise modality.

We found significant increases in plasma BDNF and PDGF-
BB in the IG. A significant reduction in sICAM-1 was also
achieved. Intracerebroventricular administration of PDGF-BB to
a mouse model of PD restored striatal dopamine transporter
binding sites and expression of nigral tyrosine hydroxylase (27).
In addition, the impact of exercise on BDNF has been reported
previously. Eight weeks of interval training in stationary bicycle
incremented BDNF in PD patients (46, 47), and BDNF has shown
potential to improve dopaminergic neuron survival (21, 22).
Of note, plasma BDNF appropriately reflects concentrations in

Frontiers in Neurology | www.frontiersin.org 7 July 2020 | Volume 11 | Article 656

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Segura et al. Tandem Bicycle for Parkinson’s Disease

FIGURE 3 | Correlation between change in plasma brain-derived neurotrophic factor (BDNF) and change in clinical variables. (A) Unified Parkinson’s Disease Rating

Scale. (B) VO2max.

central nervous system (48, 49). We found a marked correlation
between increases in BDNF and improvements in UPDRS. The
negative association between changes in this neurotrophin and
changes in the clinical severity of PD is consistent with previous
results (46, 47). Thus, BDNF biology, prior studies, and our own
results support a potential involvement of BDNF on the impact
of exercise on PD. Concerning sICAM-1, this molecule may
constitute a marker of sustained brain inflammatory processes
in both animals and humans (50). Higher plasma sICAM-1 was
observed in stage 1 and 2 patients with PD when compared to
healthy controls (51), suggesting a role of inflammatory agents
in PD pathogenesis that could be mitigated by forced, high-
intensity exercise.

Similar to earlier fMRI studies in PD (52, 53), we
found baseline cerebellar hyperactivation in our PD patients.
Concerning changes in fMRI induced by exercise, a prior tandem
bicycle trial in PD found increased exercise-induced activity in
the globus pallidus, thalamus, primarymotor, and supplementary
motor areas (54). None of these areas appeared to be differentially
activated by the intervention in our study. Interestingly, what we
did find was an exercise-induced activation of the fusiform gyrus
that, to our knowledge, had not been documented previously.
The fusiform gyrus is involved in the executive function that
is frequently altered in PD patients as may occur in patients
with rigidity and bradykinesia. If there is increased cortical
activation with exercise, we consider that the executive function
may deteriorate more slowly or may even improve in PD patients
who exercise, reinforcing the importance of exercising in PD
patients, as reductions in the gray matter volume of the fusiform
gyrus (along with other temporal areas) seems to be associated
with cognitive impairment and poorer executive function in PD
patients (33, 55).

A previous study that evaluated an 8-week forced-rate
pedaling exercise program reported stronger connectivity
between the motor cortex and the ipsilateral thalamus (19).
Similarly, we found increased connectivity between thalamus
and posterior temporal gyrus in the IG. Hence, our exercise
program induced cortical and connectivity changes associated
with positive effects on PD.

High-intensity protocols based on tandem bicycle have
shown to improve motor function, rigidity, and bradykinesia,
as well as induce activity-dependent neuroplasticity (7, 12,
17, 18), probably by promoting high-frequency entry patterns
to the sensorimotor cortex. Forcing a high pedaling rate
seems to be a determinant of the effects of cycle training in
PD (56), probably through induction of increases in afferent
stimuli from osteotendinous structures (55). Other studies
have proposed different hypothetic explanations regarding the
mechanisms that improve motor function in PD patients
after cycling.

Cycling may enhance both extrinsic and intrinsic sensory
feedbacks from the periphery and the subsequent activation
of basal ganglia circuits, which may enhance central motor
processing (57); the pedals of a stationary bicycle inherently offer
PD patients the mechanical constraint of a constant movement
amplitude (57, 58).

Data from our study suggest that exercise may trigger
several simultaneous mechanisms that integrated increased
brain activation and improved activation of basal ganglia
circuits and release of biochemical factors that act as potential
neuroprotective and neurotrophic mediator agents (12–20). Our
study provides comparative data against other high-intensity
cycling interventions.

Additionally, these findings show that individuals with PD
are able to participate in a high-intensity cycling intervention
and benefit from it. While these findings do not directly
answer the question regarding the optimal training variables
(intensity/duration/frequency), they contribute to understand
the mechanisms that improve motor function in PD patients
after cycling.

Further examination of the correlation between changes
in neuroimages, biomarkers, and clinical variables of PD
induced by longer interventions are needed in order to develop
individualized and more specific exercise-training programs.

Study Limitations
Despite the encouraging results, our study has several
limitations. The integration of biomarkers and fMRI to
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the clinical assessments makes this study not only unique
and interesting but also highly expensive and logistically
complex. Due to these considerations, we used a small
convenience sample of 13 patients. In addition, the design
was not randomized due to the requirement of a high
degree of collaboration (continued attendance, adherence
to exercise routines, multiple complex evaluations) by
study participants.

Even so, the findings from our study provide a novel approach
and original data to understand the mechanisms that improve
motor function in PD patients after cycling.

CONCLUSION

Findings from this study suggest that high-intensity tandem
bicycle improve motor function and biochemical and
functional neuroimaging variables in PD patients. Further
research is needed to better understand the mechanisms
underlying the improvement of motor function, as well as
the type, training variables (intensity/duration/frequency),
and dose–response involved in each exercise
training practice.
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