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Abstract: Metabolic syndrome (MetS) is a highly prevalent condition among adult males, affecting
up to 41% of men in Europe. It is characterized by the association of obesity, hypertension, and
atherogenic dyslipidemia, which lead to premature morbidity and mortality due to cardiovascular
disease (CVD). Male infertility is another common condition which accounts for about 50% of cases of
couple infertility worldwide. Interestingly, male infertility and MetS shares several risk factors (e.g.,
smoking, ageing, physical inactivity, and excessive alcohol consumption), leading to reactive oxygen
species (ROS) production and increased oxidative stress (OS), and resulting in endothelial dysfunction
and altered semen quality. Thus, the present narrative review aims to discuss the pathophysiological
mechanisms which link male infertility and MetS and to investigate the latest available evidence on
the reproductive consequences of MetS.

Keywords: couple infertility; sterility; sperm quality; abnormal semen analysis; overweight; obesity;
visceral fat; cardiovascular risk

1. Introduction

Overweight and obesity are conditions defined by excess adipose tissue and asso-
ciated with premature morbidity and mortality that are highly prevalent in the general
population [1]. According to the World Health Organization (WHO) definition, excess
adipose tissue is established using the body mass index (BMI), which is calculated by
dividing body weight in kilograms by the square of the height in meters, with normal
BMI ranging from 18.5–24.9 kg/m2 and cut-offs for overweight and obesity starting from
25 kg/m2 and 30 kg/m2, respectively [2]. Since 1980, prevalence of overweight and obesity
doubled in the American population, reaching 64.2% and 28.3%, respectively, in 2015. Simi-
larly, in Europe, the prevalence of overweight and obesity increased to 49.6 and 19.6% [1].
The metabolic syndrome (MetS) is a clinical condition that, in addition to excess adipose
tissue, also includes hypertension, insulin resistance, and dyslipidemia (Figure 1), with
a prevalence of 35% in America and slightly higher in Europe (41% in men and 38% in
women). According to recent reports, smoking, ageing, physical inactivity, and excessive
alcohol consumption are recognized as risk factors for MetS [3]. Male infertility is another
high prevalent condition that shares some of the risk factors of MetS is Males, indeed,
are responsible for 50% cases of couple infertility, defined by the WHO as the absence
of conception after 12 months of regular, unprotected intercourse [4], which is estimated
to affect 48.5 million couples around the world [5]. In 30–50% of male infertility cases a
specific cause is not identified and are therefore defined as “idiopathic”, but risk factors
such as smoking, alcohol, obesity and ageing may contribute to impair semen quality [6].
Indeed, all these conditions are associated to increased oxidative stress (OS), which has
been hypothesized to be involved in up to 80% of idiopathic male infertility cases [7]. The
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aim of this narrative review, therefore, is to discuss the current evidence on the relationship
between MetS and male infertility, with particular attention to the biological mechanisms
involved in OS.
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Figure 1. Metabolic syndrome (MetS): key-factors and cardiovascular risk.

2. Definition of Metabolic Syndrome

MetS is defined as a cluster of risk factors for cardiovascular disease (CVD) and
type 2 diabetes mellitus (T2DM), which are more often observed together than alone.
The first to notice this type of association was Kylin, almost a hundred years ago [8].
Since then, different diagnostic criteria and different names have been proposed for this
pathological condition (Syndrome X, The Insulin Resistance Syndrome, etc.). Although
different definitions of MetS exist, all of them include insulin resistance and its surrogates,
such as high blood pressure, obesity, and atherogenic dyslipidemia (elevated triglyceride
levels and low high-density lipoprotein -HDL- cholesterol levels) [9–14] (Table 1).

Table 1. Definition of Mets according to different scientific societies.

WHO EGSIR ATP III AACE IDF AHA/NHLBI AHA/NHLBI + IDF

Definition
Insulin resistance
+ any other two

components

Plasma insulin
concentration >

75th percentile of
nondiabetic

patients + any of
two components

Any of three out
of five

components

Insulin
resistance + at
least two other

components

Central Obesity +
at least two other

components

Any of three out
five components

Any of three out
five components

Obesity

Waist/hip ratio >
0.9 in males and

>0.85 in
females or

BMI > 30 kg/m2

Waist
circumference ≥
94 cm in males
and ≥80 cm in

females

Waist
circumference

>102 cm in males
and >80 cm in

females

BMI > 25 kg/m2

Obesity defined
as waist

circumference
with ethnicity

specific values or
BMI

>30 or kg/m2

Waist
circumference >

40 inches in
males

and >35 inches
in females

Raised waist
circumference

(Population- and
country-specific

definitions)

HDL

<35 mg/dL:
males

<39 mg/dL:
females

<39 mg/dL:
males and
females, or

specific
treatment

<40 mg/dL:
males

<50 mg/dL:
females,

or specific
treatment

<40 mg/dL:
males

<50 mg/dL:
females

<40 mg/dL:
males

<50 mg/dL:
females,

or specific
treatment

<40 mg/dL:
males

<50 mg/dL:
females, or

specific
treatment

<40 mg/dL: males
<50 mg/dL:

females,
or specific
treatment
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Table 1. Cont.

WHO EGSIR ATP III AACE IDF AHA/NHLBI AHA/NHLBI + IDF

TG ≥150 mg/dL
≥150 mg/dL or

specific
treatment

≥150 mg/dL or
specific

treatment
≥150 mg/dL

≥150 mg/dL or
specific

treatment

≥150 mg/dL or
specific

treatment

≥150 mg/dL or
specific treatment

Hyperglycemia

Impaired glucose
tolerance,

impaired fasting
glucose, or

lowered insulin
sensitivity

Fasting plasma
glucose >

110 mg/dL

Fasting plasma
glucose >

110 mg/dL or
specific

treatment

Impaired
glucose tolerance

or impaired
fasting glucose

(but not
diabetes)

Fasting plasma
glucose >

100 mg/dL or
previously

diagnosed type
2 diabetes

Fasting plasma
glucose >

100 mg/dL or
specific

treatment

Fasting plasma glu-
cose > 100 mg/dL

or specific
treatment

Blood Pressure ≥140/90 mm Hg
≥140/90 mm Hg

or specific
treatment

SBP ≥ 130 or
DBP ≥ 85 mm
Hg or specific

treatment

≥130/85 mm Hg

SBP ≥ 130 or
DBP

≥ 85 mm Hg
or specific
treatment

≥130/85 mm Hg
or specific
treatment

≥130/85 mm Hg
or specific
treatment

Urine albu-
min≥ 20 µg/min

or albumin:
creatinine ratio
≥30 mg/g

AACE, American Association of Clinical Endocrinologists; AHA/NHLBI, American Heart Association/National
Heart, Lung, and Blood Institute; ATP, Adult Treatment Panel; BMI, body mass index; BP, blood pressure;
DBP, diastolic blood pressure; EGSIR, European Group for the Study of Insulin Resistance; HDL, high-density
lipoprotein; IDF, International Diabetes Federation; MetS, metabolic syndrome; SBP, systolic blood pressure; TG,
triglycerides; WHO, World Health Organization.

3. Metabolic Syndrome and Male Infertility: Pathophysiological Aspects
3.1. Metabolic Syndrome and Oxidative Stress

As mentioned above, the elements that characterize MetS are insulin resistance, hyper-
tension, dyslipidemia, and obesity, and they are all associated increased OS [15]. Indeed,
OS derives from an imbalance between the production and inactivation of reactive oxygen
species (ROS), and both these mechanisms are involved in MetS. In particular, it has been
shown that obese and MetS subject have lower levels of antioxidant (AOX) molecules, such
as Vitamin C and tocopherol, and reduced activity of enzymes responsible for neutralizing
ROS, such as superoxide dismutase [16,17], whereas the AOX administration positively
influence OS biomarker levels in MetS patients [18]. The increased production of ROS,
on the other hand, results from increased enzymatic activity at both the cytosolic and
mitochondrial levels. In this purpose, mitochondria are the main source of ROS in most of
the mammalian cells. The excess of nutrients in adipocytes, as in case of hypercaloric diets,
leads to increased mitochondrial fatty acid oxidation, resulting in reduced nicotinamide
adenine dinucleotide (NADH) and reduced flavin adenine dinucleotide (FADH2) produc-
tion. In the mitochondrial electron transport chain, NADH and FADH2 donate electrons to
the complexes I and II of the mitochondrial electron transport chain, and the latter donate
electrons to Coenzyme Q10 (CoQ10) and complex III. Electrons leaking from the electron
transport chain react to oxygen to generate ROS (namely superoxide radicals and hydro-
gen peroxide) which can damage membranes, proteins, enzymes and deoxyribonucleic
acid (DNA) [19]. The interaction between ROS and mitochondria leads to mitochondrial
dysfunction, which is characterized by decrease in number and altered activity of oxidative
proteins, resulting in further generation of ROS, diminished ATP production and reduced
energy metabolism. The imbalance between energy production and utilization has been
hypothesized to be the basis of the reduced cellular metabolism that underlies the devel-
opment of insulin resistance typical of MetS [20]. Other mechanisms which contribute
to generate OS in MetS are represented by hyperglycemia, increased levels of advanced
glycation end products, free fatty acids, and angiotensin II, together with dysregulated
production of adipokines and by a state of chronic low-grade inflammation [21–23]. As
result, there is an accumulation of oxidized products in carbohydrate, lipid and protein
molecules with consequences on the respective biological functions and the impairment
of intracellular pathways [24,25]. A clear example is provided by the increased oxidized
low-density lipoprotein (LDL) levels in men with obesity and MetS [26]. Oxidized LDL,
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indeed, plays a central role in atherosclerosis and in turn contributes to an increase in
the formation of ROS and to perpetuate a pro-inflammatory state [27]. Another example
is given by the alteration of endothelial function. Indeed, in presence of high levels of
ROS, they react with NO, the main mediator of vasodilation, to form peroxynitrite, which
produces direct damage as a radical, and also renders NO unavailable to mediate its physi-
ologic functions [28]. Taken together, this evidence supports the key role of OS in MetS.
However, there are still many aspects to be clarified, especially regarding the cause-effect
relationship between the two.

3.1.1. Seminal Oxidative Stress

ROS are highly reactive oxidizing agents; these include hydrogen peroxide (H2O2),
superoxide anion (O2-), nitric oxide (NO) and hydroxyl radical. Normally, in the seminal
fluid, the quantity of ROS is counterbalanced by AOX substances. ROS play, in fact, an
important role in the mediation of reactions such as capacitation, hyperactivation and
acrosomal reaction [29]. When there is an imbalance between ROS production and the
neutralizing activity of the AOX system, the condition of OS arises.

Seminal ROS can be produced both endogenously and exogenously [30]. Most ROS
are produced endogenously by both leukocytes and mitochondria of immature sperm. This
happens because mitochondria generate energy through oxidative phosphorylation, in par-
ticular redox reactions are coupled to the transfer of protons (H+) across the mitochondrial
membrane to produce ATP [13]. During oxidative phosphorylation, in addition to water, a
small percentage of O2

− is also synthesized [31]. On the plasma membrane of the sperm,
the enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase catalyzes
the synthesis of superoxide by transferring an electron to oxygen from NADPH [14]. In
addition, leukocytes, mainly polymorphonuclear neutrophils (PMN) or granulocytes, can
be activated in the presence of a chronic infection or inflammation caused by infection of
the male accessory glands [32]. The activation of leukocytes determines an increase in the
production of NADPH with a consequent increase in the concentration of superoxide anion
and therefore OS [33].

As far as exogenous sourced of ROS are concerned, incorrect social behaviors (alcohol
abuse, smoking and increased BMI), exposure to pollutants or toxic substances and the
abuse of drugs and/or medications are all associated to increased OS. Of course, stress
and aging also contribute to the increase in ROS in the semen. From a pathophysiological
point of view, all these elements act by determining inflammation on the seminal tract.
Inflammation amplifies OS by generating highly reactive substances, and ROS, in turn,
attract and activate additional immune cells. Obesity, in particular, causes systemic inflam-
mation sustained by T helper 1 lymphocytes that produce cytokines and pro-inflammatory
mediators which are associated with suppression of the hypothalamus-pituitary-gonadal
axis and increased intratesticular OS [34].

The mechanisms linking MetS and seminal OS are summarized in Figure 2.

3.1.2. Methods to Measure Oxidative Stress

Seminal OS can be measured by both direct and indirect tests. Direct tests measure the
concentration of oxidant molecules while indirect tests measure the concentration of AOXs
or analyzes the ROS—induced damage on cellular components, such as DNA, proteins
and lipids. Unfortunately, there is no gold standard for the evaluation of seminal OS,
because each technique has its advantages and disadvantages. The most common direct
tests are represented by chemiluminescence method, nitro blue tetrazolium (NBT) assay,
cytochrome C reduction test, electron spin resonance technique, use of fluorescein probe,
and oxidation-reduction potential (ORP). The most modern methods are luminol and ORP.
The first technique is based on the chemiluminescent response of luminol when it reacts
with a free radical. This response can be measured by luminometry and the number of
relative light units (RLU) per million sperm calculated. One of the main problems with this
technique is that luminol is sensitive to pH, temperature changes and interference from such
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as ascorbic acid (decreased signal) or thiol-containing molecules (which increase results)
and levels of other proteins present. The ORP method is based on the direct measurement
of the REDOX balance of a sample by electrochemical means. As a supplementary measure
to the combined sample that it requires minimal manipulation and therefore is quite
standardizable, it is currently a topic for a lot of subfertility research. There is currently
only one machine on the market, the MiOXSYS (e Male Infertility Oxidative Stress System),
based on a galvanostatic measure of the electron movement and provides information on
the complete oxidation-reduction activity within a given sample [35]. A recent study by
Douglas et al. states that measuring ORP with this device has been shown to be predictive
of both poor sperm quality and male infertility [36].
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Figure 2. Metabolic syndrome (MetS) and oxidative stress (OS): hypertension, insulin resistance,
obesity and dyslipidemia are the key-elements of MetS and they are all associated with increased OS.
The latter derives from an imbalance between production an inactivation of reactive species of oxygen
(ROS), which mainly derive from hyperreactive elements leaking from the mitochondrial electron
transport chain. Free fatty acids, hyperglycemia and systemic inflammation contribute to sustain ROS
production that in turn causes mitochondrial dysfunction and impairs cellular metabolism. High
levels of intratesticular ROS, as observed in patients with MetS, may affect semen quality by causing
structural and functional damage in the spermatozoa.

Differently from direct tests, indirect tests are used to evaluate ROS released either
by leukocytes or by pro-inflammatory cytokines and other immunological components.
The Granulocyte elastase enzyme immunoassay and Myeloperoxidase test (Endtz test)
are used to evaluate the ROS released by leukocytes [35]. Cytokine and immunological
factors can be measured using Bio-Plex or enzyme-linked immunosorbent assay to quantify
such molecules in the semen [37]. Although pro-inflammatory cytokines increase lipid
peroxidation of the sperm membranes and contribute to OS, they are intermediate rather
than causative factors of OS [38].

Recently, the 6th edition of the WHO manual for semen analysis has been published
and both seminal OS and ROS have been introduced as part of semen analysis [39]. How-
ever, the manual includes only a brief description of the procedures and problems related to
luminol and ORP which, as already mentioned, are the most up-to-date techniques. As evi-
denced by a recent analysis by Boitrelle et al., the new edition of the manual lacks the recent
bibliography highlighting the predictive power of seminal OS determined by ORP [40]. Fur-
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thermore, according to the WHO, tests to evaluate OS are considered extremely specialized
and used mainly in the research field.

3.1.3. Effects of Oxidative Stress on Sperm Quality and the Treatment with
Antioxidant Molecules

OS has been associated with male infertility and alteration of seminal sperm pa-
rameters, in particular concentration and motility [41,42]. Indeed, spermatozoa are very
susceptible to ROS effects because their membranes are rich in polyunsaturated fatty acids,
and this makes spermatozoa more susceptible to lipid peroxidation [33]. In addition, their
cytoplasm contains very low levels of scavenging molecules [43]. But, as mentioned above,
physiological levels of ROS are needed for processes like capacitation, acrosome reaction,
chromatin condensation, cell signaling and sperm motility [7]. In addition, ROS production
is a physiological consequence of aerobic cells’ metabolism that occurs in mitochondria,
from which hydroxyl radical are released as obligatory end products [44]. Notably, OS is
the major cause of sperm DNA fragmentation (SDF), and this one is an important factor in
the etiology of male infertility [45]. According to this, some Authors proposed the term
“Male Oxidative Stress Infertility” (MOSI), to describe infertile men with abnormal semen
characteristics and high OS, reclassifying, in this way, subjects who were considered to
suffer from idiopathic male infertility [7].

Based on these assumptions, it would be reasonable to consider the use of AOXs
with the objective of improving the semen quality in this type of patients. In this purpose,
there are several studies and clinical trials focused in the effect of AOXs on sperm [46–48].
We recently conducted a systematic review focused on CoQ10 on its effects on semen
quality [49] but evidence on vitamin C, vitamin E, selenium and zinc as lowering OS agents
for male infertility treatment also exist [50–53]. Recent studies have also investigated
the promising effects of MYO-inositol, in particular for patients undergoing medically
assisted reproductive procedures [54,55]. However, the efficacy of AOXs in the treatment
of male infertility is still debated. Indeed, the latest European Association of Urology
(EAU) guidelines state that “No clear recommendation can be made for the treatment of
patients with idiopathic infertility using AOXs, although AOX use may improve semen
parameters” due to poor quality of the available evidence [56]. Similarly, American Urology
Association / American Society for Reproductive Medicine (AUA/ASRM) guidelines state
“Clinicians should counsel patients that the benefits of supplements (e.g., AOXs, vitamins)
are of questionable clinical utility in treating male infertility. Existing data are inadequate
to provide recommendation for specific agents to use for this purpose” [57]. However,
the lack of efficacy of AOXs in the treatment of male infertility could in part result from
the failure to select subjects with high OS in available trials. Indeed, the recent position
statement from the Italian Society of Andrology and Sexual Medicine (SIAMS) on the use
of nutraceuticals in male sexual and reproductive disturbances suggest considering the
use of AOXs in selected patients, i.e., those with idiopathic infertility in the presence of
documented abnormal sperm parameters and altered SDF [58].

Notably, although considered safe and without major side effects, it must be taken into
account that the excessive administration of AOXs can lead to the appearance of reductive
stress, which in turn has negative effects on seminal quality [59]. Moreover, a recent review
highlighted a statistically significantly increased risk of nausea (Odds Ratio: 2.16, 95% CI,
p = 0.036), headache (Odds Ratio: 3.05, 95% CI, p = 0.001), and dyspepsia (Odds Ratio: 4.12,
95% CI, p = 0.009) in patients treated with AOXs compared to placebo [60].

In conclusion, further studies and randomized controlled trials (RCTs) are needed to
define the correct dosage and type of nutraceutical products and role of AOXs in infertility,
especially for idiopathic forms.
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3.2. Metabolic Syndrome and Semen Quality
3.2.1. Standard Semen Parameters

The set of metabolic disorders represented by abdominal obesity, dyslipidemia, hyper-
tension and insulin resistance, could be involved in worsening of sperm parameters and
in the pathogenesis of male infertility [61]. We have investigated the possible associations
between MetS and seminal parameters and contrasting data have been reported. In fact,
we have found possible associations between MetS and a lower semen volume [62–64],
lower sperm concentration [62,63,65], lower sperm motility [63,65–67], altered sperm mor-
phology [62,67,68] and vitality [65,69]. All data found are summarize in Table 2. MetS may
lead to reduced male fertility via multiple mechanisms including altered hormonal profiles,
epigenetic changes, increased testicular temperature, inflammation, and OS [70–73]. In
addition, reduced bioavailability of NO due to high ROS levels causes vasoconstriction,
thrombosis, inflammation and vascular hypertrophy, which together lead to endothelial
dysfunction [74], with possible consequences also at gonadal level.

Table 2. Standard semen parameters: comparison of MetS versus no-MetS men.

Reference Semen Volume Sperm
Concentration Sperm Motility Sperm

Morphology Sperm Vitality SDF MMP

Ventimiglia et al. [62] ↓ ↓ = ↓ = NE NE

Leisegang et al. [63] ↓ ↓
↓ Total and
progressive

motility
NE NE ↑ ↓

Saikia et al. [64] ↓ Lower total
count

↓ Total and
progressive

motility
= NE NE NE

Leisegang et al. [65] = ↓ ↓ Only progressive
motility NE ↓ ↑ ↓

Ozturk et al. [66] NE Lower total
count ↓ = NE NE NE

Chen et al. [67] = NE ↓ ↓ ↓ NE NE

Lotti et al. [68] = = = ↓ NE NE NE

Elsamanoudy et al. [69] = NE ↓ ↓ ↓ NE NE

Elfassy et al. [75] = ↑ ↓ = ↓ = NE

* MMP, Mitochondrial membrane potential; NE, not evaluated; SDF, Sperm DNA Fragmentation; ↓, decreased; ↑,
increased; =, unchanged.

3.2.2. Sperm DNA Fragmentation

In last years, interest in understanding the role of SDF in male infertility and its im-
plications on reproduction has grown considerably. In fact, as human spermatozoa are
highly sensitive to OS, sperm plasma membrane damage and nuclear or mitochondrial
DNA fragmentation can occur in response to ROS [7]. Furthermore, a known consequence
of MetS is T2DM that has increasingly been associated with male infertility, and complex
and multifactorial factors are involved. In this purpose, Palmer et al. found a positive corre-
lation between glycaemia and SDF, with a negative correlation with normal morphological
spermatozoa, regardless of adiposity, in mice fed with a high fat diet [76]. According with
this animal model, Leisegang et al. found higher SDF in men with MetS in two different
works [63,65]. Conversely, Elfassy et al. reported no difference for percentage of DNA
fragmentation between men with or without MetS [75].

3.2.3. Mitochondrial Membrane Potential

Worsening of semen quality with low sperm concentration and motility, abnormal
morphology, mitochondrial DNA damage, nuclear DNA damage and increased seminal
plasma abnormalities have been reported in patients with Mets [77]. Sperm vitality can
be easily assessed by measuring the inner mitochondrial membrane potential (MMP) in
sperm cells [78]. The latter reflects the energy status of the mitochondria and is directly
associated with the motility of spermatozoa [79]. Leisegang et al. found that percentage
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of spermatozoa with damaged MMP was significantly increased in the MetS group and
reported a positive correlation between both C-reactive protein (CRP) and MMP and sperm
concentration, motility, and vitality [61,63]. We could explain these evidences with the
higher serum levels of CRP, inflammatory cytokines [80] and ROS [81], observed in patients
with MetS that provoke damage to mitochondrial function and spermatozoa DNA [82,83].

3.3. Metabolic Syndrome and Reproductive Hormones

The link between hormones and MetS is complex and bi-directional, since the clinical
features associated with this condition appear to be conditioned by numerous hormonal
stimuli and, in turn, can influence the functioning of numerous glands in a complex two-
way network. During the last years, the traditional view of adipose tissue as an energy
storage tissue has been replaced by the concept of adipose tissue as an endocrine organ, able
to express and secrete a large variety of bioactive peptides, including leptin and cytokines
(or “adipokines”) [84]. In addition, adipose tissue is capable to aromatize androgens to es-
trogens, leading to lower levels of circulating testosterone due to its increased aromatization
to estradiol in obese men, and hyperestrogenemia further inhibits testosterone production
by negative feedback on the hypothalamus-pituitary-testicular axis [85]. According to
the results of two recent meta-analysis, MetS is associated to significantly lower levels
of follicle-stimulating hormone (FSH), testosterone, and inhibin B [61,86]. Since FSH is
produced by the pituitary and inhibin B by testicular Sertoli cells, these data confirm the
association between MetS and hypothalamus-pituitary-gonadal axis impairment at differ-
ent levels. At the same time, hypogonadism per se can promote the development of MetS.
Indeed, albeit the effects of androgen deprivation therapy on BMI are modest (0.65 kg/m2

after 12 months), it is associated to profound effects on body composition, leading to a 30%
increase in insulin resistance [87]. Conversely, testosterone replacement therapy in hypog-
onadal man decreases body weight and insulin resistance and improve glycemic control
and waist-to-hip ratio [88]. Similarly, prevalence of MetS is more than 2-fold increased in
hypopituitary patients, especially when adult growth hormone deficiency (GHD) is present,
and growth hormone replacement treatment has shown to improve the metabolic profile of
these patients [89].

Concerning thyroid function, recent data suggest that thyroid disfunction may be asso-
ciated with male fertility issues. Hyperthyroidism, indeed, seems to be related to reduced
sperm mitochondrial activity, altered AOX defense, and delayed spermatogenesis, whereas
hypothyroidism leads to reduced sperm vitality and delayed sperm transit through the
epididymis [90]. To confirm this, thyroid dysfunction seems to be more frequent in subjects
with altered seminal quality than in the general population [91]. Therefore, evaluation of
thyroid function should be considered when assessing the hormonal balance of the infertile
male. Conversely, the association between MetS and abnormality of thyroid hormones re-
mains under debate. In particular, despite general consensus on the relationship of thyroid
hormones and BMI in overt hypothyroidism exists [92], data on subclinical hypothyroidism
(SCH) are controversial. According to the results of a recent cross-sectional study, total
cholesterol and LDL levels are significantly higher in patients with SCH [93]. In addition, a
recent meta-analysis has shown a significant association between hypertension and SCH,
especially in middle-aged women [94]. Conversely, other authors have reported no as-
sociation between thyroid hormone levels and insulin resistance indices (namely fasting
glycemia, insulin and e homeostatic model assessment of Insulin Resistance, HOMA-IR)
in women with SCH [95]. Unfortunately, despite the relationship between SCH and CVD
have been supported by several studies [96], two recent randomised controlled trials have
shown that treatment with levothyroxine seems to be ineffective in reducing the risk of
cardiovascular outcomes in older patients with SCH [97]. Due to the scarcity of available
data, the European Thyroid Association suggest levothyroxine treatment in SCH patients
only if symptoms consistent with hypothyroidism are present [98], whereas the American
Thyroid Association guidelines suggest considering treatment also in patients at increased
CVD risk [99].
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Endogenous hypercortisolism (Cushing’s syndrome, CS) presents several clinical
features associated to high risk of CVD, including central obesity, hypertension, glucose
intolerance, dyslipidemia, resembling polycystic ovary syndrome (PCOS) in women and
MetS in men [100]. Chronic glucocorticoids exposure, indeed, lead to the fat redistribution
typical of CS, with preferential visceral fat accumulation [101]. This effect may be observed
also in functional hypercortisolism (also referred to as “Pseudo-Cushing”), a potentially
reversible condition associated to several clinical states such as diabetes mellitus, obesity,
and depression [102]. Similarly, subclinical CS, recently renamed mild autonomous cortisol
excess (MACE), a common finding in adrenal incidentalomas, is frequently associated to
hypertension, dyslipidemia, diabetes mellitus, with a doubled risk of new cardiovascular
events compared with subjects with nonfunctioning adenomas [103].

4. Metabolic Syndrome and Drugs: Fertility Issues

Since patients with MetS often take one or more medications, including antihyperten-
sives, hypoglycemic agents, and cholesterol-lowering agents, any potential benefits or side
effects of these drugs on the reproductive system must be considered.

Concerning antihypertensives, the main drugs used in the treatment of hypertension
are as angiotensin converting enzyme (ACE) inhibitors and angiotensin-receptor blockers
(ARBs), two different class of medications that lower blood pressure targeting the renin-
angiotensin system (RAAS). RAAS is activated by the release of renin from juxtaglomerular
cells of renal afferent arteriolas in case of low blood pressure. As first step, renin converts
angiotensinogen in angiotensin I, which is then transformed in angiotensin II by ACE,
localized mostly in the endothelial cells of the lungs. Then, Angiotensin II increases blood
pressure by a direct vasoconstrictive effect and also by stimulating the adrenal secretion
of Aldosterone [104]. There is evidence in literature that RAAS could be involve in male
reproduction. Leal et al., indeed, using immunofluorescence, revealed the presence of
angiotensin (1–7) receptor Mas in the testes of mice and rats [105]. Moreover, they found
that Mas-deficient mice showed reduced testis weight and an increased number of apoptotic
cells in seminiferous epithelium, with lower daily sperm production, compared with wild-
type mice [105]. In addition, ACE activity has been reported to be positively associated with
sperm concentration and fertility in animal models [106]. By the way, the pharmacologic
inhibition of RAAS seems to have mixed effects on sperm quality. Bechara et al. studied the
effects of the therapy with Enalapril on testes volume and sperm production of spontaneous
hypertensive rats, reporting increased testicular vascular volumetric density, volumetric
density of seminiferous epithelium and sperm production in the treated group compared
with the non-treated group [107]. Conversely, Altintas Aykan at al. reported a significant
reduction in sperm motility in normotensive and dexamethasone-induced hypertensive
adult male rats treated with RAAS inhibitors (sacubitril/valsartan and ramipril) [108],
that could be explained by the presence of an Angiotensin receptors on the tail of rat’s
spermatozoa [109].

Calcium-channel blockers (CCB) are a group of antihypertensive drugs that targets
calcium channels located at the level of the plasma membrane and activated by cell de-
polarization. In resting cells, those channels are usually closed; opening those channels
allows the entry of calcium ions according with their electrochemical gradient. CCBs exert
their antihypertensive effect inhibiting external calcium-evocated contraction in depolar-
ized arteries [110]. The anti-fertility effects of CCBs have been evaluated both in vitro
and in vivo [111]. In this purpose, Murakinyo et al. studied the effects of these drugs on
sperm parameters and sexual hormones levels in male rats. Nifedipine, Verapamil and
Diltiazem significantly reduced sperm count and motility and epididymal weight and
those parameters were restored after 30 days of drug withdrawal. Those effects were not
associated with the inhibition of pituitary-gonadal axis and were probably caused by the
decreased levels of intracellular calcium levels and the consequent reduction of sperm
motility [112]. Subsequently, the same authors evaluated the effects of these three drugs
on the oxidative balance and the functionality of rat’s spermatozoa, finding increased OS
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stress and inhibition of the acrosomal reaction in the treated animals [113]. In another
animal study, Aprioku et al. did not find any alteration in sperm parameters in a group of
guinea pigs treated with Nifedipine alone, but it could be partly due the short duration of
treatment (only 14 days versus 30 days of Murakinyo et al.) [114].

Beta blockers are a group of drugs which exert their action on different beta-adrenergic
receptors, blocking the action of endogenous catecholamines, and consequently causing
an antihypertensive effect through the inhibition of the sympathetic nervous system [115].
Beta-adrenoreceptors antagonist have the potential to reduce sperm motility, as previously
reported by Hong et al., who also noticed that the more those drugs are lipid soluble the
lower concentrations are required to obtain this effect, probably those drugs could exert
this effect by stabilizing cellular membranes [116]. In addition, it should be noticed that
those drugs may also have an indirect effect on male fertility due to their association with
erectile disfunction [117].

Concerning antidiabetic drugs, metformin and glucagon-like peptide 1 (GLP1) ago-
nists may have positive effects on semen quality. Metformin exerts its glycemia-lowering
effect through the reduction of hepatic gluconeogenesis, but its mechanism of action is
still not completely understood [118]. Yan et al. reported that metformin has a positive
effect on reproduction in obese rats, reducing the oxidative damage on the blood/testis
barrier and the ectopic lipid deposition in testis [119]. In addition, the administration
of metformin showed a protective effect on semen quality and testis structure was and
increased levels of testosterone in obese rats [120]. This could be not only due to the
metabolic action of metformin, but also to its effect on OS. Indeed, Alves at al. studied
rat’s Sertoli cells cultured with and without metformin and they found out that it induces
alanine production, which maintains NADH/NAD+ equilibrium with AOX effect [121].
As far as GLP1 agonists are concerned, they may have a positive effect on sperm quality, as
suggested by the recent finding of GLP1 receptors on spermatozoa and Sertoli cells [122],
but clinical data are lacking.

Finally, regarding lipid-lowering drugs, hydroxymethylglutaryl CoA reductase in-
hibitors (or statins) may have a positive effect on male fertility through their AOX ac-
tion [123], in particular at the testicular level [124]. Surprisingly, Pons-Rejraji et al. reported
a negative effect of atorvastatin on sperm parameters in normocholesterolemic and nor-
mozoospermic patients, with significantly reduced sperm concentration, motility and
morphology and altered acrosome reaction. Notably, at list one altered parameter was
present in 35% of patients during the 5 months treatment and in 65% of them after 3 months
of withdrawal [125].

5. Metabolic Syndrome and Reproductive Outcomes

Despite several studies evaluating the effects of maternal metabolic status and fertility
exist, there is absolute scarcity of data on the influence of paternal MetS on reproductive
outcomes. According to a retrospective report by Kasman et al. on almost one million preg-
nancies, the risk of pregnancy loss was significantly higher in couple with paternal MetS.
In addition, the number of paternal components of MetS significantly increased the relative
risk (RR) of pregnancy loss (RR 1.10 for one, RR 1.15 for two and RR 1.19 for three or more
components) [126]. Similarly, Murugappan et al. reported a significant association between
the number of preconception paternal MetS component and adverse maternal outcomes,
including preeclampsia, eclampsia, and severe maternal morbidity [127]. Few studies
evaluated the efficacy of lifestyle intervention on reproductive outcomes in women [128],
and the impact of MetS treatment on semen quality is not clear [129,130]. These data
underscore the absolute need for studies in large population samples to fully understand
the role of paternal MetS as a cause of couple infertility and whether treatment of its
components, in addition to being desirable for improved overall health, may influence
reproductive outcomes.
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6. Conclusions

MetS and male infertility are undoubtedly linked by a relationship that includes
numerous pathogenetic mechanisms. Among these, OS seems to play a primary role,
but metabolic and hormonal alterations and drug interactions contribute to the impaired
reproductive outcome of these patients. Clinicians should be aware of the important reper-
cussions of MetS on semen quality and should make every effort to raise the consciousness
of patients presenting with infertility problems on this topic. Large, well-designed stud-
ies are needed to determine whether correction of the pathologies that contribute to the
definition of MetS may play a role in improving reproductive chances.
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