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Immune responses are primarily mediated by adaptive and innate immune cells. Adaptive
immune cells, such as T and B cells, evoke antigen-specific responses through the
recognition of specific antigens. This antigen-specific recognition relies on the V(D)J
recombination of immunoglobulin (Ig) and T cell receptor (TCR) genes mediated by
recombination-activating gene (Rag)1 and Rag2 (Rag1/2). In addition, T and B cells
employ cell type-specific developmental pathways during their activation processes, and
the regulation of these processes is strictly regulated by the transcription factor network.
Among these factors, members of the basic helix-loop-helix (bHLH) transcription factor
mammalian E protein family, including E12, E47, E2-2, and HEB, orchestrate multiple
adaptive immune cell development, while their antagonists, Id proteins (Id1-4), function as
negative regulators. It is well established that a majority of T and B cell developmental
trajectories are regulated by the transcriptional balance between E and Id proteins (the E-
Id axis). E2A is critically required not only for B cell but also for T cell lineage commitment,
whereas Id2 and Id3 enforce the maintenance of naïve T cells and naïve regulatory T (Treg)
cells. Here, we review the current knowledge of E- and Id-protein function in T cell lineage
commitment and Treg cell differentiation.
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INTRODUCTION

Innate immune cells and adaptive lymphocytes cooperatively evoke immune responses aimed at
protecting our bodies from invasion of the pathogens. Innate immune cells, such as macrophages,
neutrophils, and dendritic cells, are activated by pattern recognition receptors (PRRs) that recognize
microbial components. On the other hand, adaptive lymphocyte T and B cells recognize specific
antigens through diverse antigen receptors. This specific immune response relies on the V(D)J
recombination of the immunoglobulin (Ig) and T cell receptor (TCR) genes mediated by the
recombination-activating gene (Rag1/2). The assembly of the TCR and Ig genes from the arrays of
variable (V), diversity (D), and joining (J) gene segments is initiated by a Rag1 and Rag2 protein
complex, which recognizes and cleaves the recombination signal sequences (RSSs) flanking the V,
D, and J segments of the Ig and TCR genes (1, 2). The expression of the Rag1/2 genes is stringently
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controlled. These genes are expressed only in T and B
progenitor/precursor cells, meaning that Rag1/2 expression is a
hallmark of the adaptive lymphocyte lineage.

Common lymphoid progenitors (CLPs) can give rise to T
cells, B cells, innate lymphoid cells (ILCs) including natural killer
(NK) cells, and dendritic cells (DCs). Once lymphoid progenitors
from the fetal liver or bone marrow (BM) migrate into the
thymus, they receive Notch1 receptor signaling through the
interaction with Delta-like 4 (DL4)-expressing thymic
epithelial cells and commit to the T cell lineage (3–6). After T
cell lineage commitment, TCRb and/or TCRg/d V(D)J gene
recombination is initiated in immature CD4–CD8– (double
negative; DN) cells. DN cells are divided into multiple distinct
stages distinguished by surface expression of CD44 and CD25
(DN1-4). In DN1 cells, early T cell progenitors (ETPs) are
defined by CD25–CD44+KIThi expression, and committed T
progenitor (pro-T) cells start expressing CD25 (DN2) since
CD25 is a direct target of Notch signaling. Following the
success of productive TCRb recombination in DN3 cells
(CD44–CD25+) , DN3 ce l l s s tar t pro l i f era t ing and
differentiating into DN4 cells and further into CD4+CD8+

(double positive; DP) cells (T precursor (pre-T) cells).
Recombination of the TCRg/d gene occurs concurrently with
TCRb recombination in DN2-3 cells (7). Upon reaching the DP
stage, thymocytes exit the cell cycle (resting DP cells) and start
TCRa VJ recombination (8, 9). DP cells that succeed in the
production of a functional TCRa/b undergo positive and
negative selection, which permits the developmental
progression of T cells that have acquired a TCR with moderate
affinity for self-antigens associated with major histocompatibility
complex (MHC) class I (for CD8 single-positive (CD8SP) cells)
or class II (for CD4SP cells) (10). The population of CD4SP cells
that react more strongly with self-antigens associated with the
MHC in the thymus differentiates into distinct regulatory T cells
(Tregs), which specifically express the transcription factor (TF)
Foxp3 and play an indispensable role in suppressing
autoimmunity and excessive immune responses (11). On the
other hand, innate type of T cells also arise from DP cells, which
are selected by CD1 for invariant natural killer T (iNKT) cells
and by MHC-related protein MR1 for mucosal-associated
invariant T (MAIT) cells (12, 13). In these processes,
sequential expression of an ensemble of TFs specifies the
lineage-specific gene expression program and function through
the regulation of the enhancer repertoire and activities (14, 15).
However, the precise molecular mechanisms of how lineage-
specific TFs synergistically regulate enhancer activities and how
these factors cooperatively orchestrate the changes in chromatin
architecture for appropriate gene expression remain unclear.

E proteins are basic helix-loop-helix (bHLH) TFs involved in
multiple hematopoietic developmental processes, and
mammalian E proteins include E12, E47 (from the E2A;Tcf3
gene), E2-2 (Tcf4), and HEB (Tcf12). E proteins bind to the E-
box motif (CANNTG) within the cis-regulatory element (CRE,
enhancer region) of the target genes by forming homodimers or
heterodimers. In contrast, Id proteins contain an HLH
dimerization domain but lack the basic region that is required
Frontiers in Immunology | www.frontiersin.org 2
for DNA binding and form heterodimers with E proteins,
antagonizing the DNA binding activity of E proteins and
functioning as negative regulators of E proteins (16–18). Id
proteins include Id1, Id2, Id3 and Id4, and hematopoietic cells
primarily express Id2 and Id3. It is well established that the E and
Id protein axis (the E-Id axis) regulates developmental
trajectories of adaptive lymphocytes (19–21). The E2A gene
encodes the E12 and E47 proteins, and E47 primarily regulates
B cell lineage commitment, along with Ebf1, Pax5, and Foxo1
(22, 23). For T cell lineage commitment, E2A acts in pro-T cells
along with HEB to establish a T cell-specific gene expression
program and to suppress ILC development (24–28). HEB is also
required for iNKT cell development from DP cells (29), and HEB
and E2A play an important role in positive selection of DP cells
(30). In contrast, Id3 is upregulated by pre-TCR and gd TCR
signaling through ERK-MAPK, Egr1, and NFAT and plays a
central role in ab/gd T cell fate and maturation (31–33).
Furthermore, a recent report revealed the importance of the
Notch-E2A-Tcf1 axis in ab versus gdT cell lineage bifurcation
and gdT cell function (34). In addition, E2-2 is critically required
for interferon-producing plasmacytoid DC (pDC) development,
while Id2 regulates antigen-presenting classical DC (cDC)
development by neutralizing E2-2 activity (35–37).
Furthermore, Id2 is well known as a critical regulator of the
development of all ILC subsets, including ILC1-3s, NK cells, and
lymphoid tissue inducer (LTi) cells (38, 39).

Many reviews describing the role of the E-Id axis have focused
on the lineage commitment of T and B cells and DCs and on
development of conventional T cells, NK cells, gdT cells, and
iNKT cells. In this review we focus on the roles of the E-Id axis in
T cell lineage commitment, including adaptive versus innate
lymphoid cells, and during Treg cell differentiation.
ADAPTIVE VERSUS INNATE
LYMPHOID CELLS

ILCs are a family of lymphocytes that do not have diversified
antigen recognition receptors, such as Ig and TCR, and that
primarily reside in various tissues and respond to infection,
injury and damage (40). ILCs modulate immune responses and
contribute to the maintenance of tissue homeostasis by
sustaining appropriate immune responses at mucosal barriers
and by enhancing immune responses through secretion of
inflammatory cytokines. Functional similarities regulated by a
common set of specific TFs may suggest that ILCs are the innate
counterparts of T cells. ILCs can be segregated into distinct
classes according to effector cytokine secretion and expression of
specific TFs. ILC1s, including NK cells, are characterized by
secretion of interferon-g (IFN- g) and expression of the specific
TF T-bet. ILC2s express the TF Gata3 and Th2 cytokines
(interleukin-4 (IL-4), IL-5, and IL-13). ILC3s, including LTi-
like cells, express Rorgt and secrete IL-17/IL-22 and lymphotoxin
(40, 41). Therefore, ILC1s, ILC2s, and ILC3s are counterparts of
CD4 helper TH1, TH2, and TH17 cells, respectively, while NK
cells mirror CD8 cytotoxic T cells. As well as adaptive T and B
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lymphocytes, ILCs develop from common lymphoid progenitors
(CLPs), and lineage commitment into ILCs is regulated by
sequential expression of an ensemble of TFs, including Nfil3,
Tox, Id2, Tcf1, and Gata3 (42–48). In addition, PLZF in ILC
precursors (ILCp), Bcl11b and Rora in ILC2s, and Runx3 in
ILC1s/3s are required for this process (49–52). In particular, it is
well known that Gata3, Tcf1, and Bcl11b are also required for
early T cell development (3, 53). These observations clearly show
close similarities between ILC and T cell lineages not only in
effector function but also in their development, and a
combination of these shared TFs determines effector functions
in each lineage of ILCs after passing the developmental
bifurcation of adaptive and innate lymphoid lineage
commitment. However, how these shared TFs play their
distinct roles in early T cell and ILC development remains to
be clarified. Therefore, it is important to understand what events
result in the differences between T cells and ILCs during
their development.

ILCs are derived from CLPs in the fetal liver (FL) and adult
bone marrow (BM), and differentiate into functional mature
ILCs in the resident tissues, while CD4 helper T cells and CD8
cytotoxic T cells mature in the thymus. The frequencies of ILCs,
including mature Id2- and Gata3-expressing ILC2s and PLZF-
expressing ILCps, are considerably low in the thymus of normal
adult mice (54), because the majority of thymocytes in adult
thymus are developing T cells. Consistent with a report that
Rag1/2-mediated TCR recombination is dispensable for ILC
development (55, 56), we and another group observed both the
absence of D-J and V-DJ recombination of the TCRb gene in
ILC2s from wild-type lung tissue and aberrant ILC2s in the
thymus from E2A/HEB-deficient mice (28, 57). According to
these observations, the cell fate of the T versus ILC lineage must
be principally determined by the thymic microenvironment.
Notch signaling is one of the most likely external or
environmental factors that distinguish T cells from the ILC
lineage. In the absence of DL4 in thymic stromal cells, aberrant
ILC2s are observed in the thymus, and constitutive Notch
signaling completely blocks the ILC lineage in vivo. However,
the proliferation of committed ILC precursors require mild to
moderate Notch signaling, and short exposure to a Notch ligand
combined with a high amount of IL-7 in CLPs leads to ILC2
generation in vitro (6, 58). Interestingly, recent studies have
revealed an unexpectedly close relationship between T cells and
ILCs (57, 59). Specifically, ILCps in BM express high levels of
TCRb constant region transcripts, and a proportion of tissue-
resident ILC2s have undergone TCRg gene recombination and
express high levels of mRNAs of TCRb and TCRg4 constant
regions (Cb1/2 and Cg4); however, the frequency of these TCRg
gene recombination is low, compared to that in gdT cells, and the
recombination in these cells are nonfunctional (28, 57).
Consistent with this observation, a high level of mRNA
expression and broad chromatin accessibility in the TCRb
constant region with little or no expression of any TCR Vb
region in E2A/HEB-deficient ETPs, which tend toward an
aberrant ILC lineage, were detected (28). According to these
observations, T precursor cells that fail to properly undergo TCR
Frontiers in Immunology | www.frontiersin.org 3
recombination, especially TCRg/d recombination, may be able to
convert their cell lineage into ILCs (56, 57). However, the
numbers of mature ILC2s and PLZF-expressing ILCps in
Rag2-deficient thymuses remain low; this phenomenon cannot
explain why TCRg/d genes, but not TCRb D-J gene,
recombination are observed in ILCs, although TCRb D-J and
TCRg/d recombination occurs concurrently in the DN2 stage
(28, 57). In contrast to these reports, the Sun group
demonstrated that ILC2s in the thymus and lug from wild-type
and E2A/HEB deletion (plck-Cre) mice, but not from Id1-
transgenic (Id1-Tg) mice, exhibited TCRb D-J and V-DJ gene
recombination, which are detected by Southern blotting, and
estimated that around 10% of ILC2s performed these
recombination (60). In this report, even committed DN3 cells
have a potential to differentiate into ILC2s in vitro, suggesting the
lineage conversion of T cells to ILCs (60). Although these
phenomena remain puzzling, T cells and ILCs are very close
counterparts, and Rag1/2-mediated TCRb recombination and its
expression seem to be functional hallmarks of physiological T
cell lineage commitment in vivo. A recent study provided an
important clue regarding the mystery of the checkpoint for T
cells and ILC2s in the thymus (61). During embryogenesis,
functional ILC2s differentiate from ETPs in the fetal thymus,
and these ILC2s preferentially migrate to mucosal tissues and
reside for a long period. In this time-restricted thymic ILC2
development, specific TF RORa is the key factor that promotes
ILC2 development and simultaneously suppresses the T cell
lineage program by inducing Id2 expression, leading to E2A
function antagonism (61, 62). This study demonstrated that
ILC2 development in E2A/HEB-deficient mice does not
represent simple aberrant ILC development and instead may
be an implication of the physiological embryonic thymocyte
development toward the ILC2 lineage. Although Id2 expression
is a critical regulator of the ILC lineage, Id2 deletion in E2A/HEB
deficiency leads to thymic ILC development as well as E2A/HEB
deficiency, and transient Id2 expression induced by doxycycline
can induce aberrant ILC2 development in adult thymus. Thus, T
cell and ILC lineages may simply depend on the magnitude of E
protein activity, and Id2 may function as a lineage switch for
ILCs (28). Therefore, we conclude that after the enhancer
repertoire associated with each lineage regulated by the E-Id
axis is established, an ensemble of shared TFs, such as Tcf1,
Bcl11b, and Gata3, instructs the lineage-specific gene expression
programs in both T cells and ILCs (Figure 1). Indeed, Bcl11b
binds to different sites in a lineage-specific manner associated
with cell type-specific protein complexes (63). Interestingly,
some members of these factors are dynamically recruited to
the regulatory regions not only in a lineage-specific manner but
also in a developmental stage-specific manner (64).

However, it remains unclear whether the loss of E protein
activity in ETPs induces only ILC lineage commitment or also
leads to the expansion of ILC precursors or mature ILCs. Since
Id2 is continuously expressed at high levels after ILC lineage
commitment, the magnitude of E protein activity may control
not only the ILC versus T lineage commitment but also the
expansion or activation of ILCs after the commitment, which is
May 2022 | Volume 13 | Article 890056
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antagonized by Id2. Because E2A functions both as an initiator
upon T cell lineage commitment and as a gatekeeper at b-
selection (65), the loss of E protein activity in ILCs may play a
role in the activation or expansion of ILCs.

How is the E-Id axis regulated? While E2A and HEB mRNA
expression levels are relatively consistent throughout the
thymocyte development (ImmGen data; https://www.immgen.
org/), the E2A protein level is high in ETPs and is the highest in
DN2 cells; this level is downregulated in resting DP cells, as
revealed by E2A-GFP fusion knock-in mouse analysis, indicating
the presence of posttranslational regulation of the E2A protein
(66–68). On the other hand, Id3 is upregulated by TCR signaling,
including pre- and gd-TCR, during thymocyte development and
remains at a high level in peripheral naïve T and Treg cells (32,
67, 69). In peripheral T cells, TCR stimulation induces E2A
protein expression, which is required for rapid memory-
precursor formation of CD8 T cells, while Id2 and 3 function
as regulators of CD8 T cell responses (70). Surprisingly,
differential Id2 and Id3 expression in CD4 T cells during viral
infection regulates TH1 or TFH cell development, respectively
(71). During ILC lineage commitment, Id2 is initially
Frontiers in Immunology | www.frontiersin.org 4
upregulated in PLZF-expressing ILC precursors in which E2A
protein is already downregulated, and this induction of Id2
expression is associated with the IL7R expression level,
suggesting the involvement of cytokine signaling in Id2
expression (28). Consistently, the cis-regulatory element of the
Id2 gene, which expresses the long noncoding RNA Rroid,
controls ILC1 function by regulating Stat5 deposition at the
Id2 promoter region; however, this locus is dispensable for Id2
expression in other ILCs (72). Therefore, Id2 expression in ILC
lineages, which is probably mediated by cytokine signaling, is
required not only for ILC lineage commitment but also for
ILC maintenance.
RAG1 AND RAG2 GENE EXPRESSION
MEDIATED BY E PROTEINS

As we discussed in the introduction, Rag1/2 gene expression
discriminates between adaptive and innate lymphoid lineages.
This indicates that TFs responsible for Rag1/2 expression are
FIGURE 1 | Model of adaptive and innate lymphocytes lineages mediated by the E-Id axis. The magnitude of E protein transcriptional activity determines the lineage
commitments of adaptive versus innate lymphocytes. Following this process, an ensemble of TFs specific for each lineages validates lineage-specific gene
expression program, along with E proteins in T and B cells. This figure was created with BioRender.com.
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critical regulators of T and B lineage commitment (73). There are
two waves of Rag1/2 expression during T and B cell development
(74). The first wave of Rag1/2 expression is required for the
assembly of IgH and TCRb genes in pro-B and pro-T cells,
respectively. After the selection of pre-TCR (TCRb) or pre-BCR
(IgH), Rag1 expression is transiently downregulated during the
transition from the progenitors to precursors. In the precursor
stage, Rag1/2 are re-expressed for IgL and TCRa gene
recombination. Following the positive and negative selection of
the TCR or BCR, the Rag1/2 genes are suppressed in mature
naïve T and B cells and are never expressed for further
recombination of the TCR and Ig genes. During these
developmental processes, Rag1/2 gene expression is tightly
regulated, and other types of immune cells never express the
Rag1/2 genes. However, the molecular mechanisms of Rag1/2
gene expression remained to be determined. Both in vivo and in
vitro studies have attempted to define the enhancer regions and
TFs responsible for Rag1/2 expression (75). Both T and B
progenitor/precursor cells express Rag1/2 and require distinct
enhancers of these genes. The deletion of Erag (Enhancer of Rag),
which is located at 23 kb upstream of the Rag2 promoter,
resulted in a significant reduction in Rag1/2 expression and
partial developmental defects during B cell development,
without affecting thymocyte development (76). A study has
reported that this Erag region is positively regulated by Foxo1
and negatively regulated by Gfi1b, Ebf1, and c-Myb (77–80). In
contrast, an anti-silencer element (ASE), which is 8 kb in length
and located 73 kb upstream of the Rag2 promoter, is required for
Rag1/2 gene expression in DN3 and DP cells but not in
developing B cells (81). In ChIP-seq data, most of T cell TFs
includng E2A, Bcl111b, Tcf1, Gata3, Runx1, and Ikaros bound to
ASE regions, while B cell TFs such as E2A, Pax5, and Irf4, but not
Ebf1, bound to Erag region (82, 84).

The Krangel group demonstrated that the chromatin
organizer mediates the interaction between ASE and Rag1/2
promoters to promote optimal expression of the Rag1/2 genes
in DP cells and suggested that the ASE and Rag1 promoter
regions function as a chromatin hub (82). Furthermore, this
group proved that Gata3 and E2A regulate the ASE region, and
Rag1 promoter activity relies on Runx1 and E2A binding in the
VL3-3M2DP thymocyte cell line (83). A study also identified T
or B cell-specific enhancer elements that drive Rag1/2
expression using the E2A ChIP-seq and ATAC-seq data from
pro-T and pro-B cells to clarify the regulatory mechanisms
of adaptive versus innate lineage choice. Two B cell-specific
enhancers (Rag B cell enhancer 1 and 2; R1B (5 kb upstream of
the Rag1 promoter) and R2B (partially overlapping with Erag))
and one T cell-specific enhancer (Rag-T cell enhancer (R-TEn))
were identified (84). A common E2A-binding region near the
Rag1 promoter (R1pro), which is shared between T and B cells,
was also identified. R1B/R2B and R-TEn uniquely bind to the
Rag1/Rag2 promoter regions and form distinct chromatin
structures in developing T and B cells, respectively. Deletion
of both R1B and R2B in mice resulted in a severe developmental
block at the pro-B stage, but not in T-cell development,
resulting from drastic impairments in Rag-mediated IgH gene
Frontiers in Immunology | www.frontiersin.org 5
recombination, whereas single deletion of either R1B or R2B
resulted in mild-to-moderate defects in B cell development
that also occurred in Erag deletion mice (76, 84). This finding
suggests enhancer redundancy in Rag1/2 expression in B cells.
In contrast, R-TEn deletion resulted in severe developmental
defects in b-selection of DN3 cells and positive selection of DP
cells without affecting B cell development (84). These results
raised the question of what TF regulates these Rag gene
enhancer regions.

E2A is especially notable among TFs responsible for adaptive
lymphocyte development because Rag1/2 gene expression was
significantly reduced in E2A-deficient lymphoid-primed
multipotent progenitors (LMPPs) and T progenitor cells (28,
85, 86). A mutation of the E-box motifs in the R-TEn (R-TEn-E-
box-mutant), which blocks E-protein binding without affecting
the recruitment of other TFs to this enhancer, directly proves
that the E2A/E protein regulates this enhancer. R-TEn-E-box-
mutant mice showed developmental defects in b-selection and
positive selection, resulting from a severe reduction in Rag1/2
gene expression in DN3 and DP cells. Furthermore, genome
structures, chromatin accessibility, histone H3 lysine K27
acetylation (H3K27ac), and cohesin recruitment were
completely lost only at the Rag gene locus, indicating that the
E2A/E protein binding to the enhancer region induces and
promotes cell type-specific superenhancer (SE) formation (84).
How does the E2A/E protein induce SE formation? bHLH TFs,
such as E2A, were reported to interact with the histone
acetyltransferase (HAT) CBP/P300 and SAGA proteins
through the PECT motif within the activation domain 1 (AD1)
of the E protein and recruit these coactivators to enhancer
regions, thus inducing and promoting H3K27 acetylation (87–
91). Active enhancers are accompanied by high levels of
H3K27ac, CBP/P300, chromatin remodeler Brg1, and RNA
polymerase II (PolII) to facilitate the recruitment of cohesin-
loader NIPBL and the cohesin complex, which induce large-scale
structural changes of the chromatin and may switch the locus
from transcriptionally repressive (B) to permissive (A)
compartments (92, 93). Simultaneously, E2A and other specific
TFs also recruit the ten-eleven translocation (TET) family
proteins to the enhancers to remove DNA methylation of the
CpG islands in enhancers, which is associated with the SE
function in developing and activated B cells (94, 95). SEs
regulate certain genes that play characteristic roles in cell type-
specific functions, thereby establishing cell identity (96, 97).
Because the properties of SEs are based on highly cooperative
interactions between cell type-specific TFs, transcriptional
mediators, and RNA PolII and due to vulnerability to a
perturbation of the key protein components (98), E2A
functions in adaptive lymphocyte-specific enhancer regions as
a pioneer and maintainer. Additionally, E2A plays an essential
role in Rag1 expression in vivo through the regulation of the
promoter activity. Surprisingly, E-box motif mutations in the
Rag1-promoter region (R1pro-E-box-mutant) alone in mice are
sufficient to inhibit the Rag1 gene expression, which leads to the
developmental arrest at both the T and B cell progenitor stages,
similar to those in Rag1-deficient mice. However, Rag2
May 2022 | Volume 13 | Article 890056
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expression and enhancer regions (R-TEn and R1B/R2B) are not
affected in R1pro-E-box-mutant DN3 and pro-B cells (84). This
result indicates that both cell type-specific enhancer and
promoter regions independently rely on the recruitment of the
E2A/E protein and that E protein-mediated interactions between
enhancer and promoter regions determine adaptive lymphocyte-
specific expression of the Rag gene. We summarised these
regulatory regions in Table 1.

Overall, the binding of the E2A/E proteins to the E-box motifs
in the cell type-specific cis-regulatory regions induces the
recruitment of P300, other transcription mediators, the NIPBL/
cohesin-complex, and chromatin organizers to orchestrate 3D
structural changes of the genomes to initiate and maintain cell
type-specific gene expression. In contrast, high expression levels
of Id2 prevents Rag gene SE formation by antagonizing the E2A
activity, and the Rag gene is sequestered in repressive chromatin
(B) compartment (Figure 2). Curiously, sequence similarities of
T and B cell-specific Rag gene enhanceres are conserved among
mammals, birds and reptiles, but not in amphibians and fish. In
addition, these conserved enhancer regions have been shown to
harbor the E-box motifs conserved among these species (84).
Thus, we propose that terrestrial animals evolutionarily acquired
the gene regulatory mechanism mediated by the E proteins as
enhancers to achieve higher Rag gene expression, which enables
a diverse range of TCR and Ig gene recombination to protect
against a wide range of the pathogens (99).
TREG CELLS AND THE ROLE OF THE
E-ID AXIS

E and Id proteins play a central role in effector/memory and
tissue-resident cytotoxic CD8 T cell differentiation and the
activation of helper CD4 T cells, including TH1 and follicular
helper T (TFH) cells (67, 71, 100–105). However, to our
Frontiers in Immunology | www.frontiersin.org 6
knowledge, no review papers have addressed the role of the E-
Id axis in Treg cells. In this section, we focus on the roles of Id
and E proteins in Treg cells. Treg cells play a central role in the
maintenance of immune homeostasis by suppressing
autoimmunity and excessive inflammatory responses and by
tissue repair after inflammation. Naturally occurring Treg cells
differentiate in the thymus (natural Treg (nTreg) or thymic Treg
(tTreg) cells), which constitutively express TF Foxp3, while a
population of Foxp3-expressing Treg cells develops from naïve
CD4 T cells in the periphery (peripheral Treg (pTreg) cells)
(106). In addition, naïve CD4 T cells can develop into Foxp3-
expressing Treg cells in vitro by TCR stimulation in the presence
of TGF-b plus IL-2 (induced Treg (iTreg) cells) (107). Treg cells
show functional heterogeneity to regulate a variety of immune
responses, and each subset of Treg cells has a specialized gene
expression program. As well as conventional CD4 T cells, Treg
cells differentiate into effector subsets, named effector Treg
(eTreg) cells, accompanied by Blimp1 and Irf4 TFs, and
express unique migratory chemokine receptors to home to the
site of inflammation and higher suppressive molecules such as
IL-10 and CTLA-4 to control tissue inflammation (108–110). For
instance, TH1-Treg cells express CXCR3, which is mediated by
T-bet, to migrate into TH1 inflammatory sites (111). In addition,
follicular regulatory T (TFR) cells, a specialized subset of Treg
cells, regulate TFH cell function and germinal center B-cell
responses for the humoral immunity (112–114). More recently,
specialized subsets of Treg cells in nonlymphoid tissues, such as
adipose tissue, muscle tissue, lung tissue, and the central nervous
system, have been shown to play an important role in tissue
homeostasis and regenerative functions, and amphiregulin and
Notch ligand Jagged1 from Treg cells contribute to tissue
regeneration (115–118). This subset of Treg cells is often
referred to as tissue-resident Treg (TR-Treg) cells. They are
derived from effector Treg cells, which in turn are instructed by
TF Batf (119) (Figure 3).
TABLE 1 | Description of Rag gene enhancer regions.

cis-regulatory
element

Length/open TF bindings by ChIP-seq
data

Defects in deletion or
mutant mouse

Rag1/Rag2 expression Ref
paper

anti-silence
element (ASE)

8 kb defects in thymocyte
development (DN3, DP)

Rag1/2; down in DP cells (79)

Enhancer of Rag
(Erag)

1.7 kbp E2A, Ets1, Ikaros moderate defect in B cell
development

Rag1/2; down in developing B cells (74)

Rag-B cell
enhancer 1 (R1B)

<1 kb E2A, Ikaros, Irf4 mild defect in B cell
development

moderate reduction of Rag1/2 expression (80)

Rag-B cell
enhancer 2 (R2B)

2 kb (partially overlapped
with Erag)

E2A, Pax5, Ets1, Ikaros moderate defect in B cell
development

moderate reduction of Rag1/2 expression (80)

R1B/R2B R1B/R2B double deletion developmental arrest at pro-
B stage

drastic reduction of Rag1/2 expression in
pro-B cells, but not in T cell

(80)

Rag-T cell
enhancer (R-TEn)

2 kb (included in ASE) Satb1, E2A, Ikaros, Bcl11b,
Tcf1, Runx1, Gata3

defects in thymocyte
development (DN3, DP)

Rag1/2; down in DN3a and DP cells (80)

R-TEn peak 1 open in DN3/DP defects in thymocyte
development (DN3, DP)

Rag1/2; down in DN3a and DP cells (80)

R-TEn peak 2 open in DP no defect normal (80)
R-TEn peak1 E-
box mutant

blocking E-protein binding
to R-TEn

defects in thymocyte
development (DN3, DP)

Rag1/2; down in DN3a and DP cells (80)

Rag1 promoter E-
box mutant

blocking E-protein binding
to Rag1 promoter

developmental arrest at pro-
B and DN3 stages

defects in Rag1, but not Rag2, expression
in DN3a and pro-B cells

(80)
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There are many previous studies about the role of the E-Id
axis in Treg cell development and activation. The expression of
Id3 is high in naïve Treg cells and low in ICOS+ effector Treg
cells, and TCR stimulation in Treg cells downregulates Id3. In
contrast, Id2 levels are low in naïve Treg cells, and TCR
stimulation induces the upregulation of Id2 in vitro (120, 121).
It has been reported that E2A/HEB and Id3 are involved in the
development of tTreg cell and iTreg cells; drastically increased
tTreg cells were observed in a study of E2A/HEB-deficient
thymus, while decreased tTreg cells were detected in a study of
Id3–/– thymus (122, 123). In addition, blocking the E protein by
Id1 overexpression in mice resulted in an increased frequency
and number of tTreg cells due to the expansion of thymic Treg
cells, while Foxp3 mRNA induced by TCR stimulation was
significantly lower in naïve Id1-Tg CD4 T cells (124).
However, the deletion of E2A and HEB in early stages blocks T
cell lineage commitment, and their deletion in DP cells bypasses
the TCR-mediated positive selection of DP cells, leading to the
CD8SP stage accompanied by severe impairment of the CD4SP
lineage (28, 125). In addition, Id3 is required for MHC-restricted
Frontiers in Immunology | www.frontiersin.org 7
positive selection of DP cells (126). The combined loss of Id2 and
Id3 results in blockage of the transition from CD69+TCRblo or –

DP to fully TCR-selected CD69+TCRbhi DP cells at a young age;
however, PLZF-expressing innate TFH cells expand with limited
TCR repertoires and occupy the CD4SP population in adults,
suggesting that in the absence of Id2 and Id3, conventional CD4
T cell development is severely affected (102). Therefore, it
remains unclear whether changes in tTreg populations in these
gene-deficient mice are reflected by the severely impaired CD4SP
population and reduced strength of TCR signaling or whether
E2A/HEB and Id3 are actually involved in the induction of
Foxp3 expression or tTreg cell development. Furthermore, since
Id3 enforces naïve T cell fate by antagonizing E2A activity and
Id3-deficient CD4SP or CD8SP cells readily differentiate into
IFN-g-producing effector T cells,TFH cells (CD4SP), or innate-
like CD8 T cells in the thymus (67, 127), attenuated iTreg cell
development in Id3–/– mice is more likely the result of fewer
naïve CD4 T cells in the periphery. However, from the result that
the deletion of E2A/HEB led to increased iTreg development in
vitro, E protein activity is thought to be involved in iTreg cell
FIGURE 2 | Regulation of Rag gene locus by E2A and cis-regulatory elements. E2A binding to the specific enhancer (R-TEn and R2B) and R1pro regions induces
the genome conformation changes to form adaptive lymphocyte-specific SE through the recruitment of P300, TET, and NIPBL-cohesin complex (left; developing T
and B cells). In contrast, Id2 prevents E2A/E proteins from binding to these regulatory regions, leading to the insulator formation to sequester the Rag genes in
repressive chromatin compartment in innate immune cells (right; macrophage etc). This figure was created with BioRender.com.
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development (123). It was reported that E47 indirectly regulates
Foxp3 expression through the regulation of Spi-B and SOCS3 in
Id3-deficient Treg cells and that Foxp3 mRNA in Id2/Id3-
deficient Treg cells is comparable to that in control Treg cells,
indicating that E2A does not regulate Foxp3 gene expression
(120, 128). In line with this, E2A occupancy around the Foxp3
gene locus, by ChIP-seq analysis, was not detected in Id2/Id3-
deficient DP cells (129).

Although the role of Id and E proteins in tTreg development
is unclear, the E-Id axis plays an important role in Treg cell
function. Indeed, Treg-specific deletion of Id2 and Id3 using
Foxp3-Cre in mice leads to fatal inflammatory disease, which is
characterized by spontaneous TH2 inflammation in the lung,
skin, and esophagus, similar to human atopic diseases such as
bronchial asthma, atopic dermatitis, and eosinophilic esophagitis
(120). Id2/Id3 depletion in Treg cells induces CXCR5, which is a
direct target of the E2A-Id3 axis in TFR and TFH cell development
and preferentially migrates to B-cell follicles. However, Id2/Id3-
deficiency in Treg cells has been shown to result in compromised
maintenance of Treg cells mediated by TCR stimulation in vitro.
This result suggests that Id proteins function as gatekeepers for
Frontiers in Immunology | www.frontiersin.org 8
eTreg and TFR cells as well as CD4 T cells and control the
maintenance of Treg cells. Although Id2 and Id3 compensate for
each other in single KO Treg cells, Id2 and Id3 have distinct roles
in Treg cell function. According to Id3 expression with CD62L
and CD44, the Campbell group demonstrated stepwise
developmental stages toward TR-Treg cells; Id3 was highly
expressed in central naïve Treg cells and effector Treg cells,
whereas ICOShi Id3lo TR-Treg precursor cells expressed Id2,
suggesting a regulatory switch from Id3 to Id2 in Treg cells (121,
130). This seems to be similar to tissue resident effector/memory
CD8 T cells (100, 105). Interestingly, consistent with the Id
switch in Treg cells, a loss of Id2 expression in Treg cells results
in decreased expression of TR-Treg cell-related functional
molecules and leads to increased cell death of Treg cells,
suggesting an Id2-dependent TR-Treg cell-specific program
(131). Curiously, Treg cells lacking E2A and HEB exhibit
effector phenotypes and increased stability, suggesting the
linkage of E protein and TCR signaling in the gene signature
of effector Treg cell development (132). In contrast, ectopic Id2
expression in Treg cells in mice enhance Treg cell plasticity and
lead to a reduction in Treg cells (133). Taken together, although
FIGURE 3 | The roles of Id2 and Id3 in Treg cell differentiation into subsets of effector Treg cells. Id2 and Id3 enforce the naïve state of Treg cells, especially in TFR
cells. A regulatory switch of Id3 to Id2 plays a role in TR-Treg cell differentiation and function. This figure was created with BioRender.com.
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the underlying molecular mechanism remains to be determined,
it now seems apparent that the E-Id axis orchestrates Treg cell
differentiation toward the fate of TFR, eTreg and TR-Treg cells
and dictates function and plasticity in lymphoid and
nonlymphoid tissues (Figure 3).
CONCLUSION

The E-Id transcriptional axis plays an important role in T/B cell
lineage commitment, discrimination between T cells and ILCs,
including Rag gene expression, and T/Treg cell function. However,
it remains to be investigated how the E-Id axis orchestrates cell type-
specific enhancer activities in conjunction with other TFs associated
with T cell activation and TCR signaling. Future experiments are
warranted to explore the role of the E-Id axis in T and B cell
activation under the inflammatory conditions. These findings may
have implications for health and immunological disorders.
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