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ABSTRACT  The constituents of large, multisubunit protein complexes dictate their functions 
in cells, but determining their precise molecular makeup in vivo is challenging. One example 
of such a complex is the cellulose synthesis complex (CSC), which in plants synthesizes cellu-
lose, the most abundant biopolymer on Earth. In growing plant cells, CSCs exist in the plasma 
membrane as six-lobed rosettes that contain at least three different cellulose synthase (CESA) 
isoforms, but the number and stoichiometry of CESAs in each CSC are unknown. To begin to 
address this question, we performed quantitative photobleaching of GFP-tagged AtCESA3-
containing particles in living Arabidopsis thaliana cells using variable-angle epifluorescence 
microscopy and developed a set of information-based step detection procedures to estimate 
the number of GFP molecules in each particle. The step detection algorithms account for 
changes in signal variance due to changing numbers of fluorophores, and the subsequent 
analysis avoids common problems associated with fitting multiple Gaussian functions to 
binned histogram data. The analysis indicates that at least 10 GFP-AtCESA3 molecules can 
exist in each particle. These procedures can be applied to photobleaching data for any pro-
tein complex with large numbers of fluorescently tagged subunits, providing a new analytical 
tool with which to probe complex composition and stoichiometry.

INTRODUCTION
Cellulose is a major structural component in the plant cell wall that 
regulates plant cell growth and morphology and also has extensive 
commercial value for applications such as papermaking, textile 
manufacturing, and biofuel production (Carroll and Somerville, 
2009). However, the molecular processes involved in the biosynthe-
sis of cellulose, which is composed of large numbers of β(1,4)-linked 

glucan chains that associate via hydrogen bonds to form cellulose 
microfibrils, remain incompletely understood despite intensive 
research over the past 15 yr (McFarlane, 2014). It is generally be-
lieved that cellulose is synthesized at the plasma membrane and 
extruded into the extracellular space by a cellulose synthesis com-
plex (CSC). Each CSC contains many GT2-family glucosyltrans-
ferases called cellulose synthases (CESAs) and is assembled into a 
large integral membrane complex with a membrane-spanning ro-
sette configuration ∼25 nm in diameter (Haigler and Brown, 1986). 
The complex is formed in the Golgi and transported to the plasma 
membrane, where it becomes active to synthesize the glucan chains 
that constitute the cellulose microfibril (McFarlane, 2014). Genetic 
and biochemical data indicate that a minimum of three different 
CESA isoforms are present in each CSC; in the model plant Arabi-
dopsis thaliana, AtCESA1, AtCESA3, and AtCESA6-type proteins 
are present in CSCs that synthesize cellulose in the primary walls of 
growing cells, whereas AtCESA4, AtCESA7, and AtCESA8 proteins 
are present in CSCs during secondary wall synthesis in cells that 
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data, and the simulated data are used to optimize the performance 
of the step detection and density estimation algorithms and demon-
strate their ability to accurately retrieve copy numbers from simu-
lated data with varying degrees of experimental noise. A key goal in 
developing these tools was to make them as objective as possible by 
minimizing the number of user-defined parameters, and it is hoped 
that these procedures will establish best practices for analyzing pho-
tobleaching data derived from complexes with high copy numbers. 
We apply these analytical tools to photobleaching data collected for 
GFP-tagged AtCESA3 in intact cells of A. thaliana seedlings and es-
timate the lower limit of copy number per particle to be 10.

RESULTS
Imaging CesA complexes in Arabidopsis seedlings
To estimate the copy number of GFP-AtCESA3 in membrane-local-
ized particles in living cells of A. thaliana, we mounted 5- to 6-d-old 
light-grown seedlings expressing GFP-AtCESA3 (Desprez et al., 
2007) in an imaging chamber and carried out recordings of GFP 
bleaching in hypocotyl cells containing low densities of GFP-
AtCESA3 particles (Supplemental Movie S1). Imaging was per-
formed using variable-angle epifluorescence microscopy (Konopka 
and Bednarek, 2008), which, like TIRF microscopy, reduces back-
ground fluorescence but allows for the imaging of proteins farther 
from the coverslip, such as those in the plasma membrane of plant 
cells that are separated from the coverslip by the cell wall (Konopka 
et al., 2008; Konopka and Bednarek, 2008). To quantify photo-
bleaching rates, time lapse recordings were collected (Supplemen-
tal Movie S1), and fluorescence intensity traces for individual GFP-
containing particles were measured using ImageJ (see Materials 
and Methods). Instead of exhibiting discrete steps, the intensity 
changes during photobleaching for many traces appeared to be 
relatively smooth (Figure 1A and Supplemental Movie S1), suggest-
ing that the number of fluorophores per particle is relatively high.

The photobleaching rate constant for GFP-AtCESA3 was esti-
mated by ensemble averaging all of the photobleaching collected 
traces and fitting a single-exponential function using MATLAB’s 
nonlinear least squares method (Figure 1A, inset). The fitted rate of 
0.0278 ± 0.0003 s−1 (mean ± SEM of fit, N = 77 traces) is the ex-
pected rate of photobleaching events regardless of the true number 
of independent photobleaching units present.

The experimental background noise was estimated by analyzing 
the distribution of the final plateau variance (as defined by the  
Tdetector2 step detection algorithm; see later description) for the 
77 measured traces. As expected, the distribution had more than 
one mode (Supplemental Figure S1) due to the fact that complete 
photobleaching had not occurred in some of the traces. Therefore 
the lowest-variance mode was defined as the background variance, 
whereas the next mode indicates the sum of the background vari-
ance plus the variance associated with one fluorophore. To allow for 
more precise quantitative analysis of bleaching for multiple fluoro-
phores, we developed a statistical method of photobleaching analy-
sis, as described later.

Generating simulated fluorescence photobleaching data
Fluorescence intensity from a single fluorophore is typically 
described as a Gaussian distribution (Lakowicz, 2010) with mean 
intensity μ and variance σ2 (Figure 1B, inset). Although intensity fluc-
tuations at low photon counts are better modeled as a Poisson dis-
tribution, added signal variance due to rapid fluorophore blinking 
events, fluctuations in the background signal, and camera read noise 
justify the assumption that the signal is Gaussian. We postulate that 
the fluorophores are independent of one another and thus the 

have ceased growth (Taylor et al., 2003; Desprez et al., 2007; Persson 
et al., 2007). Estimations based on structural studies of cellulose 
microfibrils (Fernandes et al., 2011; Thomas et al., 2013) and mole-
cular modeling of CESAs (Sethaphong et al., 2013) predict that 
each CSC is composed of between 12 and 36 subunits (Guerriero, 
2010; McFarlane, 2014); however, the precise stoichiometry of 
CESA isoforms within each CSC remains undefined. Empirically de-
termining protein copy numbers for intact membrane-bound CSCs 
through nondestructive means is challenging, especially since re-
constituting active, purified plant CSCs has proven to be extremely 
difficult (Lai-Kee-Him et al., 2002; Cifuentes et al., 2010; Fujii et al., 
2010).

One alternative method of estimating protein copy numbers in 
integral membrane complexes is to count bleaching steps for sub-
units tagged with intrinsically fluorescent proteins, such as green 
fluorescent protein (GFP), under total internal reflection fluorescent 
(TIRF) microscopy (Ulbrich and Isacoff, 2007). However, the number 
of proteins that can be estimated using current methods is limited: 
higher copy numbers lead to increases in both fluctuations in the 
fluorescence signal and the initial rate of photobleaching, complicat-
ing the identification of discrete photobleaching steps. This issue 
can be addressed by using a median filter to reduce noise in the 
data and constructing pairwise distance distributions to determine 
the unitary step size of photobleaching (Svoboda et al., 1993; Leake 
et al., 2006). However, implementing this approach to estimate sub-
unit number typically requires empirical selection of the optimal me-
dian filter and still does not readily resolve the precise timing and 
magnitude of individual bleaching steps.

Step detection algorithms, which are frequently used to analyze 
the spatial steps undertaken by motor proteins, are capable of auto-
matically detecting change points in data traces (Carter et al., 2008). 
Numerous methods have been developed to detect steps, but most 
of them depend heavily upon preselected parameters. Of note, the 
χ2 method developed by Kerssemakers et al. (2006) requires an 
input of the number of steps to be detected, which is difficult to 
calculate if prior information about the data is unavailable. Methods 
based on information criteria are objective and do not require user-
defined input parameters (Kalafut and Visscher, 2008). However, 
they have been implemented in step detection algorithms only by 
assuming that the variance associated with each step is constant 
(Kalafut and Visscher, 2008), which is adequate for single motor pro-
tein stepping but not for photobleaching. Because intensity fluctua-
tions of individual fluorophores around their means are uncorre-
lated, the presence of multiple active fluorophores in a complex 
will result in a higher variance in the fluorescence intensity signal 
than the variance associated with a single fluorophore. Hence algo-
rithms designed to detect steps in photobleaching data need to 
consider these variance changes to avoid overfitting during periods 
of high fluorescence intensity. Another complexity in photobleach-
ing data is that with increasing copy number, there is an increasing 
probability that two or more fluorophores will bleach within a short 
time frame (e.g., within a single acquisition period), which can also 
skew the step size distribution and complicate the estimation of a 
unitary photobleaching step size. Thus there also exists a need for 
the development of objective analytical tools to extract unitary step 
sizes from step-size distribution densities that improve upon current 
methods of data binning and fitting a user-defined number of 
Gaussian functions.

In the present work, we develop a novel procedure that combines 
step detection and density estimation to determine unitary step 
size and copy number from experimental photobleaching data. A 
mathematical model is constructed to generate simulated bleaching 
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to bleach will follow an exponential distribution with mean of T. If 
there are n fluorophores in a diffraction-limited spot, then the mean 
time before the first bleaching event will be much faster because 
any of the fluorophores can bleach. Assuming that photobleaching 
events are independent of one another, the time before the first 
bleaching event will also follow an exponential distribution, with a 
rate equal to nλ, and the mean time before the first photobleaching 
event will be T/n. Thus, at the beginning of an experiment, bleach-
ing events will be more frequent and will be associated with larger 
signal variance, making it difficult to identify individual events.

To assess the ability of step detection algorithms to detect pho-
tobleaching events, we simulated a photobleaching signal for a 
complex containing 12 GFP fluorophores (Figure 1C), each having a 
mean intensity μ and variance σ2 that approximate the GFP-AtC-
ESA3 intensity trace shown in Figure 1A. In parallel, we simulated a 
signal having a uniform stepping rate and a constant variance, simi-
lar to motor protein displacement signals (Figure 1D). Data sets with 
various signal-to-noise ratio (SNR) values were generated to repre-
sent a range of possible experimental scenarios. For motor stepping 
data (Figure 1D), the SNR is defined as ratio of step size over the SD 

intensity fluctuations for each fluorophore are uncorrelated with 
those of neighboring fluorophores. Thus, when n fluorophores are 
localized in a diffraction-limited spot, the overall intensity will be the 
sum of the mean intensities (Itot = nμ), and the overall variance will 
be the sum of the variances plus the variance of the background, δ2 
(σtot

2 = nσ2 + δ2). Of note, in photobleaching traces, the variance 
scales with signal intensity, and if background fluctuations are low 
and/or signal variance is high, then variance is proportional to inten-
sity. This situation contrasts with typical positional step detection 
problems (e.g., identifying step displacements for motor proteins), 
for which the variance is independent of position and is thus con-
stant for each step (Svoboda et al., 1993). As a result of this scaled 
variance, with each intensity drop during a photobleaching experi-
ment, there will be an associated decrease in the signal variance.

Another aspect of multifluorophore photobleaching data that 
complicates the identification of bleaching steps is the fact that the 
frequency of photobleaching events for an ensemble of fluoro-
phores changes over time. Photobleaching is typically modeled as a 
first-order process with rate λ and characteristic bleach time T, 
where λ = 1/T. Thus the time it takes for a single fluorophore in a set 

FIGURE 1:  In vivo photobleaching of GFP-AtCESA3. (A) Photobleaching trace of a single GFP-AtCESA3 particle in 
hypocotyl cells of Arabidopsis seedling. Video is recorded at 5 fps, and total time is 100 s to allow most GFP to be 
photobleached. Representative Movie S1 is included in the Supplementary Data. Inset, ensemble average of 77 
photobleaching traces with exponential fit to the data. (B) Quantitative model describing photobleaching. The 
fluorescence signal is assumed to fall over time with constant step sizes, matching the quantal fluorescence of a single 
GFP. The GFP fluorescence and the background signal are treated as Gaussian distributions, Normal(μ, σ2) and 
Normal(0, δ2), respectively. The time before fluorophore bleaching, T, is assumed to be exponentially distributed with 
mean τ = 1/λ, where λ is the photobleaching rate constant. The SNR is defined as the step size divided by the SD. 
(C) Simulated photobleaching trace from 12 fluorophores with μ = 500 a.u. and σ = δ = 250 a.u. (D) Simulated stepping 
data such as a kinesin walking along a microtubule in an optical trap experiment, with μ = 1, σ = 1, and 10% backward 
steps.

A B

C D

In
te

ns
ity

 (a
.u

.)

0 20 40 60 80 100
1000

7000

6000

5000

4000

3000

2000

Time (s)

GFP-AtCESA3 photobleaching

In
te

ns
ity

 (a
.u

.)

Simulated photobleaching

Time (s)
0 20 40 60 80 100

0

6000

4000

2000

Simulated stepping

0 500 1000 1500 2000 2500

10
15

Time index

Po
si

tio
n 

5
0

Time index 

In
te

ns
ity

 (a
.u

.)

step size

prob. density

Intensity 
700

300
400

500
600

0.001 0.002 0.003 0.004

m
eans.d.

SNR =
step size

S.D.

T

-200

800

600

400

200

0

0 20 40 60 80 100

0 20 40 60 80 100
−6000

−5000

−4000

−3000

−2000

−1000

0

1000

Time (s)

In
te

ns
ity

 (a
.u

.)



Volume 25  November 5, 2014	 Counting protein subunits by photobleaching  |  3633 

criterion (BIC; Schwarz, 1978) and predicts steps purely based on 
statistical information in the data. Kalafut and Visscher (2008) used 
this approach for step detection but assumed that the variance 
within each step was constant. We modified this implementation 
to allow for changes in variance. A second algorithm was devel-
oped based on the two-sample t test with or without assumed 
equal variance. These four algorithms are named Bdetector1 
and Bdetector2 for the BIC-based methods assuming equal or 
unequal variance, respectively, and Tdetector1 and Tdetector2 for 
the t test–based methods assuming equal or unequal variance, 
respectively.

Both pairs of algorithms use a conceptually similar step detec-
tion approach of iteratively searching for change points until no sta-
tistically significant step can be added (Figure 2 and Supplemental 
Movie S2). The algorithms are summarized as follows:

The data are scanned, and for each potential time at which a 1)	
step may occur, the mean and variance are calculated for the 
time preceding the step and the time after the step.

(μ/σ). Defining SNR for bleaching traces, however, is complicated by 
the fact that the variance changes with the number of active fluoro-
phores. Thus the SNR for the photobleaching data was defined as 
the mean intensity μ of a single fluorophore divided by its SD σ 
(μ/σ). The variance of the background signal, δ2, was chosen to 
equal the variance of a single fluorophore, σ2. Different SNR values 
were achieved by setting μ = 500 a.u. and varying the SD. To objec-
tively identify each bleaching event, we developed multiple step 
detection algorithms that use statistical analysis to detect photo-
bleaching events and compared their performance using the simu-
lated data.

Using step detection algorithms to identify  
bleaching events
To analyze our photobleaching data, we developed two step de-
tection algorithms that use statistical tests to identify steps. For 
each method, approaches were developed that assumed the dif-
ferent plateau regions in the signal had either equal or unequal 
variances. The first method is based on the Bayesian information 

FIGURE 2:  Step detection algorithms. (A–C) Bdetector algorithm. (A) To fit the first step, Bdetector scans all possible 
change points and calculates a corresponding BIC value at each position (blue line). If the minimum BIC is lower than the 
BIC value for not adding a step (green line), a step is added (red line) at the position where the minimum BIC occurs. 
(B) Keeping the first step, Bdetector rescans all possible change points, calculates new corresponding BIC values (blue 
line), and adds a second step at the position of the minimum BIC (red line). This process is iteratively repeated. (C) When 
the minimum BIC value for adding an additional step (blue line) is not lower than the current BIC value (green line), the 
program terminates. (D–F) Tdetector algorithm in which, in contrast to the BIC, a higher significance for the t test 
indicates a better fit. (D) To add the first step, the significance at each possible change point is calculated (blue line) and 
is compared with the threshold (green line). Provided it is above the significance threshold, a step is added at the point 
of maximum significance (red line). (E) The data are split into two segments at the detected change point, and the 
procedure is repeated for each segment (splitting the right segment into two in this case). This process is repeated for 
each new segment until adding a step does result in a significance value greater than the threshold. The algorithm then 
moves on to another segment. (F) When adding a change point fails to raise the significance above the threshold for 
every segment, the program terminates.
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as the proportion of identified steps that are true steps (see 
Materials and Methods). Overfitting will lead to high sensitivity and 
low precision (false positives), whereas underfitting results in high 
precision but low sensitivity (missed events). With SNR values >2, 
all four algorithms performed well and had both high-sensitivity 
and high-precision values (Figure 3, B and C). Reasonable predic-
tions were obtained at SNR values between 1 and 2, but sensitivity 
and precision both fell sharply for SNR values <1. The BIC-based 
algorithms displayed a tradeoff between sensitivity and precision, 
with Bdetector1 (constant variance) having higher sensitivity and 
Bdetector2 (unequal variance) having higher precision (Figure 3, B 
and C, blue and green plots). In contrast, for the two-sample t test 
methods, Tdetector1 (assumed constant variance) and Tedector2 
(assumed unequal variance) performed similarly (Figure 3, B and C, 
red and black plots).

After benchmarking the step detection algorithms on the step-
ping data, we used the algorithms to detect unitary steps in the 
simulated photobleaching data. For ease of comparison, the step 
size was fixed at 500 a.u. for all simulated data, and the variance was 
altered to achieve different SNR values. As seen in Figure 4A, both 
algorithms identified similar steps in the simulated photobleaching 
data with SNR = 2. Considering the performance at different SNR 

Using these means and associated variances, a BIC value 2)	
(Bdetector) or the significance from a two-sample t test 
(Tdetector) is calculated and used to identify the optimal step. 
The optimal step is the one that leads to the lowest BIC value 
(Bdetector) or the largest significance (Tdetector). If no step 
leads to a BIC value smaller than the current one or a signifi-
cance value above a defined threshold, then no step is chosen.

The process is repeated until no additional statistically significant 3)	
steps can be detected, at which point it terminates.

To validate their performance, we first tested the step detection 
algorithms on simulated stepping data having SNR values from 0.4 
to 5 (Figure 3). The step times were sampled from an exponential 
distribution with an expected value of 100 time points/plateau, 
with 90% of steps being a unit step increase and 10% being a unit 
step decrease. At high SNR values, the mean predicted step size 
was close to the actual value, but with diminishing SNR, an addi-
tional peak corresponding to twice the unitary step size emerged 
(Figure 3A and Supplemental Figure S2). We defined two metrics, 
sensitivity and precision, to assess the performance of the algo-
rithms. Sensitivity is defined as the proportion of the true steps that 
are identified by the step detection algorithm. Precision is defined 

FIGURE 3:  Detecting steps in simulated stepping data. (A) Histograms of step sizes predicted by all step detection 
algorithms. The simulated data have uniform step sizes of 1 with 10% backward steps and SNR of 1. Real step sizes are 
calculated by comparing the means of plateau regions on either side of a step. The mode at +1 represents forward 
steps, and the mode at −1 represents backward steps. The four algorithms detect unitary forward and backward steps 
but also have modes centered at +2, corresponding to twice the single step size and representing missed steps. 
(B) Sensitivity plots for the four algorithms. The missed steps corresponding to the lower sensitivity of Bdetector2 can 
be seen in A by the population centered at +2 step size. (C) Precision plots for the four algorithms. Bdetector1 had 
problems with overfitting, resulting in lower precision and a number of steps between 0 and 1 in A.
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these Gaussians are obtained by maximizing the expected posterior 
probability, computationally achieved by expectation–maximization 
algorithms (Dempster et al., 1977). However, one uncertainty of this 
method is in choosing the number of Gaussians, k, to be fitted to 
the data, which can alter the fitting results. To provide an objective 
method for choosing the number of Gaussians, we fitted the step 
amplitude data using the Gaussian mixture model by an increasing 
number of Gaussians and determined the BIC value associated with 
each fit. The optimal number of Gaussians was defined as the num-
ber that gave the lowest BIC value, which for the simulated photo-
bleaching data was 5 (Figure 6, A and B). The different peaks were 
assumed to be multiples of the unitary photobleaching amplitude, 
and the mean unitary step size was calculated as a weighted aver-
age of each peak, giving a value of 528.3 a.u. This estimate is within 
6% of the step size value of 500 a.u. that was chosen for these simu-
lated photobleaching data.

To further assess the performance of this method in estimating 
copy number from diverse photobleaching data, we performed 
identical analyses on simulated bleaching data with copy numbers 
from 2 to 20 at a range of SNR values (Figure 6C). Strikingly, for 
simulated data with copy numbers <12, the analysis method pre-
dicts the value of the unitary step within 10% even down to an SNR 
of 1 (Figure 6C). With a copy number of 20, predicted step sizes are 
within 7% of the true step size for SNR of ≥2 but increase toward 
twice the true step size at lower SNR values. On the basis of these 
results, the ability of this method to estimate copy numbers from 
photobleaching data is limited for data with both very high copy 
numbers (≥20) and low SNR values (<2). In these cases, the design 
of the photobleaching experiment should be further optimized to 
improve the SNR.

Using unitary step size to estimate fluorophore 
copy number
The final task in estimating the number of fluorophores in a complex 
is to calculate the amplitude of the overall fluorescence drop by tak-
ing the difference between the initial fluorescence and the value of 
the final plateau and dividing by the unitary step size. Accurately 
estimating the total amplitude of the photobleaching signal can be 
challenging, however, due to uncertainties in measuring the initial 
fluorescence amplitude and uncertainties in whether the final pla-
teau represents full bleaching. The first few time points of photo-
bleaching traces have the most variability due to the fast rate of pho-
tobleaching and high signal variance associated with a large 
number of fluorophores. Simply averaging over the first few points 

values, the methods assuming unequal variance (Bdetector2 and 
Tdetector2) resulted in higher precision but lower sensitivity than 
the methods assuming equal variance (Bdetector1 and Tdetector1; 
Figure 4, B and C). For estimating subunit numbers from photo-
bleaching data, the most important factor is properly estimating the 
amplitude of a quantal photobleaching event (the first mode). 
Hence a loss in sensitivity corresponding to missed steps (resulting 
in higher modes) is acceptable. In contrast, the falsely identified 
steps corresponding to low precision can lead to underestimating 
the quantal photobleaching amplitude. On the basis of these con-
siderations, the two methods assuming constant variance were infe-
rior to the methods assuming unequal variance. The Tdetector2 al-
gorithm performed the best overall and was chosen for the 
subsequent analyses described later.

Determining unitary step size from step detection results
After identifying steps, the next task in analyzing photobleaching 
data is to use the identified step amplitudes to extract the ampli-
tude of a unitary photobleaching event. The total subunit number is 
subsequently estimated by dividing the initial (high) fluorescence 
amplitudes by this quantal unit. We initially focused on results from 
the simulated data set shown in Figure 4A having SNR = 2 and a 
GFP copy number of 12. A histogram of step amplitudes predicted 
by the Tdetector2 algorithm suggests the presence of at least two 
modes (Figure 5A). The simplest method of estimating the unitary 
step size is to fit the binned histogram data with multiple Gaussian 
functions corresponding to the different modes. However, estima-
tion by this method is strongly dependent on bin size (Figure 5, A 
and B), and there are no existing objective methods for identifying 
the optimal bin size.

Kernel density estimation (KDE) is a nonparametric method of 
density estimation that can be used to identify modes without re-
quiring data binning. In short, each step represents a probability of 
1/N, where N is total number of steps, and a Gaussian centered at 
each step is used to estimate the distribution of this 1/N probability, 
resulting in a total of N Gaussians. The overall probability density is 
obtained by the sum of these N Gaussians (Silverman, 1986). Al-
though the main peak from the KDE is obvious, it is difficult to re-
trieve information for subsequent modes because there are poorly 
separated (Figure 5C).

Density estimation by a Gaussian mixture model (GMM) can pro-
vide predictions of peak position for each mode in a way that avoids 
the drawbacks of KDE. In this method, the distribution of steps is 
estimated by a mixture of Gaussians, and the means and variances of 
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93.9% of the fluorophores are expected to 
bleach (see Eq. 9), and the overall intensity 
drop of the simulated data was corrected 
upward by dividing by 0.939. Dividing the 
total intensity drop of each trace by the uni-
tary step size results in a distribution of copy 
numbers with a mean of 12.3 estimated by 
KDE (Figure 6D), within 3% of the correct 
copy number of 12. Copy number errors 
were within 10% for SNR ≥ 1 for copy num-
bers of <12 and for SNR ≥ 1.8 for a copy 
number of 20 (Figure 6E).

Estimating copy number for kinesin-
4xGFP
To validate the ability of the developed 
methods to estimate copy numbers from a 
protein with a known number of GFP sub-
units, we engineered a kinesin construct 
containing four GFPs (see Materials and 
Methods). Proteins were attached to the 
coverslip surface through nonspecific inter-
actions and imaged using TIRF microscopy 
(Shastry and Hancock, 2010). Steps were 
fitted to the 71 acquired photobleaching 
traces using the Tdetector2 algorithm 
(Figure 7A), resulting in 455 detected steps. 
The step size distribution was fitted using 
the Gaussian mixture model, and on the 
basis of the calculated BIC values, the opti-
mal number of modes was determined to 
be four (Figure 7B). When the step size dis-
tribution was fitted using four modes, the 
corresponding unitary step size was deter-
mined to be 60.8 a.u. (Figure 7C). On the 
basis of this step size and the SD of noise in 
the traces, the SNR was calculated to be 
1.1 for these measurements.

The resulting copy number distribution 
can be influenced by several factors. First, 
the probability that a GFP will fluoresce is 
not expected to be 1, which leads to the 
distribution having a binomial nature. Sec-
ond, the probability of observing every sin-
gle bleaching event during an experiment is 
<1 due to the finite acquisition time, mean-
ing that the number of acquired bleaching 
events from each subpopulation of fluoresc-
ing GFPs will itself be binomially distributed. 
Third, due to normal intensity fluctuations, 
the overall intensity drop for each trace will 
have an associated error value simply from 
the fluorescence fluctuations. Fourth, it is 

difficult to rule out the presence of a small percentage of aggregates 
in the sample or pairs of complexes residing in the same diffraction-
limited spot. Owing to these factors, the expected copy number dis-
tribution will be a binomial distribution broadened by Gaussian 
noise. As a conservative approach, we chose to fit the copy number 
distribution using the Gaussian mixture model.

To estimate fluorophore copy number, we calculated the total 
intensity drop for each photobleaching trace by taking the differ-
ence of the initial point and the mean value of the final plateau. 

reduces the noise but also leads to underestimating the true maxi-
mum fluorescence. To avoid introducing any bias, we chose to simply 
take the initial fluorescence value as the maximum for each trace.

The proportion of fluorophores that are expected to bleach during 
the finite acquisition time can be estimated by fitting an exponential 
to the ensemble average of the photobleaching traces (see Materials 
and Methods). The simulated photobleaching data had a duration of 
100 s and, because it was modeled on the experimental data, was 
well fitted by an exponential with a rate constant of 0.0278 s−1. Thus 
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values (Figure 8B), a model consisting of six Gaussians was used to 
estimate the distribution of predicted step sizes, and the final esti-
mate for a single step was calculated to be 445.4 a.u. (Figure 8C). This 
step size indicates that the SNR is ∼2–2.5, within the range that our 
methods can reliably uncover copy number. However, in the final 
copy number histogram, instead of seeing a single mode as for the 
simulated data, two modes, one around 10 and the other around 20, 
are apparent (Figure 8D). This factor of 2 suggests that a subpopula-
tion of the analyzed particles might be composed of two complexes 
within the focal limited spot, either because there are two populations 
of CSCs in cells or because pairs of CSCs occasionally exist in close 
proximity, especially when they are immobile, as was the case for this 
data set. A fit consisting of two Gaussians identifies peaks at 9.56 and 
23.5 copies. Considering that protein misfolding, incomplete matura-
tion of GFP, and bleaching events occurring before data acquisition 
can all potentially lead to underestimating the true number of GFPs 
present, we conclude that 10 copies is a lower limit for the estimated 
number of GFP-AtCESA3 subunits in each CSC particle.

Each intensity drop was then divided by the estimated unitary step 
size of 60.8 a.u. to generate a copy number estimate. The fit to the 
copy number distribution shows two peaks at 3.28 and  
6.65 (Figure 7D). Given an expected copy number of four, these 
peaks are consistent with the binomial nature leading to a slight shift 
toward lower copy number for the first mode, and the second mode 
corresponding to pairs of complexes either due to aggregates or to 
two surface-bound complexes being within the same diffraction-
limited spot. These results demonstrate that the method can give an 
accurate prediction of minimum protein copy number even in a data 
set having SNR = 1.1.

Estimating copy number for GFP-AtCESA3
After developing an objective method for estimating subunit copy 
number for protein complexes tagged with large numbers of fluoro-
phores and assessing its performance on simulated photobleaching 
data, we applied the technique to a set of photobleaching data for 
GFP-AtCESA3 particles (Figure 8A). On the basis of the trend of BIC 
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estimation of the unitary step intensity can 
propagate to larger errors in the copy num-
ber estimation, it is important to use as 
much of the available information as possi-
ble to achieve the best possible estimate 
for unitary photobleaching. In our photo-
bleaching data analysis, we identified three 
major challenges to accurately measuring 
high copy numbers: 1) detecting steps in 
traces having nonuniform variances due to 
the summed fluctuations of multiple fluoro-
phores, 2) precisely identifying the unitary 
step size from step size distribution densi-
ties, and 3) accurately quantifying the total 
intensity drop corresponding to bleaching 
for all of the subunits in the complex. We 
developed a solution for each of these 
challenges, and we hope that this set of 
tools will be adopted as “best practices” 
for analyzing photobleaching data in other 
systems with high protein copy number.

Whereas signal variance in molecular 
motor stepping data are independent of 
the motor position, photobleaching data 
present the unique challenge of signal 
variance that scales with intensity. Previous 
step detection methods used the ap-
proach of constructing pairwise distance 
distributions to estimate unitary step size 
for each step (Svoboda et al., 1993; Leake 
et al., 2006) but assumed a constant vari-
ance. This variance is important because it 
is used in tests to determine statistical sig-
nificance. Applying step detection algo-
rithms that assume constant variance to 

photobleaching data results in overfitting of steps in early time 
points, when both the signal and variance are high. Thus the tech-
nique developed here to estimate the time-dependent variance of 
the signal was a key advance that improved the performance of 
both the BIC-based and t test–based step detection algorithms 
over those assuming constant variance.

The step detection algorithms output a step size distribution 
density that needs to be analyzed to extract the unitary step size. 
We found KDE to be a vastly superior approach over the traditional 
technique of binning the data and fitting multiple Gaussians be-
cause it eliminated the decision of what bin size to use. However, 
one weakness of KDE was fitting to higher modes. The Gaussian 
mixture model proved to be the optimal tool for identifying the 
modes of step intensity and assigning them proper weights. The 
multiple modes of step sizes can be explained by at least two rea-
sons. First, it is possible that two or more fluorophores can bleach at 
the same time, resulting in larger steps. This probability grows with 
increasing copy number. Second, a step detection algorithm might 
group two steps into one when fitting the two steps separately is not 
statistically significant. This can happen when noise is high, which 
also often correlates with high copy numbers. The probability of 
observing single steps consisting of multiple bleaching events is 
represented by the proportion of each mode in the GMM density 
estimation.

The final technique that we developed was a best estimate of the 
total photobleaching amplitude, taking into account the bleaching 
rate. From the ensemble average, a photobleaching rate constant 

DISCUSSION
Determining the stoichiometry of proteins in large, multisubunit 
membrane complexes by biochemical methods is challenging, 
and despite producing a highly abundant and useful biopolymer, 
the molecular makeup of the cellulose synthesis complex, one 
such protein complex, has remained enigmatic. The goal of this 
work was to quantify the number of CESA subunits in cellulose 
synthesis complexes by nondestructive in vivo photobleaching. 
Plant seedlings expressing GFP-AtCESA3 were imaged using vari-
able-angle epifluorescence microscopy, and the fluorescence 
intensities of individual GFP-AtCESA3-containing particles were 
recorded as the signals bleached to near background levels. How-
ever, despite efforts to maximize the SNR, individual photobleach-
ing steps were not easily identified by eye, preventing an objective 
estimate of CESA copy number. This hurdle motivated us to de-
velop a set of statistical tools to estimate unitary step size and fluo-
rophore copy number from photobleaching data involving many 
fluorophores.

Using imaging to quantify subunit copy number for intact protein 
complexes in vivo provides a method to probe the quaternary struc-
ture of these complexes that circumvents the difficulty and potential 
disruption of the complex inherent in biochemical purification. For 
copy numbers <5, it is often easy to simply estimate the number of 
steps by eye (Ulbrich and Isacoff, 2007; Nakajo et al., 2010). In other 
cases, it is possible to estimate unitary step intensity by measuring 
the amplitude of the last step, but that approach ignores much of 
the rich information present in the data. Because small errors in the 

FIGURE 7:  Estimating copy number for kinesin-4xGFP. (A) Trace of kinesin-4xGFP bleaching 
(black) with steps fitted by Tdetector2 (red). (B) The BIC search leads to a best fit of k = 4 
Gaussians for fitting the step size distribution. (C) Estimating the unitary step size (60.8 a.u.) 
from the step size distribution (455 total detected steps). The mean values of the four modes 
were 63.9, 109.9, 165.8, and 258.1 a.u., relative weights were 0.622, 0.289, 0.062, and 0.027, 
and the SD was 19.6 a.u. (D) Copy number distribution. There were two peaks, centered at 3.28 
and 6.65. These peaks are consistent with the binomial nature leading to a slight shift from four 
toward lower copy number and with a double-aggregate population at roughly twice the copy 
number of the first peak. Histograms (black boxes) are also plotted in C and D for reference but 
not used in the GMM fitting.

0 100 300200
0.000

0.004

0.012

0.008

Pr
ob

ab
ili

ty
  

Step Size (a.u.)

0.00

0.05

0.10

0.15

0.20

Pr
ob

ab
ili

ty
  

0 2 4 6 8 10
Copy Number

0 20 40 80 100 120 140 16060

-100

0

100

200

300

400

500

In
te

ns
ity

 (a
.u

.)

Time (s) Number of Gaussians
2 543 6

BI
C 

va
lu

e

4600

4650

4640

4630

4620

4610

A B

C D



Volume 25  November 5, 2014	 Counting protein subunits by photobleaching  |  3639 

tion algorithms to detect early bleaching 
steps. An additional uncertainty is whether 
the two peaks in the copy number distribu-
tion indicate that some particles are aggre-
gates of multiple complexes or that two 
different populations of CSCs exist. To 
distinguish these two hypotheses, future 
experiments will focus on photobleaching 
analysis of motile GFP-AtCESA particles, 
which presumably represent single CSCs.

In conclusion, we developed a reliable 
method for determining copy number in 
multisubunit complexes from in vivo photo-
bleaching data. The statistical analysis com-
bines step detection and density estimation 
to accurately determine the unitary photo-
bleaching step and takes into consideration 
the bleaching rate constant when determin-
ing the maximum fluorescence signal. This 
method is generic and can be used to esti-
mate the stoichiometry of other membrane-
bound complexes and can be applied to 
fluorophores other than GFP. Because the 
signal variance and unitary step size are cal-
culated directly from the raw data, it is not 
necessary to carry out new controls for dif-
ferent fluorophores, but fluorophores that 
display more prominent and prolonged 
dark states such as yellow fluorescent pro-
tein are expected to have lower SNR, which 
may set an upper limit on maximum copy 
numbers that can be reliably estimated. 
These algorithms can also be adapted to 
analyze molecular motor stepping data. 
Applying this method to in vivo photo-

bleaching data gave a lower limit of 10 copies of GFP-AtCESA3 in 
cellulose synthesis complexes.

MATERIALS AND METHODS
Photobleaching experiments
A. thaliana seeds of the genotype AtCESA3je5 GFP-CESA3  
(Desprez et al., 2007) were surface-sterilized for 20 min in 30% 
bleach + 0.1% SDS, washed four times with sterile water, and 
stored in sterile 0.15% agar at 4°C for 3 d before being sown on 
square Petri plates containing MS medium (2.2 g/l Murashige 
and Skoog salts [Caisson Laboratories, Logan, UT] + 0.6 g/l 2-(N-
morpholino)-ethanesulfonic acid [Research Organics, Cleveland, 
OH] + 8 g/l agar-agar [Research Organics], + 10 g/l sucrose, 
pH 5.6). The plates were incubated in a 22°C growth chamber 
under 24-h illumination for 5–6 d before use in microscopy ex-
periments. Seedlings were mounted on glass slides between two 
pieces of permanent double-stick tape (3M, St. Paul, MN), 30 μl 
of sterile water was added to the seedling, and a 24 × 40 mm 
#1.5 coverslip was adhered to the tape to generate an imaging 
chamber. Seedlings were imaged on a Nikon TE2000 microscope 
in variable-angle mode with a 60×/1.4 numerical aperture oil im-
mersion objective and a 100-mW, 488-nm excitation laser. Hypo-
cotyl cells containing sparse GFP-AtCESA3–positive particles 
were imaged using a Photometrics Cascade 512b camera in 
streaming mode using maximum gain with 200-ms exposure time 
for 500–600 frames, during which time many particles bleached 
to background levels.

could be readily extracted. This parameter will vary with excitation 
intensity, cellular conditions, and other factors and so needs to be 
measured for each experiment. If the duration of the experiment is 
longer than five times the photobleaching time constant, then it is 
expected that 99% of the signal has bleached, minimizing the need 
for any correction. However, long acquisition times are not always 
possible due to stage or sample drift, camera memory, and underly-
ing cellular dynamics. Hence correcting for the expected maximum 
amplitude is important to avoid underestimating copy number.

Although the statistical analysis indicated an average copy num-
ber of 10 GFP-CESA3 in the observed complexes, we consider this 
to be a lower limit for the following reasons. First, the GFP-AtCESA3 
transgene is present in a background of the partial-loss-of-function 
AtCESA3je5 allele of AtCESA3 (Desprez et al., 2007), meaning 
that endogenous nonfluorescent AtCESA3 can potentially still be 
expressed and comprise a portion of each CSC. Second, the time 
required for microscope focus adjustments necessary to pinpoint the 
focal plane of the membrane means that some GFP molecules might 
bleach before images are recorded. Third, it is impossible to rule out 
the presence of GFP molecules that are misfolded or have not ma-
tured (although the estimated 15-min maturation time constant for 
enhanced GFP is expected to be sufficiently fast for the present mea-
surements; Iizuka et al., 2011). To improve upon this initial result, we 
are engineering plants that contain GFP-AtCESA3 expressed in a 
CESA3-null background. We are also exploring the use of slow-
bleaching versions of fluorescent proteins in order to minimize pre-
bleaching. Slow bleaching will also improve the ability of step detec-

FIGURE 8:  Copy number estimation for GFP-AtCESA3 particles. (A) Trace of GFP-AtCESA3 
photobleaching (black) with steps fitted by Tdetector2 (blue). (B) BIC values for step detection at 
increasing number of Gaussians, showing the minimum at k = 6. (C) Estimation of unitary step size 
(445.4 a.u.) by GMM based on 730 total detected steps. Step size distribution was fitted by six 
Gaussians, shown in red, green, yellow, pink, and purple. Mean values were 453, 864, 1337, 1799, 
2335, and 3082 a.u., relative weights were 0.4953, 0.3325, 0.1252, 0.0367, 0.0074, and 0.0027, 
and the SD was 160 a.u. Overall fit from GMM is shown in blue. Histogram (black boxes) is also 
plotted for reference but not used in the GMM fitting. (D) Copy number distribution for GFP-
AtCESA3 particles. Two peaks are evident from the histograms, and fitting two Gaussians (red 
and green curves) gives means of 9.56 and 23.5 and ratio of 0.844 and 0.156, with SD of 4.03.
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As a control, the Drosophila kinesin heavy chain truncated 
at residue 559 was modified to have GFP at both the N- and 
C-termini, generating a dimer containing four GFP fluorophores. 
The protein was bacterially expressed and Ni column purified as 
previously described (Shastry and Hancock, 2010). Surface-immo-
bilized fluorophores were imaged by TIRF illumination (Shastry and 
Hancock, 2010) and acquired in an identical manner to the GFP-
AtCESA3 data.

Image analysis
Image stacks were processed in ImageJ (National Institutes of 
Health, Bethesda, MD) as follows. First, the Background Subtract 
tool (10-pixel radius, sliding paraboloid) was used to subtract back-
ground fluorescence from each frame in the stack. Next an Average 
Projection of the stack was generated and used to select 7-pixel-
radius circular regions of interest (ROI) surrounding immobile GFP-
AtCESA3 particles. Finally, photobleaching traces were generated 
from the background-subtracted image stack by measuring the total 
pixel intensity of each ROI for every frame of the stack. A total of 77 
particles were analyzed.

Tdetector1 algorithm
The Tdetector1 algorithm carries out an iterative two-sample t test 
that assumes the expected variance throughout the entire input 
data vector to be constant. It also assumes that the input data vector 
is a piecewise-constant step function hidden in normally distributed 
white noise. There are no user-defined variables, and the only input 
to the algorithm is a single vector of data, X.

To begin, the algorithm must calculate the variance of the under-
lying white noise, σ2, of the input data vector. The conventional 
method of calculating variance, Var(X) = E[(X − μ)2], cannot be used 
because the data are expected to contain steps that would result in 
a large overestimation of the underlying variance. Instead a pairwise 
difference calculation must be used: 
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where X is the data vector, σ2 is the variance of underlying noise in 
X, L is the length of X, and i is the index of X.

Pairwise differences that are significantly greater in magnitude 
compared with the rest (possibly due to a large step there) are dis-
counted from the calculation (see Supplemental Methods for further 
details).

The first round of the step detection process iterates through 
every possible way of splitting X into two sections and calculates the 
difference of means (DOM) of those two sections. Each DOM is then 
rated for significance based on the expected distribution of DOMs 
that would result from splitting a normal random vector of the same 
length, with no steps, at that respective index (given in Eq. 2):
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where σ2 is the variance of underlying noise in X, L is the length of 
the current subset of X (for the first round of step detection, L is the 
length of the entire X vector), and i is the index of splitting.

This process is similar to comparing to the t distribution as in a 
two-sample t test. If there is a calculated DOM that is significant (see 
Supplemental Methods) compared with the normal distribution 
shown in Eq. 2, then the null hypothesis (that the observed DOM is 
due to variations of a normal random vector without a step) is re-
jected, the two sections are declared as two separate plateaus, and 

a possible step is declared at that index. For each round of step fit-
ting, only the most significant DOM results in a declared step. After 
the first round of step fitting, the process is repeated on each new 
plateau, and any new plateaus from a round of step fitting will go 
through the same process until no new plateaus are declared.

Finally, the algorithm undergoes a step-checking phase that per-
forms DOM significance testing for all adjacent plateaus declared 
(see Supplemental Methods). MATLAB code for the Tdetector algo-
rithm is included in the Supplemental Materials.

Tdetector2 algorithm
The Tdetector2 algorithm is very similar to Tdetector1, except that 
it assumes that different sections of the data have different expected 
variances (as found in photobleaching traces for which higher num-
bers of unbleached fluorophores lead to higher variances). Again, it 
assumes that the input data vector is a piecewise-constant step 
function hidden in normally distributed white noise, and it requires 
only this single vector of data, X, as input to the algorithm.

The first task of the algorithm is to find sections of the data that 
have significantly different variances from one another. To accom-
plish this, it first calculates the variance of underlying noise through-
out all of X using the same process described for Tdetector1 (Eq. 1). 
Next it uses the same process that the Tdetector1 algorithm uses to 
test each possible DOM for significance, but instead of comparing 
means, it tests each possible difference of variances (DOV) for sig-
nificance. The expected distribution of DOVs is approximated as 
normal, with a variance (Eq. 3; derivation in Supplemental Methods) 
that depends on nearly the same variables defining the variance of 
DOMs in Eq. 2. The only difference is that σ2 is always the underly-
ing variance of the entire X vector in Eq. 2, whereas in Eq. 3, it is the 
underlying variance of only the subset of X that is currently being 
split into two sections:
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where σ2 is the variance of underlying noise in the current subset of 
X, L is the length of the current subset of X, and i is the index of 
splitting.

As in the iterative step fitting process of Tdetector1, this variance 
sectioning continues to declare and test new plateaus until no new 
significant variance sections are declared. Once the algorithm has 
completed the variance-sectioning process, it begins the same step 
detection process as in the Tdetector1 algorithm, with two excep-
tions: 1) for DOM significance testing, Tdetector2 uses σ2 = mean 
underlying variance of the current subset of X in Eq. 2 rather than 
the underlying variance of the entire X vector; and 2) once the most 
significant index of splitting has been determined, the resulting 
DOM is again tested for significance with respect to a slightly differ-
ent distribution of DOMs shown by Eq. 4 (similar to Welch’s t test): 

∼N i L iDOM 0, 1
2

2
2σ

+
σ
−





 	

(4)

where 1
2σ  is the underlying variance of the first section, 2

2σ  is the 
underlying variance of the second section, L is the length of the cur-
rent subset of X, and i is the index of splitting.

This distribution takes into account the possibility of unequal 
variances between the two sections. If both tests have shown signifi-
cance with respect to their distributions, then a step and two new 
plateaus are declared at that index.
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Definition of sensitivity and precision ratings for step 
detection algorithms
The ability of each step detection algorithm to correctly identify 
steps was tested using simulated data with added white noise con-
taining steps at known indexes. Each algorithm was given the same 
collection of simulated data, and then the indexes at which each 
algorithm declared steps were compared with the true step indexes. 
If a declared step index was within a certain range of a true step in-
dex, then it was regarded as a correct declared step (i.e., if Eq. 10 is 
satisfied). The range was defined by a constant percentage multi-
plier (0.05) of the two true plateau lengths on either side of a true 
step index:

p i i pround 0.05 round 0.051 declared true 2( ) ( )( )− ≤ − ≤
	

(10)

where p1 is the number of data points in the plateau that precedes 
the true step, p2 is the number of data points in the plateau that 
follows the true step, ideclared is the index of the declared step, and 
itrue is the index of a true step

Once a declared step is defined as correct, the true step to which 
it was matched is no longer allowed to be matched to again. This 
means that if there are multiple declared steps within a certain range 
of the true step, only one of those declared steps is allowed to be 
defined as correct.

The sensitivity of an algorithm was defined as the fraction of true 
steps that have a declared step within their range (detected true 
steps). The precision of an algorithm was defined as the fraction of 
declared steps that are correct (Eqs. 11 and 12):

sensitivity
detected true steps

total true steps=
	

(11)

precision
correct declaredsteps
total declaredsteps=

	
(12)

Underfitting the data will result in low sensitivity and generally 
higher precision, whereas overfitting will result in low precision and 
generally higher sensitivity.

Density estimation
Least-squares fitting on binned histogram data was carried out in R 
with nonlinear least-squares fitting. Center of bins and bin height 
were used. For kernel density estimation, bandwidth was as speci-
fied by Scott (1992). The “normalmixEM” function in the R package 
“mixtools” (Benaglia et al., 2009) was used to implement the 
Gaussian mixture model, and the variance of each Gaussian was 
assumed to be the same, while means were unconstrained. The 
BIC value was calculated based on the log-likelihood of each fitting 
and was used to objectively determine the number of Gaussians to 
use in the final model.

Bdetector algorithms
The Bdetector1 algorithm is identical to the method described in 
Kalafut and Visscher (2008), with the algorithm implemented in R 
(www.r-project.org). The Bdetector2 algorithm was developed by 
modifying Bdetector1 to allow for changing variance, as follows.

For data with points xi (i is from 1 to N), if k steps are fitted at 
positions l1, l2,…, lk, and for notational simplicity, let l0 = 0, and 
lk+1 = N, then the maximum likelihood estimators for mean and vari-
ance are

…u l l x j k1 , where =1, , +1j
j j

ii l
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Recall that the BIC for a statistical model is calculated as

BIC = –2log L + p In(N)� (7)

where log L is the log-likelihood of a model and p is the number of 
parameters to estimate.

Thus the BIC for fitting k steps is

l l N N p NBIC ln ln 2 logj jj

k
j11

1 2∑ π( )( ) ( ) ( )= − σ + + +−=
=

	
(8)

where p = 2(k + 1) = 2k + 2.
To add a step, Bdetector2 scans each potential step position and 

calculates a BIC value. If the difference between the minimal BIC 
value and BIC from not adding a step is > 5 (Kass and Raftery, 1995), 
a new step is added at the position that leads to smallest BIC value. 
While holding all previous steps, this process is then repeated to 
detect subsequent steps. Bdetector2 terminates when no more 
steps that result in a lower BIC value can be added.

Photobleaching rate estimation
By ensemble averaging many photobleaching traces and fitting to 
an exponential, the photobleaching rate constant can be estimated 
with high accuracy. Because each GFP photobleaches indepen-
dently of one another, the rate constant for the exponential decay of 
the ensemble average will be the same as the first-order bleaching 
rate of a single GFP.

Comparing the photobleaching rate constant to the total acqui-
sition time also allows for a correction due to photobleaching 
events that are expected to be missed due to the finite acquisition 
time of the experiment. On the basis of the known acquisition time 
and calculated photobleaching rate, Eq. 9 calculates the fraction of 
photobleaching events that are expected to occur during acquisi-
tion. This number is critical because the final copy number is esti-
mated by dividing the total intensity drop for each photobleaching 
trace by the experimentally determined unitary step size. If the 
photobleaching trace has not fallen all the way to background, 
then copy number will be underestimated. Hence, to correct for 
missed photobleaching events, the total intensity drop for each 
trace is corrected by dividing by the expected fraction of observed 
events given by Eq. 9. We have

efraction observed 1 ak= − −
	 (9)

where a is the acquisition time in seconds and k is the fitted photo-
bleach rate in inverse seconds.

According to our fitted photobleaching rate (0.0278 ± 0.0003 s−1) 
and acquisition time (a = 100 s), we expect to observe ∼93% of the 
photobleaching process.
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