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ABSTRACT

Any reliable biomarker has to be specific, generalizable, and reproducible across individuals and contexts. The exact val-

ues of such a biomarker must represent similar health states in different individuals and at different times within the same

individual to result in the minimum possible false-positive and false-negative rates. The application of standard cut-off points

and risk scores across populations hinges upon the assumption of such generalizability. Such generalizability, in turn, hinges

upon this condition that the phenomenon investigated by current statistical methods is ergodic, i.e., its statistical measures

converge over individuals and time within the finite limit of observations. However, emerging evidence indicates that biological

processes abound with non-ergodicity, threatening this generalizability. Here, we present a solution for how to make generaliz-

able inferences by deriving ergodic descriptions of non-ergodic phenomena. For this aim, we proposed capturing the origin of

ergodicity-breaking in many biological processes: cascade dynamics. To assess our hypotheses, we embraced the challenge

of identifying reliable biomarkers for heart disease and stroke, which, despite being the leading cause of death worldwide and

decades of research, lacks reliable biomarkers and risk stratification tools. We showed that raw R-R interval data and its com-

mon descriptors based on mean and variance are non-ergodic and non-specific. On the other hand, the cascade-dynamical

descriptors, the Hurst exponent encoding linear temporal correlations, and multifractal nonlinearity encoding nonlinear inter-

actions across scales described the non-ergodic heart rate variability ergodically and were specific. This study inaugurates

applying the critical concept of ergodicity in discovering and applying digital biomarkers of health and disease.

Introduction

Heart disease and stroke are the leading causes of disease and disability globally and in the United States, claiming 655,000
American lives every year—one in four deaths1,2. This staggering toll of cardiovascular diseases does not end here, as it costs
the nation over $200 billion annually in direct medical expenses and lost productivity. This colossal burden highlights the
importance of early diagnosis and intervention of heart disease and stroke. One of the primary requisites for effective diag-
nosis is the availability of specific and reliable biomarkers. Although numerous biomarkers, risk stratification models, and
risk scores for various cardiovascular diseases have been proposed over the past decades, effective diagnostic and prognostic
digital biomarkers are still missing3–5. The urgency of addressing this need is amplified by the rise and ever-growing expan-
sion of diverse digital health and telehealth solutions in recent years, specifically in the cardiovascular field6–8. Such solutions,
like mobile applications (mhealth), smart watches, wearable devices, implantable electronic devices, and implantable hemo-
dynamic monitors, enable the gathering of vast amounts of data for everyone; however, the lack of diagnostic and prognostic
biomarkers lays waste to this ability as such valuable amounts of data cannot be appropriately used. Lack of evidence of effect
has been cited as one of the reasons why digital health technologies have not been widely employed in clinical settings9. The
lack of reliable digital biomarkers can be considered one of the main contributors to this lack of evidence.

Heart rate variability (HRV) has been one of the key noninvasive biomarkers of cardiovascular health10. It measures
the fluctuations and variations in time intervals between successive heartbeats or R-R intervals (RRi). HRV is an emergent
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phenomenon that emerges out of the complex and nonlinear interactions between the cardiovascular and nervous systems11–13

and represents the peripheral output of the central autonomic network (CAN) and the capacity for behavioral adaption to
environmental stresses14–22. Because it emerges from such complex and integral interactions, HRV can be a representative
marker of cardiovascular health. Healthy human HRV indicates desirable balance and interaction between the functions of
the sympathetic and parasympathetic nervous systems23–25. Group-level findings have shown that abnormal HRV indicates
an imbalance between the two systems, among other pathophysiologies, and is associated with an increased risk of heart
disease, including myocardial infarction, heart failure, and sudden cardiac death26–37. HRV is also a potential predictor of
morbidity and mortality in other diverse disorders, including type 2 diabetes38–42, chronic obstructive pulmonary disease
(COPD)43–47, chronic kidney disease (CKD)48–52, dementia53, depressive disorders54,55, anxiety and stress disorders20,56,
obsessive compulsive disorder57, autism spectrum disorders58, and attention-deficit/hyperactivity disorder59. Some studies
have suggested that HRV might be superior to many other biomarkers in representing the overall state of health and well-
being60,61. These developments have sparked considerable optimism surrounding the potential of heart rate-sensing wearable
devices to detect and track cardiovascular diseases62–68.

Although the emergence of HRV out of complex and intricate interactions confers HRV such an ability to represent
the state of the body, it also makes its appropriate application as a digital biomarker replete with nuances. Analyses of
heartbeat dynamics and HRV reveal significant nonlinearity, non-Gaussianity, and chaotic behaviors in RRi series69–83. These
statistical signatures of nonlinearity, non-Gaussianity, and chaotic behaviors in RRi can be interpreted as manifestations of
the emergence of HRV from interdependent and bidirectional interactions across multiple timescales. Such processes which
lead to multiplicative fluctuations and dynamics have been termed multifractal cascades84–88. The cascade dynamical nature
of HRV, like many other behavioral and physiological functions89–95, inclines many of its measurements and descriptors
toward a characteristic that has been, unfortunately, grossly overlooked in the biomedical literature: ergodicity. We believe
the overlooking of ergodicity has hindered the broad application of HRV probably much more than the other challenges which
have been discussed regarding HRV, like analytical challenges associated with data variability, missing data and artifacts, and
lack of theory for data interpretation96–107.

Ergodicity is an essential requirement of a digital biomarker to be applied reliably in current medical practice. Similar
values of a digital biomarker across different individuals must represent similar bodily states. In other words, standard cut-off
points of such a biomarker must reliably separate the states of health and disease in each different individual. The importance
of this requirement is highlighted when we pay attention to the research designs and statistical practices that have dominated
scientific investigations for about a century. These research designs and statistical practices were devised in the twentieth
century by pioneers like Francis Galton108,109, Karl Pearson110, Ronald Fisher111–113, Jerzy Neyman110, Egon Pearson110, and
Udny Yule114. Based on these practices, most medical research, similar to most biological, psychological, and social research,
has been aggregating the data gathered from randomly selected groups of individuals and used group-based statistical methods
to reach conclusions. Such conclusions are then deemed generalizable to the behaviors of different individuals across different
contexts. However, ergodicity is a requisite of this generalizability from group-level data to an individual’s behaviors. In non-
ergodic measurements, the behaviors of an individual at a specific time diverge from the average of that measurement across
a group of individuals and also the average of that individual’s behaviors over an extended period115–118. Ergodicity refers to
the convergence of these two averages: the finite-ensemble average and the finite-time average (Fig. 1). The finite-ensemble
average, which is also recognized as the “sample average,” is

〈xi(t)〉N =
1
N

N

∑
i=1

xi(t), (1)

where xi(t) is the ith of N individual cases of x(t) included in the finite-ensemble average. The finite-time average, which
biomedical discourse recognizes as the “average performance/trajectory of the individual,” is

x∆t =
1
∆t

∫ t+∆t

t
x(t)dt, (2)

for continuous change. The finite-time average when the measured behavior x changes at T = ∆t/δ t discrete times t + δ t, t +
2δ t, . . . is

x∆t =
1

Tδ t

T

∑
τ=1

x(t + τδ t). (3)

So, ergodicity is an equivalence between these two averages,

lim
∆t→∞

1
∆t

∫ t+∆t

t
x(t)dt = lim

N→∞

1
N

N

∑
i=1

xi(t). (4)
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Figure 1. Non-ergodicity refers to the lack of equivalence between finite-ensemble and finite-time averages. The finite-
ensemble average, which biomedical discourse recognizes as the “sample average,” is 〈xi(t)〉N = 1

N ∑N
i=1 xi(t), where xi(t)

is the ith of N individual cases of x(t) included in the finite-ensemble average. The finite-time average when the measured
behavior x changes at T = ∆t/δ t discrete times t + δ t, t + 2δ t, . . . is x∆t =

1
T δ t ∑T

τ=1 x(t + τδ t).

Another phrasing of the concept of ergodicity is that ergodic systems visit all of their possible states—in a sense, er-
godic systems do not have a deep sense of “history.” The criterion of “mixing” emphasizes this addition to the traditional
interpretation of ergodicity. Mixing denotes independence of the states of a system across time in a way that all values of
a stochastic process across all times would have equal probabilities119. This concept clarifies why emerging experimental
data suggests that the processes related to organisms teem with, and probably are even dominated by, non-ergodicity120–122,
although the inferences of the majority of biological, psychological, and social studies in the past century have been based
on this implicit presupposition that the processes they study and their measurements are ergodic. Biological processes teem
with properties like interactions across space and time scales84,88, historical contingency123,124, and context dependency to
break ergodicity117. Consider the exemplary biological process we have chosen in this study: HRV. As we mentioned earlier,
data strongly suggests that heartbeat dynamics and HRV have a cascade dynamical nature and emerge from interdependent
and bidirectional interactions across scales69–83. Also, HRV and many of its descriptors highly depend on various individual,
contextual, and measurement factors such as sex125, age126–128, aerobic fitness and physical activity75,129,130, smoking131,132,
consumption of coffee132 and alcohol133, medications132, environmental noise and CO concentrations133, respiration104,134,
pace of breathing135, times of sleep136, posture137,138, the length of the observation period139, the time of measurement75,140,
the used detection method141, sampling frequency142, and procedures of processing and removing artifacts143–146. Such his-
torical contingency and context-dependency of HRV and other biological processes generally lead to non-ergodicity and lack
of generalizability from group-level findings to individuals117,118.

The concern for ergodicity is evident in the application of HRV. An appropriate diagnosis and risk stratification based on
HRV depends on two conditions: First, the limited data gathered during the visits, consultations, or laboratory assays should
sufficiently represent the states of the individual’s body over time. Second, the standard and established principles and cut-off
points used to make decisions should be generalizable to that individual. These conditions have been taken for granted until
now. However, as we discussed, evidence suggests that these conditions are probably violated because of non-ergodicity.
Neglecting this violation can be detrimental; for instance, if screening is conducted on the entire general population, a minor
increase in false positive rate can hugely raise subsequent medical tests and expenses63,99,147. An increased false-negative
rate also implies delayed anticoagulant medication and increased risk of stroke in symptomatic or high-risk patients.

Our concern for ergodicity is not restricted to the application of HRV. We118,119,148,149, alongside a few others115–117,120,
believe that ergodicity is an integral concept that undermines how scientific research across diverse fields has tried to identify
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cause-effect relationships. The breaking of ergodicity is abundant in biological processes and invalidates many conclusions
of group-based research designs and statistical methods. Indeed, neglecting this non-ergodicity and lack of generalizability
could be the leading cause of the reproducibility crisis118,120, which currently encompasses diverse fields from biomedical and
psychological sciences to social sciences and economics150,151. Specifically, in applying HRV as a biomarker of health and
disease, some studies have suggested that the irreproducibility of results could be a critical problem137,140,143,144,146,152–156.

This study is an attempt in continuation of our previous works to obtain a solution to the problem of making generalizable
inferences about non-ergodic processes. In this series of works, we first tried identifying sources of non-ergodicity in biologi-
cal processes. Having recognized the abundance of multifractal and cascade dynamics in biological processes89–95, we hypoth-
esized that a potential source of non-ergodicity could be the emergence of many biological processes out of interdependent
and bidirectional interactions across spatial and temporal scales, as in cascades. We observed phenomena that corroborated
this hypothesis119,148,149,157. Afterward, interestingly, we observed that descriptors that could capture the cascade-dynamical
sources of ergodicity breaking in a process might provide ergodic descriptions of that process119,148,149,157.

Here, prompted by the huge amount of evidence that had suggested the multifractal and cascade-dynamical nature of
HRV69–83, We hypothesized that this nature of HRV leads to the non-ergodicity of this phenomenon. Consequently, We
predicted that the linear commonly used descriptors of HRV and raw RRi series, like sample means and variances, would
be non-ergodic and lack generalizability and reproducibility. Afterward, we hypothesized that descriptors that would capture
the source of the non-ergodicity of HRV might provide ergodic descriptions of this non-ergodic phenomenon. Descriptors of
the nonlinear, non-Gaussian, multifractal, and cascade-dynamical behaviors of HRV, some of which we had developed in our
previous works, seemed worthy candidates70,74,75,158,158–163. For this study, we chose descriptors of long-range correlations,
H f Gn, and multifractal nonlinearity, tMF . We found strong support for our hypotheses.

Results

We analyzed the long-term ambulatory HRV in 108 chronic heart failure (CHF) patients—69 survivors (age (mean±SD) =
64± 15 years; 27 women) and 39 nonsurvivors (70± 14 years; 20 women)—who died due to any cause within the follow-up
period of 33± 17 months, and 115 age-matched healthy older adults (47.7± 18.2 years; 25 women). The endpoint was all-
cause mortality. The majority of deaths (34/39) were cardiac-related, including death from progressive heart failure (n = 23),
sudden death (n = 10), and acute myocardial infarction (n = 1). The remaining five patients died of sepsis (n = 1), pneumonia
(n = 3), and stroke (n = 1). We reanalyzed HRV data from one of our previous published studies161. Table 1 summarizes the
demographic and baseline clinical characteristics of the CHF patients.

HRV breaks ergodicity

To examine the ergodic properties of the RRi series, we submitted the original RRi series and the corresponding shuffled
versions to the Thirumalai-Mountain analysis164,165, which yields a dimensionless metric called the ergodicity breaking factor,
EB,

EB(x(t)) =

〈[

δ 2(x(t))
]2〉

−
〈

δ 2(x(t))
〉2

〈

δ 2(x(t))
〉2 . (5)

where δ 2(x(t)) =
∫ t−∆

0 [x(t ′+∆)− x(t ′)]2dt ′
/

(t −∆) is the time average mean-squared displacement of the stochastic series
x(t) for lag time ∆. Rapid decay of EB to a finite asymptotic value for progressively larger samples, i.e., EB → 0 as t → ∞
implies ergodicity. Slower decay indicates less ergodic systems in which trajectories are less reproducible. No decay or
convergence to a finite asymptotic value indicates strong ergodicity breaking166,167. EB(x(t)) thus allows testing whether a
given series breaks ergodicity. EB for the original RRi series did not decay at all with t, essentially remaining unchanged
over a progressively longer time for healthy controls as well as the two patient groups (EB(x(t)) = −0.0146 ∆

t
,0.0002 ∆

t
, and

−0.0182 ∆
t

for healthy controls, CHF nonsurvivors, and CHF survivors, respectively; colored lines in Figs. 2d–f). These
values of EB(x(t)) indicate strong ergodicity breaking in the original RRi series. In contrast, EB for the shuffled RRi series
rapidly decayed to a finite asymptotic value, indicating ergodicity (EB(x(t)) = −1.0227 ∆

t
,−1.0168 ∆

t
, and −1.0145 ∆

t
for

healthy controls, CHF nonsurvivors, and CHF survivors, respectively; grey lines in Figs. 2d–f). As by shuffling the original
RRi series, the temporal structure and information of the RRi series are removed, these values of EB(x(t)) suggest that the
very temporal structure of HRV is the source of non-ergodicity in HRV.

Linear descriptors based on mean and variance are non-ergodic

Now that we have witnessed ergodicity breaking in the raw RRi series, let us investigate the ergodic properties of some
of the linear descriptors widely used in cardiovascular digital medicine: HRV parameters based on mean and variance106.
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Characteristics Nonsurvivors (n = 39) Survivors (n = 69)
Age (years) 70± 14 64± 15
Sex (M/F) 19/20 42/27
New York Heart Association functional class
II 3(8%) 3(13%)
III-IV 36(92%) 60(87%)
Ischemia 17(43%) 19(28%)
Left ventricular ejection fraction (%) 40± 12 39± 14
BNP (pg/mL) 1,225± 903 704± 606
ln BNP 6.8± 0.8 6.1± 1.1
BUN (mg/dL) 32± 18 23± 13
ln BUN 3.3± 0.5 3.0± 0.5
Cr (mg/dL) 1.7± 1.3 1.1± 1.0
ln Cr 0.25± 0.69 −0.13± 0.60
Medication at Holter recording
Beta-blocker 11(28%) 23(33%)
ACE/ARB 19(49%) 32(46%)
Loop diuretic 26(67%) 30(43%)
Spironolactone 16(41%) 17(25%)
Medication before hospital discharge
Beta-blocker 26(67%) 48(70%)
ACE/ARB 26(67%) 55(80%)
Loop diuretic 27(95%) 62(90%)
Spironolactone 23(59%) 40(58%)
Ventricular premature beats per hour 22± 64 24± 70

BNP = brain natriuretic protein; BUN = blood urea nitrogen; Cr = creatinine; ACE = angiotensin-converting enzyme
inhibitor; ARB = angiotensin II receptor blocker.

Table 1. Baseline clinical characteristics of the chronic heart failure patients. Reproduced from Kiyono et al.161.

Here, we chose the mean and root mean square of successive RR interval differences, hereinafter noted as M and RMS,
respectively. Similar to the behavior of EB for the raw RRi series, EB for M and RMS did not decay at all over epochs
(EB(M(epoch)) = −0.0848 ∆

epoch,−0.1461 ∆
epoch , and −0.0935 ∆

epoch ; EB(RMS(epoch)) = −0.0846 ∆
epoch ,−0.1480 ∆

epoch , and

−0.0937 ∆
epoch for healthy controls, CHF nonsurvivors, and CHF survivors, respectively). EB remained unchanged over a

progressively larger number of epochs for all three groups (colored lines in Figs. 3a, c). In contrast, EB for M and RMS

of the shuffled RRi series rapidly decayed to a finite asymptotic value (EB(M(epoch)) = −1.2337 ∆
epoch ,−1.2890 ∆

epoch , and

−1.2275 ∆
epoch ; EB(RMS(epoch)) = −1.2400 ∆

epoch ,−1.2951 ∆
epoch , and −1.2321 ∆

epoch for healthy controls, CHF nonsurvivors,
and CHF survivors, respectively; grey lines in Figs. 3a, c). In other words, M and RMS-based HRV parameters failed to
provide ergodic descriptions of HRV. Furthermore, the contrast between behaviors of EB for the original and the shuffled RRi
series indicates that the very temporal structure of HRV contributes to this failure.

To test the specificity and reliability of these HRV parameters, we also performed Monte Carlo simulations by randomly
sampling the 1000-sample RRi series from the 24-hour recordings for each individual and performing one-way ANOVA tests
separately on these series’ M and RMS values. We repeated this process 1000 times. One-way ANOVAs failed to detect
reduced M of HRV due to the CHF, 36.8% and 12.7% times in nonsurvivors (red histogram in Fig. 3b) and survivors (green

histogram in Fig. 3b), respectively, compared to healthy controls. Likewise, one-way ANOVAs failed to detect reduced RMS

of HRV due to the CHF, 34.6% and 11.3% times in nonsurvivors (red histogram in Fig. 3d) and survivors (green histogram

in Fig. 3d), respectively, compared to healthy controls. In other words, we found a high likelihood of failing to identify
statistically significant differences among the three groups’ M and RMS. These results confirm that linear descriptors M and
RMS cannot be used as reliable HRV parameters for digital biomarkers of health and disease.

Linear descriptors NN50 and pNN50 are only weakly ergodic but not specific

The number of adjacent RR intervals that differ by more than 50 milliseconds and the percentage of such RR intervals are
two other linear descriptors widely used as HRV parameters106. EB for NN50 and pNN50 had similar behavior to that of the
shuffled RRi series; however, EB had a shallower initial decay for NN50 and pNN50 with a progressively larger number of
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Figure 2. The raw R-R interval (RRi) series are non-ergodic. a–c. Representative examples of the original and shuffled
RRi series (colored lines and grey lines, respectively). a. RRi series for a healthy control (a 54-year-old woman). b. RRi
series for a 74-year-old man with congestive heart failure (CHF) who died 101 days after the measurement. c. RRi series for
an 82-year-old woman who survived CHF. The original RRi series, for healthy controls d. as well as the two patient groups
e, f., show no change in the ergodicity breaking parameter, EB, over progressively longer periods, reflecting that HRV breaks
ergodicity (colored lines). Shuffling the original RRi series produces an RRi series that is ergodic, as indicated by the rapid
decay in EB over progressively longer periods (grey lines). Thin lines and thick lines in d–f represent ergodicity breaking for
individuals and mean ergodicity breaking for the three groups, respectively.

epochs (EB(NN50(epoch)) =−0.4297 ∆
epoch ,−0.4281 ∆

epoch , and −0.7090 ∆
epoch ; EB(NN50(epoch)) =−0.43 ∆

epoch ,−0.43 ∆
epoch ,

and −0.71 ∆
epoch for healthy controls, CHF nonsurvivors, and CHF survivors, respectively). Eventually, EB reached an

asymptotic finite but a relatively larger value over a progressively larger number of epochs (colored lines in Fig. 4a, c).
These EBNN50(epoch)) and EB(pNN50(epoch)) curves were only marginally shallower than those for the epoch series
of NN50 and NN50 for the shuffled RRi series (EB(pNN50(epoch)) = −1.2289 ∆

epoch ,−1.3169 ∆
epoch , and −1.2557 ∆

epoch;

EB(tMF (epoch)) = −1.23 ∆
epoch ,−1.32 ∆

epoch , and −1.26 ∆
epoch for healthy controls, CHF nonsurvivors, and CHF survivors,

respectively; grey lines in Fig. 4a, c). Thus, NN50 and pNN50 break ergodicity only weakly, providing more ergodic de-
scriptions of the non-ergodic HRV than the previous two linear descriptors, M and RMS. Again, the contrast between the
original and shuffled RRi series indicates that the very temporal structure of HRV contributes to this weak ergodicity breaking
by NN50 and pNN50.

To test the specificity and reliability of these parameters, we performed Monte Carlo simulations by randomly sampling
1000-sample RRi series from 24-hour recordings for each individual and performing one-way ANOVA tests separately on
these series’ NN50 and pNN50 values. We repeated this process 1000 times. One-way ANOVAs revealed that NN50 of
HRV did not differ between either patient populations and healthy controls: CHF nonsurvivors and survivors (red histogram

and green histogram, respectively, in Fig. 4b). Likewise, one-way ANOVAs revealed that pNN50 of HRV did not differ
between either patient populations and healthy controls: CHF nonsurvivors and survivors (red histogram and green histogram,
respectively, in Fig. 4b). Hence, NN50 and pNN50 might only weakly break ergodicity but also not diagnose CHF.

Cascade-dynamical descriptors H f Gn and tMF are both ergodic and specific

We hypothesized that cascade-dynamical descriptors might provide ergodic descriptions of the non-ergodic HRV by captur-
ing the source of ergodicity breaking. The most compelling descriptions of cascading dynamics come from multifractal
geometry84,88,168. Simulations of cascade processes show two critical features: long-range linear temporal correlations and
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Figure 3. Commonly used linear descriptors of HRV based on mean and root mean square are non-ergodic. a. The
ergodicity breaking parameter, EB, did not change for the mean of successive RR intervals, M, in the original RRi series
over a progressively larger number of epochs (colored lines). In contrast, EB decayed rapidly for the M of the shuffled RRi
series (grey lines). b. Null hypothesis significance testing (NHST) for M across the three groups. One-way ANOVAs failed
to detect reduced M of HRV due to the CHF, 36.8% and 12.7% times in nonsurvivors (red histogram) and survivors (green

histogram), respectively, compared to healthy controls. c. EB, did not change for the root mean square of successive RR
interval differences, RMS, in the original RRi series over a progressively larger number of epochs (colored lines). In contrast,
EB decayed rapidly for the RMS of the shuffled RRi series (grey lines). d. Null hypothesis significance testing (NHST) for
RMS across the three groups. One-way ANOVAs failed to detect reduced M of HRV due to the CHF, 34.6% and 11.3% times
in nonsurvivors (red histogram) and survivors (green histogram), respectively, compared to healthy controls. Thin lines and
thick lines in a, c represent EB for individuals and mean EB for the three groups, respectively.

nonlinear correlations involving interactions across timescales. The former feature appears most frequently as a fractional
Gaussian noise (fGn) in which the standard deviation increases as a power function of the timescale. The fractional power
in this function is known as the Hurst exponent, H f Gn. H f Gn and has already been shown to be sensitive to differences in
HRV due to congestive heart failure79. The latter feature of nonlinear correlations concerns the effects spreading across the
hierarchical organization of biological structures producing a variation in H f Gn, i.e., multifractality. We can estimate this
nonlinear variation by estimating the variation in power functions over time and then comparing this multifractal variation to
what a linear model of the underlying RRi series can produce. That is, by comparing the multifractality (i.e., the number of
power functions) estimable for the original RRi series to the same multifractal property for a sample of synthetic RRi series.
The one-sample t-test comparing the multifractality of the original to the synthetic RRi series provides a t-statistic, multifrac-
tal nonlinearity, tMF , which quantifies nonlinear correlations due to cascade dynamics169. H f Gn and tMF have been shown to
provide ergodic descriptions of the non-ergodic series of both simulated and empirical biological measurements119,148,149. We
aim to determine whether H f Gn and tMF can adequately describe the non-ergodic HRV. Furthermore, we test whether H f Gn

and tMF provide specificity.
The behavior of EB for the epoch series of H f Gn and tMF bears a strong resemblance to the behavior of EB for the shuf-

fled RRi series. For H f Gn, EB had an initial shallower decay over a progressively larger number of epochs (EB(∆α(epoch)) =
−0.4640 ∆

epoch ,−0.1648 ∆
epoch , and −0.2121 ∆

epoch; colored lines in Fig. 5a). For tMF , EB rapidly decayed initially over a progres-

sively larger number of epochs (EB(tMF (epoch)) =−0.8372 ∆
epoch ,−1.0238 ∆

epoch , and −1.1759 ∆
epoch; colored lines in Fig. 5c).

These EB(H f Gn(epoch)) curves show a faster decay for the shuffled RRi series (EB(H f Gn(epoch))=−1.2423 ∆
epoch,−1.2434 ∆

epoch ,

and −1.2002 ∆
epoch ; grey lines in Fig. 5a). However, the decay rate of EB(tMF (epoch)) curves for the shuffled RRi series was

comparable to that of the original RRi series (EB(tMF (epoch)) = −1.2091 ∆
epoch ,−1.1555 ∆

epoch , and −0.9862 ∆
epoch for healthy
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Figure 4. NN50 and pNN50 are specific but only weakly ergodic. a. The epoch series of NN50 describing the original RRi
series show an initial decay in the ergodicity breaking parameter, EB, with epochs (colored lines), albeit shallower compared
to the epoch series of NN50 describing the shuffled RRi series (grey lines). b. Null hypothesis significance testing (NHST)
for NN50 across the three groups. One-way ANOVAs revealed that NN50 of HRV did not differ between either patient
populations and healthy controls: CHF nonsurvivors and survivors (red histogram and green histogram, respectively). c. The
epoch series of pNN50 describing the original RRi series show an initial decay in EB over epochs (colored lines), albeit
shallower compared to the epoch series of pNN50 describing the shuffled RRi series (grey lines). d. NHST for pNN50 across
the three groups. One-way ANOVAs revealed that pNN50 of HRV did not differ between either patient populations and
healthy controls: CHF nonsurvivors and survivors (red histogram and green histogram, respectively). Thin lines and thick

lines in a, c represent EB for individuals and mean EB for the three groups, respectively.

controls, CHF nonsurvivors, and CHF survivors, respectively; grey lines in Fig. 5c). These results show that the cascade-
dynamical descriptors, H f Gn and tMF , provide ergodic descriptions of the non-ergodic HRV. The cascade-dynamical nature
of HRV that contributed to the non-ergodicity of linear descriptors like M and RMS was appropriately captured by cascade-
dynamical descriptors H f Gn and tMF .

To test the specificity of these cascade-dynamical descriptors, we performed Monte Carlo simulations by randomly sam-
pling 1000-sample RRi series from 24-hour recordings for each individual and performing one-way ANOVA tests separately
on these series’ H f Gn and tMF values. We repeated this process 1000 times. One-way ANOVAs failed to detect reduced H f Gn

of HRV due to the CHF, 0.2% and 1.8% times in nonsurvivors (red histogram in Fig. 5b) and survivors (green histogram in
Fig. 5b), respectively, compared to healthy controls. Likewise, one-way ANOVAs failed to detect reduced M of HRV due
to the CHF, 13.2% and 2.4% times in nonsurvivors (red histogram in Fig. 5b) and survivors (green histogram in Fig. 5b),
respectively, compared to healthy controls. Thus, H f Gn and tMF provide ergodic descriptions of the non-ergodic HRV and
can specifically differentiate clinical groups with high reliability. These results support our proposal of capitalizing cascade-
dynamical descriptors as generalizable and reproducible HRV parameters for digital biomarkers of health and disease.

To also investigate the prognostic capacities of the cascade-dynamical descriptors H f Gn and tMF , we performed survival
analysis to examine if these descriptors could predict mortality among CHF patients170,171. Fig. 6 shows Kaplan-Meier
cumulative survival curves using H f Gn and tMF as predictors. The two descriptors’ median (Mdn) determined the cutoff
points for dichotomization. H f Gn and tMF failed to predict mortality and produced comparable Mantel-Haenszel log-rank
statistics. These hazard ratios were obtained: 0.814[0.619,1.010], p= 0.295 for H f Gn and 0.846[0.652,1.040], p= 0.391 for
tMF .
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Figure 5. Cascade-dynamical descriptors of long-range correlations, H f Gn, and multifractal nonlinearity, tMF , are

ergodic and specific a. The ergodicity breaking parameter, EB, decayed initially for the H f Gn of the original RRi series over
epochs (colored lines). However, this decay was shallower compared to that of the H f Gn of the shuffled RRi series (grey lines).
b. NHST of H f Gn across the three groups. One-way ANOVAs failed to detect reduced H f Gn of HRV due to the CHF, only 0.2%
and 1.8% times in nonsurvivors (red histogram) and survivors (green histogram), respectively, compared to healthy controls.
c. EB decayed rapidly over epochs for the tMF of both the original RRi series (colored lines) and the shuffled RRi series (grey

lines). d. One-way ANOVAs failed to detect reduced tMF of HRV due to the CHF, 13.2% and 2.4% times in nonsurvivors
(red histogram) and survivors (green histogram), respectively, compared to healthy controls. Thin lines and thick lines in a, c

represent EB for individuals and mean EB for the three groups, respectively.

Figure 6. Kaplan-Meier cumulative survival curves of patients with congestive heart failure—both nonsurvivors

and survivors. a. Stratified to patients with long-range correlations in HRV, H f Gn ≤ Mdn and H f Gn > Mdn, with log-rank
statistics. b. Stratified to patients with multifractal nonlinearity in HRV, tMF ≤ Mdn and tMF > Mdn, with log-rank statistics.
The cutoff points for dichotomization were determined by the respective descriptor’s median (Mdn). Shaded areas indicate
95% confidence intervals. n denotes the number of patients in a subgroup, with the number of deaths during the observation
period in parentheses. The obtained hazard ratios 0.814[0.619,1.010], p= 0.295 for H f Gn and 0.846[0.652,1.040], p= 0.391
for tMF indicate that these descriptors are not sufficient for reliable prognostics.

Discussion

Here, we surveyed various descriptors that could be used by traditional and digital medicine to inform the diagnosis and
prognosis of cardiovascular conditions such as CHF to identify those descriptors that could provide predictive, specific, gener-
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alizable, and reproducible assessments. The primary risk we have highlighted is that the raw RRi series breaks ergodicity. This
non-ergodicity of HRV is a liability to clinical care because the raw RRi series fail to converge toward an average. Without
this convergence, any sequence of RRi cannot be deemed sufficiently representative—whether of the patient’s long-term HRV
or groups with a definitive clinical diagnosis or prognosis. We found that many of the most conventional linear descriptors are
all as non-ergodic as the raw RRi series they summarize. We also identified that the primary source of these non-ergodicities
is the very temporal structure of HRV and its cascade-dynamical nature. Afterward, we hypothesized that this very origin
of non-ergodicities might hold the key to the ergodic descriptions of HRV. The cascade-dynamical descriptors H f Gn and tMF

confirmed this hypothesis, provided ergodic descriptions of the non-ergodic HRV, and could also specifically differentiate
clinical groups. However, our survival analysis indicated that even H f Gn and tMF cannot sufficiently predict post-CHF prog-
nosis. Previous works exploring the usefulness of cascade-dynamical descriptors have often relied on a suite of descriptors,
including those sensitive to the non-Gaussian statistics of HRV74,75,158–163. This suggests that it might be best to employ
cascade-dynamical descriptors, like H f Gn and tMF , alongside more traditional descriptors to achieve maximum predictivity,
specificity, generalizability, and reproducibility.

The widespread adoption of smartwatches and other wearable biosensors with heart-rate monitoring capabilities has
sparked hope for the early detection of cardiovascular diseases. However, the belief that more data is sufficient to improve
predictions is overly optimistic and misguided. Machine learning/artificial intelligence (ML/AI) models are being developed
to achieve highly accurate, sensitive, and specific measures of cardiovascular health; however, to aptly capitalize on these
powerful tools, the need for a theoretical understanding of heart rate variability must be addressed. Despite the availability of
vast amounts of data, the advancement in understanding the nature of heart rate variability has been modest despite years of
work and thousands of scientific publications. This limitation prevents us from making meaningful inferences using ML/AI
models. The current reliance on manual or automatic feature extraction172–177 is problematic since these features may not
suitably reflect the primary causal mechanisms and be too much dependent on contextual variables136,178–180. This study
emphasizes that the current optimism surrounding the use of wearables and ML/AI models to detect cardiovascular diseases
must be accompanied by a deeper understanding of the ergodicity-breaking behavior of HRV.

Our conclusions merit urgent attention as they show the unreliability of prevalent linear descriptors of HRV like mean-
based parameters. We have shown that some of the most intuitive conventional descriptors of HRV, like mean-based descrip-
tors, are non-ergodic. In contrast, cascade-dynamical descriptors, such as tMF , can significantly improve the assessment of
cardiovascular health. These results align with those of previous studies that had reported that nonlinear descriptors could
provide additional prognostic information compared to conventional linear descriptors80,83,159,161,163, e.g., short-term scaling
exponent is a better predictor of mortality or other primary endpoints in cardiovascular patients181,182. Moreover, such non-
linear descriptors have even been found to be reproducible across different populations183–185 and contexts, e.g., receiving or
not receiving beta-blockers186, and different times and methods of measurement80,184.

Our results also show that a descriptor’s ergodicity is necessary but insufficient for its prognostic capability. Although
H f Gn and tMF provided ergodic descriptions of HRV, they failed to predict mortality in CHF patients. Thus, although ergod-
icity is necessary for generalizable and reproducible inferences, to reach the utmost specific, generalizable, and reproducible
assessment, combining descriptors that provide ergodic descriptions, like the cascade-dynamical descriptors investigated here,
with other descriptors, like the conventional ones.

To also compare the nonlinear descriptors investigated here, it must be noted that H f Gn is primarily a monofractal descriptor
and is best suited to describe series generated based on one fractal-scaling exponent. However, the modeling of cascade
dynamics due to nonlinear interactions across scales inherent to HRV is beyond the scope of H f Gn and requires multifractal
formalism88,168,187. Monofractal fluctuations such as fGn are ideally defined exhaustively by single fractional exponents
H f Gn and fall cleanly within the linear model through an autocorrelation function indicative of fractional integration188,189.
The nonlinearity of interactions across scales requires not only one but many fractional scaling exponents in addition to strictly
linear long-range correlations. Hence, multifractal modeling is necessary to analyze the putative cascade-dynamical route to
non-ergodicity thoroughly119,148,149, i.e., the inherently multifractal descriptor, tMF , is superior to H f Gn in encoding nonlinear
interactions across scales, which is characteristic of HRV.

Some other points also warrant further attention. For more comprehensive employment of nonlinear descriptors, such as
those proposed here, especially in traditional medical settings, it might be necessary to provide more intuitive interpretations
for clinicians and educate clinicians so that the biological basis of these mathematical parameters is clear69. Also, cascade
dynamics is only one of the mechanisms that can lead to ergodicity-breaking physiological variabilities. It is still being
determined whether all such mechanisms could be modeled as cascade processes (e.g.,157). Despite the central role of cascade
processes in biomedical explanation190, we hope that future investigations examine a broader class of anomalous diffusion
regimes191–200 that can also lead to ergodicity-breaking physiological variabilities. Further work is needed to determine
whether cascade-dynamical descriptors enable reproducible health assessment when the sources of ergodicity breaking are
more nuanced. The statistical modeling framework presented in the present study will be fundamental in guiding these
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investigations.
Eventually, the challenges faced in this study and our proposed solutions should be unrestricted to the case of HRV

and cardiovascular health. Non-ergodicity and cascade dynamics abound in biological processes and are regularities—not
exceptions. Much more attention must be paid to the ergodicity of investigated biological phenomena. Moreover, in cases of
ergodicity breaking, we have shown here and in previous studies119,148,149 that cascade dynamics should be considered one
of the primary candidates for its origin and that capturing this origin through nonlinear, multifractal, and cascade-dynamical
descriptors may be the key to ergodically describing non-ergodic phenomena. The importance of these insights cannot be
exaggerated as they are crucial for reliable and reproducible diagnosis and prognosis across all fields. Non-ergodicity may be
a signature of life, but seeking ergodicity in our generalizations and causal reasoning is pivotal for arriving at generalizable
and reproducible digital biomarkers of health and disease.

Methods

Each patient gave informed written consent with full knowledge of the details. The ethics committee of Fujita Health Univer-
sity approved the research, which followed the guidelines stated in the Declaration of Helsinki. All data were fully anonymized
before we accessed them.

Subjects

Based on the data of one of our previous studies161, we retrospectively enrolled the patients referred to the hospital of the
Fujita Health University from January 2000 to December 2001 for assessment or treatment of CHF. 24-hour monitoring of
Holter ECG was conducted before their hospital discharge. To be eligible for this study, the patients had to be in normal
sinus rhythm and had Holter ECG recordings whose periods taken up by artifacts, or noise were less than 5%. No intravenous
positive-inotropic agents or vasodilators were administered during the Holter ECG recordings. We excluded patients with
chronic or paroxysmal atrial fibrillation, permanent or temporary cardiac pacemakers, active thyroid disease, or malignancy.

Follow-up and endpoint

We recorded the baseline data upon hospital discharge and the time-to-event information for each subject in a database. We
then periodically sent questionnaires to patients or their families during the follow-up period and conducted telephone inter-
views to gather mortality information. Death from progressive heart failure was defined as death resulting from multi-organ
failure caused by the progression of pump failure, and sudden death was defined as either witnessed cardiac arrest or death
within one hour of onset of acute symptoms or the unexpected death of a patient known to have been well within the previous
24 hours.

Analysis of holter ECG

We digitized ECG signals at 125 Hz and 12 bits using proprietary software (Cardy Analyzer II, Suzuken Co., Ltd., Nagoya,
Japan) and included only recordings with at least 22 hours of data in the analysis and> 95% of quantified sinus beats. Although
the Cardy Analyzer II software had detected and labeled all QRS complexes in each recording, we manually corrected any
errors in R-wave detection and QRS labeling. We then exported the individual files containing the duration of individual RRi
intervals and morphology classifications of individual QRS complexes (normal, supraventricular, and ventricular premature
complexes, supraventricular, and ventricular escape beats). We analyzed the 24-hour sequence of intervals between two
successive R waves of sinus rhythm (i.e., heart rate variability or HRV). To avoid the adverse effects of any remaining errors
in detecting the R wave, we reviewed large (> 20%) consecutive RRi interval differences until all errors were corrected. In
addition, when we encountered atrial or ventricular premature complexes, we interpolated the corresponding RRi intervals by
the median of the two successive beat-to-beat intervals. We also confirmed that no sustained tachyarrhythmias were present in
the HRV recordings. We then interpolated the observed RRi series with a cubic spline function and resampled at an interval
(∆t) of 500 ms (2 Hz), yielding interpolated RRi series.

Estimating descriptors of HRV for epoch series

We computed the following descriptors of HRV—linear descriptors over non-overlapping 500-beat epochs extracted from the
RRi series and fractal and multifractal descriptors over non-overlapping 1000-sample epochs extracted from the interpolated
RRi series. Hence, we computed fractal and multifractal descriptors in the time domain as both these are time-domain
analytical methods. We computed these descriptors for the original (i.e., unshuffled) and a shuffled counterpart (i.e., a version
with the temporal information destroyed) of each RRi series.
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Conventional linear descriptors

We computed four linear descriptors of HRV. (i) Mean of successive RR intervals (M). (ii) Root mean square of successive
RR intervals (RMS) mathematically defined as

RMS =

√

1
T

T

∑
t=1

|x(t)|2. (6)

(iii) Number of pairs of successive RRi intervals that differ by more than 50 ms (NN50). (iv) The percentage of successive
RRi intervals that differ from each other by more than 50 ms (pNN50).

Fractal-scaling descriptor of long-range correlations using monofractal detrended fluctuation analysis

Detrended fluctuation analysis (DFA) computes the Hurst exponent, H f Gn, quantifying the strength of long-range correlations
in series201,202 using the first-order integration of T -length series x(t):

y(i) =
i

∑
k=1

(

x(k)− x(t)
)

, i = 1,2,3, . . . ,T. (7)

DFA computes root mean square (RMS; i.e., averaging the residuals) for each linear trend yn(t) fit to Nn non-overlapping
n-length bins to build a fluctuation function:

f (v,n) =

√

√

√

√

1
Nn

Nn

∑
v=1

(

1
n

n

∑
i=1

(

y
(

(v− 1)n+ i
)

−yv(i)
)2

)

, n = {4,8,12, . . .}< T/4. (8)

f (n) is a power law,

f (n)∼ nH f Gn , (9)

where H f Gn is the scaling exponent estimable using logarithmic transformation:

log f (n) = H f Gn logn. (10)

Higher H f Gn corresponds to stronger long-range correlations.

Multifractal spectrum width based on the direct estimation of singularity spectrum

Chhabra and Jensen’s203 direct method estimates multifractal spectrum width ∆α by sampling a series x(t) at progressively
larger scales using the proportion of signal Pi(n) falling within the vth bin of scale n as

Pv(n) =

Nn

∑
k=(v−1)n+1

x(k)

∑x(t)
, n = {2,4,8,16, . . .}< T/8. (11)

As n increases, Pv(n) represents a progressively larger proportion of x(t),

P(n) ∝ nα , (12)

suggesting a growth of the proportion according to one “singularity” strength α189. P(n) exhibits multifractal dynamics when
it grows heterogeneously across time scales n according to multiple singularity strengths, such that

P(nv) ∝ nαv , (13)

whereby each vth bin may show a distinct relationship of P(n) with n. The width of this singularity spectrum, ∆α = (αmax −
αmin), indicates the heterogeneity of these relationships204,205.

Chhabra and Jensen’s203 method estimates P(n) for Nn non-overlapping bins of n-sizes and transforms them into a “mass”
µ(q) using a q parameter emphasizing higher or lower P(n) for q > 1 and q < 1, respectively, in the form

µv(q,n) =

[

Pv(n)
]q

Nn

∑
j=1

[

Pj(n)
]q
. (14)
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Then, α(q) is the singularity for mass µ-weighted P(n) estimated as

α(q) =− lim
Nn→∞

1
lnNn

Nn

∑
v=1

µv(q,n) lnPv(n)

= lim
n→0

1
lnn

Nn

∑
v=1

µv(q,n) lnPv(n). (15)

Each estimated value of α(q) belongs to the multifractal spectrum only when the Shannon entropy of µ(q,n) scales with n

according to the Hausdorff dimension f (q)203, where

f (q) =− lim
Nn→∞

1
lnNn

Nn

∑
v=1

µv(q,n) ln µv(q,n)

= lim
v→0

1
lnn

Nn

∑
v=1

µv(q,n) ln µv(q,n). (16)

For values of q yielding a strong relationship between Eqs. (15) & (16)—in this study, correlation coefficient r > 0.9975,
the parametric curve (α(q), f (q)) or (α, f (α)) constitutes the multifractal spectrum and ∆α (i.e., αmax −αmin) constitutes the
multifractal spectrum width. r determines that only scaling relationships of comparable strength can support the estimation of
the multifractal spectrum, whether generated as cascades or surrogates. Using a correlation benchmark aims to operationalize
previously raised concerns about mis-specifications of the multifractal spectrum206.

Surrogate testing using Iterated Amplitude Adjusted Fourier Transformation (IAAFT) generated t-statistic, tMF

While multifractality is necessary for cascade-like interactivity, multifractality is not conclusive evidence of cascade-like inter-
activity, as it can follow from other sources, e.g., linear autocorrelation and outliers in the histogram207. To identify whether
non-zero multifractal spectrum width (i.e., ∆α > 0) reflected multifractality due to nonlinear interactions across scales, we
compared ∆α for the original and shuffled RRi series to ∆α for 32 iterated amplitude adjusted Fourier transform (IAAFT)
surrogates208,209. IAAFT randomizes original values time-symmetrically around the autoregressive structure, generating sur-
rogates with randomized phase ordering of the series’ spectral amplitudes while preserving linear temporal correlations. We
refer interesting readers to Kelty-Stephen et al.169 for a step-by-step guide to generating the IAAFT surrogates for any series.
The resulting surrogate series should thus have the same values as the original series and thus the same mean and variance. It
should also have the same amplitude spectrum and autocorrelation function as the original series. The one-sample t-statistic,
tMF takes the subtractive difference between ∆α for the original series and that for 32 surrogates, dividing by the standard
error of ∆α for the surrogates.

Estimating ergodicity breaking parameter, EB

Ergodicity can be quantified using a dimensionless statistic of ergodicity breaking parameter, EB, also known as the Thirumalai-
Mountain metric164,165 and already mentioned by Rytov et al.210, computed as

EB(x(t)) =

〈[

δ 2(x(t))
]2〉

−
〈

δ 2(x(t))
〉2

〈

δ 2(x(t))
〉2 . (17)

where δ 2(x(t)) =
∫ t−∆

0 [x(t ′+∆)−x(t ′)]2dt ′
/

(t−∆) is the time average mean-squared displacement of the stochastic series x(t)
for lag time ∆. This relationship is effectively the variance of sample variance divided by the total-sample squared variance.
Rapid decay of EB to a finite asymptotic value for progressively larger samples, i.e., EB → 0 as t → ∞ implies ergodicity.
Thus, for Brownian motion EB(x(t)) =

4
3(

∆
t
)196,211. Slower decay indicates less ergodic systems in which trajectories are less

reproducible, and no decay or convergence to a finite asymptotic value indicates strong ergodicity breaking166,167. EB(x(t))
thus allows testing whether a given series fulfills ergodic assumptions or breaks ergodicity. For instance, it has been shown
that for fractional Brownian motion (FBM)166,167,

EB(x(t)) =











k(H f Gn)
∆
t

if 0 < H f Gn <
3
4

k(H f Gn)
∆
t

ln t if H f Gn =
3
4

k(H f Gn)(
∆
t
)4−4H f Gn if 3

4 < H f Gn < 1.

(18)
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The present work is less focused on firmly meeting the criterion of EB converging to zero within our finite samples. Instead,
we compared the original and shuffled RRi series to assess ergodicity breaking instead of strict convergence of EB to zero.
We computed EB for each original and shuffled RRi series (range = T/50; lag ∆ = 10) and for each epoch series of M, RMS,
NN50, PNN50, H f Gn, and tMF for the original and shuffled RRi series (range = Nepochs/2; lag ∆ = 1).

Monte Carlo simulations

We performed Monte Carlo simulations to test our hypothesis that ergodicity breaking by various linear and cascade-dynamical
descriptors of HRV could compromise the reliability of these descriptors as diagnostic biomarkers. We randomly sampled
1000-sample RRi series from 24-hour recordings for each individual and performed linear mixed-effects models separately
on M, RMS, NN50, pNN50, H f Gn, tMF , values calculated from these series. We used linear mixed-effects models with each
descriptor as the dependent variable and the participant group as the independent variable. The t-statistic and the resultant p

value were saved across the 1000 iterations. We performed all mixed-effects modeling in MATLAB 2022b (Mathworks, Inc.,
Natick, MA) using the function fitlme().

Survival analysis

We examined whether H f Gn and tMF were predictive of death using univariate Cox proportional hazards regression analy-
sis170,171. We used the Mantel-Haenszel log-rank test to compare Kaplan-Meier cumulative survival curves to examine the
impact of identified risk factors on survival. We performed all survival analysis in R212 using the function coxph() from the
package “survival”213.
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