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Abstract

vertebrate behaviour.

Recent research has demonstrated the suitability of adult zebrafish to model some aspects of complex behaviour.
Studies of reward behaviour, learning and memory, aggression, anxiety and sleep strongly suggest that conserved
regulatory processes underlie behaviour in zebrafish and mammals. The isolation and molecular analysis of zebra-
fish behavioural mutants is now starting, allowing the identification of novel behavioural control genes. As a result
of this, studies of adult zebrafish are now helping to uncover the genetic pathways and neural circuits that control

Review

Henry David Thoreau wrote “Many men go fishing all
of their lives, without knowing it is not fish they are
after”. Thus, one of the intrinsic difficulties of studying
behaviour is to understand the underlying motivation of
complex behaviours. Most behavioural traits are multi-
genic and display environmental interactions, further
compounding the difficulty of analysing them. However,
recent studies using rats, mice, zebrafish, nematodes and
fruit flies have begun to identify the genetic toolbox that
controls behaviour.

The general suitability of zebrafish as a model organ-
ism, as well as its use in the genetic and neuroanatomi-
cal analysis of larval behaviour has been
comprehensively described elsewhere [1,2]. Although
more difficult to manipulate than larvae, adult zebrafish
display a full repertoire of mature behaviours making
their characterisation particularly enticing. Zebrafish
(Danio rerio) are a typical cyprinid (carp family) school-
ing fish. In contrast to other laboratory behavioural
models, zebrafish are naturally social animals that show
preference for the presence of conspecifics [3,4]. Zebra-
fish are therefore an excellent model to probe the genet-
ics of social behaviour. In addition, zebrafish are diurnal
allowing behaviour to be measured during their natural
day time. Finally, it is crucial to investigate whether
complex behaviours such as reward, learning and social
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behaviour are conserved throughout the animal king-
dom. Thus, comparative studies of many model organ-
isms, including zebrafish, are necessary to determine
general principles of behavioural control. Several groups
have already developed protocols to measure aggression,
alarm reaction, antipredatory behaviour, anxiety, loco-
motion, learning and memory, sleep, reward and social
behaviour (see Table 1 and references therein). In this
review we consider the brain areas and neurotransmitter
systems that have been linked to the control of beha-
vioural in adult zebrafish. We also describe the proto-
cols and tools that have been developed for zebrafish
behavioural studies.

Contributions of zebrafish to behavioural genetics:
Reward and Learning

Reward behaviour

Perhaps the most prominent area in which the adult
zebrafish has contributed to behavioural genetics is
reward. Reward behaviour provides animals with an
instinctive drive to search for resources and to repro-
duce. However, the brain’s reward pathway can also be
hijacked by drugs of abuse such as cocaine, ampheta-
mine or opioids. Reward behaviour may thus constitute
the first step towards addiction. Reward can been mea-
sured in zebrafish by using the conditioned place prefer-
ence (CPP) test, which pairs a primary cue (e.g. a drug)
with a secondary stimulus such as a coloured aquarium
compartment. Drug dependency can also be evaluated
by measuring the persistence of CPP following a period
of abstinence.
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Table 1 Protocols to measure behaviour in adult zebrafish

Stage Behaviour Paradigm Reference
Adult Aggression Live observation of two fish [29,37,39,40,45]
Adult Aggression Mirror image test [6]

Adult Aggression Pigment response [6]

Adult Aggression Startle reaction [85]

Adult Alarm reaction Response to alarm substance [26,52,86]
Adult Antipredation Predator stimulation [87]

Adult Anxiety Exit latency test [51]

Adult Anxiety Group preference [6l]

Adult Anxiety Light/Dark preference [48,88]
Adult Anxiety Locomotory activity [6]

Adult Anxiety Place preference / Thigmotaxis [13,34,49,51]
Adult Anxiety Tank diving test [50,53,55]
Adult Anxiety Time in enriched T-maze chamber [89]

Adult Audition Response to startling noise [64]

Adult Courtship Observation of courtship postures [82]

Adult Lateralisation Interaction with object [41,77]
Adult Locomotion Mean velocity [90]

Adult Locomotion Number of lines crossed [36,81,87]
Adult Locomotion Total distance moved / Videotracking [80,81,90]
Adult Locomotion Turning angle [90]

Adult Mate choice Video-stimulus technique [91]

Adult Learning / memory Active avoidance conditioning [27,28,92,93]
Adult Learning / memory Delayed spatial alternation [35]

Adult Learning / memory Learned alarm reactions [86]

Adult Learning / memory Spatial alternation, learning and memory [31,32,54,94]
Adult Learning / memory T-maze [8,13,33,89]
Adult Learning / memory Visual discrimination learning [29]

Adult Olfaction Response to amino acids [75]

Adult Reward Conditioned place preference [6-9,13]
Adult Reward Presence of Conspecific [11]

Adult Sleep Locomotor inhibition [61]

Adult Sleep Monitoring sleep postures [57,58,63]
Adult Sleep Pigment response [61]

Adult Social preference Area occupied [85]

Adult Social preference Group preference [6]

Adult Social preference Nearest neighbour distance [85]

Adult Social preference Shoaling [3,78,87]
Adult Vision Optokinetic response [76]

In line with studies of other animals (e.g. [5]), stimuli
that have been shown to be rewarding for adult fish
include ethanol [6,7], cocaine [8], amphetamine [9], opi-
ates [10], nicotine [7], food [10] and the presence of
conspecifics [11]. The major neurotransmitter associated
with reward behaviour is Dopamine (DA). Increases of
DAergic signalling from the ventral tegmental area to
the nucleus accumbens (nAC) motivates mammals to
repeat stimulus application. In zebrafish, this key DAer-
gic pathway is most likely comprised of projections
from the diencephalic posterior tuberculum to the ven-
tral telencephalon (subpallium, (Vv and Vd), see [12]).

Several other neurotransmitters have also been impli-
cated in reward behaviour. Heterozygous mutant zebra-
fish lacking one copy of the acetyicholinesterase (ache)
gene have enhanced acetylcholine levels in the brain due
to decreased breakdown of the neurotransmitter. The
increase of acetylcholine in the brain of ache mutants
causes a decrease in amphetamine-induced CPP [13].
Mammalian reward pathways also include raphe
5-HTergic neurons [14] as well as a number of inhibi-
tory influences including projections from the habenula.
The zebrafish ventral habenula appears to be homolo-
gous to the mammalian lateral habenula in both gene
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expression and innervation of the raphe [15]. The recent
identification of selective molecular markers for both
structures [16,17] will make genetic manipulation of the
reward pathway possible. Such a targeted approach will
allow functional interrogation of the reward circuitry in
zebrafish and may highlight both similarities and differ-
ences in the mechanisms controlling monoaminergic
behaviours in vertebrates.

There have been several screens for zebrafish mutant
families with altered reward behaviour. Darland and
Dowling isolated three families of mutants which were
not responsive to cocaine application, although the
affected genes were not reported [8]. Other groups
have used microarrays to identify addiction related
genes. Brennan and colleagues demonstrated a robust
change in place preference (PP) following nicotine or
ethanol treatment [7]. This PP was also maintained fol-
lowing a period of abstinence or when paired with an
adverse stimulus (3 seconds removal from the tank
water) suggesting that drug dependency had occurred.
Microarray analysis comparing the brains of both trea-
ted and untreated fish identified 1362 genes that were
significantly changed following drug application,
including 153 that were responsive to both nicotine
and ethanol. Many of these genes are also involved in
reward behaviour in other species, by either altering
dopaminergic or glutamatergic signalling or modulat-
ing synaptic plasticity [7]. In addition, this study also
revealed a number of novel genes that were changed
upon drug administration, including those coding for
Calcineurin B and the Hypocretin receptor. Bally-Cuif
and colleagues conducted a screen for mutants that
were insensitive to amphetamine application [13]. One
of these mutants, no addiction (nad), was used to iden-
tify genes that were transcriptionally modified by
amphetamine in wild-type fish and were differentially
over- or under-regulated in nad. Importantly, gene
expression was unmodified in nad mutants in the
absence of the drug [9]. This strategy permitted the
unbiased recovery of 139 genes linked to amphetamine
triggered CPP. A large proportion these genes were
developmentally active transcription factors. These
include Dlx1la, Emx1la, Lhx8, Sox9 and Tbrl, proteins
that are implicated in the control of neurogenesis in
the vertebrate embryo and show persistent expression
in the adult-neurogenic regions of the mammalian and
fish brain [9]. A recent study of rats has also demon-
strated altered cocaine (but not sucrose) mediated
reward behaviour following a reduction of hippocam-
pal neurogenesis [18]. This constitutes an exciting new
development in the field of reward behaviour; neuro-
genesis-induced plasticity may account for some of the
learning aspects of reward and the long-lasting changes
in the brain associated with addiction.
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A comparable approach has led to the identification of
too few (tof) a mutant that fails to change place prefer-
ence following morphine treatment but not food appli-
cation [10]. tof encodes a forebrain specific zinc finger
protein, Fezl [19], which establishes neurogl-expressing
DA progenitor domains in the basal forebrain [20]. Loss
of fezl leads to a reduction of dopaminergic and seroto-
nergic neurons in specific nuclei of the forebrain (dien-
cephalon and hypothalamus; [21]), defects that are
maintained into adulthood. Dissociation between the
preference for a natural reward (food) and a drug (mor-
phine) has previously been observed in dopamine D2
receptor knock-out mice [22] but is not understood at
the molecular or neurological level. Since both mor-
phine and food rewards are dependent on opioid recep-
tor activity in zebrafish [10], the separable reward
behaviour seen in fof suggests that distinct neural sys-
tems act downstream of opioid signalling to mediate the
response to morphine and food. Alternatively, the
rewarding aspects of food and drug treatment may be
mediated by different subsets of dopaminergic nuclei in
the forebrain. Thus, together with the study of hippo-
campal irradiated rats [18], tof presents an excellent
opportunity to dissect the neural basis of discrimination
between rewarding substances in the brain.

Learning and memory

Studies of mammals have shown that learning and
memory can be controlled by several brain circuits, each
of which is neuroanatomically distinct. These include
spatial learning (hippocampus), implicit learning (such
as simple motor reflexes; cerebellum) and avoidance
learning (amygdala). Although the neural basis of learn-
ing is not well understood in zebrafish, studies of the
closely related goldfish (Cassius auratus) hint at brain
areas which could be involved. Focal ablations of the
goldfish brain have identified the lateral pallium (D],
equivalent to the hippocampus), medial pallium (Dm,
equivalent to the amygdala) and cerebellum [23-25] as
playing key roles in learning.

Several paradigms have already been developed to
measure learning and memory in zebrafish. Associative
learning can be measured by pairing two previously
unrelated stimuli such as colour, reward or aversion. For
example, Suboski and colleagues paired a neutral stimu-
lus (morpholine) with the aversive effects of alarm sub-
stance [26]. Avoidance learning can be assessed by using
a shuttle box; fish are quickly able to associate a condi-
tioned stimulus (e.g light [27] or colour [28]) with an
unconditioned stimulus (such as a mild electric shock).
Spatial learning can be measured using either a T-maze
[8,11,29,30] or a shuttle box [31,32]. Fish must learn to
collect a reward by either navigating a maze correctly or
alternating the side of the tank visited. These beha-
vioural tests are high-throughput, making them suitable
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for screens for novel genes controlling learning and
memory.

Pharmacological studies have validated adult zebrafish
as a model for learning and memory, making it a very
promising area for future research. Several evolutionarily
conserved neurotransmitter systems have been impli-
cated in learning and memory. ache mutants, with
increased acetylcholine levels in the brain, learn to find
a food reward faster in a T-maze [33] thereby linking
cholinergic signalling to learning. Fish exposed to mod-
erate levels of nicotine perform better in a delayed spa-
tial alteration task, a type of avoidance learning test.
Nicotine acts via nicotinic acetylcholine receptors
(nACHRs), thus further underscoring the importance of
cholinergic signalling [34,35]. Treatment of fish with a
Histidine decarboxylase inhibitor, alphafluoromethylhis-
tidine (a.-FMH), reduces both levels of histamine and
the number of histaminergic fibres in the brain. a-FMH
treated animals display defects in long-term memory
formation but not initial learning [30]. Finally, NMDA
antagonists have also been shown to impair memory
formation in zebrafish [27,28]. NMDA receptors are
found abundantly in the telencephalon, which contains
the teleostean (bony fish) equivalent of the hippocampus
and amygdala [36]. The neurotransmitters discussed
above have also been connected to learning in other
species, suggesting that work in zebrafish may give
insight into conserved learning mechanisms. Therefore,
adult zebrafish constitute a particularly promising model
for research into learning and memory.

Emerging fields for genetic analysis: Aggression and
Anxiety

Aggression

Aggression is a complex suite of behaviours serving a
number of adaptive purposes. Fish use aggression to
protect offspring, monopolise resources such as food,
territory and mates and establish dominance hierarchies.
Aggression can be measured in the laboratory by
recording the interaction of two free-swimming fish or
by using mirror induced stimulation (MIS)[6,37]. Fish
are unable to recognise their own image and so attack
as if an intruder is present [38]. Furthermore, MIS pro-
vides immediate feedback to the fish’s activity and
avoids damaging the subjects [37]. Zebrafish display
characteristic agonistic postures including erection of
the dorsal, caudal, pectoral and anal fins coupled to bit-
ing, thrashing of the tail and short bouts of fast swim-
ming directed against the mirror [6]. A positive
correlation between aggression and boldness has also
been reported [39]. Aggression is a very plastic beha-
viour. Both habitat complexity and rearing conditions
can influence the number of interactions [37,40].
Furthermore, different wild-type strains show varying
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aggression levels suggesting a genetic component to its
control. Finally, aggressive behaviour also shows laterali-
sation, with adult fish predominantly using the right eye
to view predators [41].

Studies in other species have identified 5-HT as the
major neurotransmitter controlling aggression. Animals
with high levels of 5-HT tend to be timid, whereas
those with lower levels are more impulsive and aggres-
sive (e.g. [42]). Other neurotransmitters, including
GABA, glutamate and nitric oxide as well as the hor-
mones vasopressin and testosterone have also been
implicated in agonistic behaviour [43]. However, the
role of these neurotransmitters has not been explicitly
tested in zebrafish. In zebrafish, agonistic behaviour
can be modified by exposure to pharmacological com-
pounds including ethanol [6] and 17alpha-ethinylestra-
diol (a synthetic oestrogen; [44]). The brain areas
mediating aggression in fish are not well characterised.
Arginine vasotocin-expressing cells of the magnocellu-
lar preoptic area change size depending on the domi-
nance status of fish. This suggests involvement of the
preoptic area in control of social hierarchy and the
agonistic behaviour used to establish it [45]. Studies of
other fish species have identified additional brain terri-
tories that influence aggression. For example, the
neural activity maker cfos is expressed in the dience-
phalon, thalamus and hypothalamus and a few nuclei
in the pons and medulla oblongata of the mudskipper
(Periophthalmus cantonensis) following an aggressive
episode [46]. Finally, electrical stimulation of the blue-
gill (Lepomis macrochirus) implicates the inferior
hypothalamus in aggression control [47].

The MIS protocol is simple to establish and perform.
Coupled to computer-aided automation, it can be
adapted for high-throughput screening studies, thus pro-
viding a golden opportunity to uncover novel genes
implicated in aggression control.

Anxiety

Anxiety is a state of constant fear or restlessness caused
by anticipation of a real or imagined future event. Multi-
ple anxiety tests have been established in fish, although
it is not always clear whether fear or anxiety is being
measured, or indeed whether the different states even
exist [48]. Protocols to measure anxiety tend to assess
one of two variables. The first set of protocols record
the reaction of adult fish to novel environments, such as
the amount of time spent at the edge of a tank [30,49],
at the bottom of a novel tank [34,50] or on the dark
side of a light/dark tank [28,51]. The second approach
analyses locomotory patterns: freezing, long-lasting
increases in basal locomotory activity [6,48,49] and tigh-
tening of a fish’s shoal [52] have all been reported to
be reliable measures of anxiety. The expression and
level of anxiety are wild-type strain dependent [49,50].
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For example, AB wild-types manifest anxiety as a hyper-
active swimming response [49].

Similar to other behaviours, anxiety protocols have
been validated using pharmacological compounds devel-
oped for human patients. Application of caffeine [50,53],
pentylenetetrazole [53], alarm substance [50,52], the
benzodiazepine partial inverse agonist FG-7142 [49] and
withdrawal of cocaine [49] have all been shown to be
anxiogenic. Conversely, many anxiolytic substances have
been characterised including nicotine [54], diazepam
[49,55], the Htrla (5-HT receptor) partial agonist bus-
pirone [55], fluoxetine hydrochloride and ethanol [50].
Finally, a link between anxiety levels and the major zeb-
rafish stress hormone cortisol has also been demon-
strated [50]. The ease of applying drugs and robust
behavioural assays (see [49,50]) make zebrafish an ideal
model to study anxiety and related behaviours.

Sleep

Although sleep is a widespread phenomenon, its beha-
vioural and physiological function is not well under-
stood. Sleep is characterised by periods of behavioural
quietness, species-specific body postures, an increased
arousal threshold and a quick return to wakefulness
[56]. Furthermore, sleep-deprived animals also show
homeostatic rebound, increasing the amount of time
needed to sleep following deprivation. The timing of
sleep also shows circadian rhythmicity. Several studies
have identified sleep-like behaviour in zebrafish. During
the night, adult fish have periods of two to four minutes
of inactivity in which the fish floats horizontally and
makes small pectoral fin movements. There is also a
simultaneous reduction of mouth and operculum move-
ments suggesting lower respiratory levels [57]. Sleep
rebound has been demonstrated in zebrafish indicating
homeostatic regulation; disrupting the normal night
time routine (using light, vibration, electric shock or
forced movement) deprives fish of rest and causes a
subsequent increase in sleep duration [57,58]. Finally,
zebrafish also show circadian rhythmicity, with higher
activity levels in the day [57].

Studies in other species have identified several signifi-
cant sleep-related neurotransmitters: Increases of dopa-
mine levels in the brain reduces the amount of time
asleep [59], whereas GABA signalling promotes sleep
and GABA, receptor agonists are used to treat insom-
nia [60]. Although these pathways have not been directly
examined in zebrafish, treatment with diazepam, pento-
barbital [57], alpha2 adrenoceptor agonists [61], and his-
tamine H1 antagonists [62] have all been shown to
increase sleep, thus implicating GABA, acetylcholine
and histamine in its control. Several studies have also
demonstrated a conserved role for hypocretin/orexin
(HCRT) in sleep-wake regulation. Zebrafish contain a
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single HCRT receptor gene (hcrtr), which is expressed
in a small number of glutamatergic neurons of the adult
hypothalamus [58,63]. Loss of hcrtr function causes
sleep fragmentation but not cataplexy or decreased wake
bout length, suggesting that HCRT may function to
consolidate sleep in fish [58]. HCRT acts by stimulating
the endogenous melatonin sleep-promoting system
found in the pineal gland [63]. Taken together, studies
of zebrafish have confirmed that the control of sleep
appears to be evolutionarily conserved. Although zebra-
fish sleep research is still in its infancy, the high
throughput nature of the set-ups used to measure sleep
demonstrates that zebrafish are an ideal model in which
to conduct screens for novel hypnotic mutants.

Practical considerations: strain differences, screen design
and duplicated genes

Strain differences in wild-type fish

The examples discussed in this review highlight the suit-
ability of adult zebrafish for studies of complex verte-
brate behaviours. However, there are several
considerations that need to be taken into account before
initiating behavioural work. For example, care must be
taken to dissect the influence of neurotransmitter signal-
ling pathways and the specificity of drugs used to modu-
late them. Finally, another important consideration
when designing behavioural studies is the background
strain of the fish used. Strain differences in adult beha-
viour have already been reported [13,49,50,64]. Thus, in
order to avoid some of the known difficulties in repro-
ducing behavioural work, all behavioural studies should
be carried out on well defined laboratory strains.
Although no inbred strains exist, the AB line, available
from the ZIRC stock centre is an excellent choice for a
reference strain. The line has been maintained in the
laboratory for more than 70 generations and is freely
available to the zebrafish community.

Screen design

Genes do not directly control behaviour. Rather, genes
influence behavioural output by either modulating neural
circuit formation (neural specification, differentiation and
connectivity) or function (e.g. neurotransmitter release or
reuptake). High throughput forward genetic screening
has long been one of the goals of zebrafish research, and
in this regard the nascent behavioural field is no different.
However, behavioural phenotyping is subject to large
variability between animals. This can make it difficult to
phenotype mutants with certainty, and so complicates
positional cloning of the mutations. Furthermore, careful
consideration needs to be given to the choice of mutagen.
The most commonly used mutagen N-ethyl-N-nitro-
sourea (ENU; Fig. 1) efficiently induces intragenic point
mutations in the germline [65], but the subsequent clon-
ing steps needed to recover the mutagenised gene are
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+/Mx +/M
F3 recessive mutant screen

(red fish) -

Incross

Figure 1 Three-generation breeding scheme for chemically-induced mutant fish. Male fish are mutagenised and then crossed to wild-type
females to produce an F1 generation. An F2 generation is made by in-crossing F1 siblings. Dominant behavioural mutants can be identified in
this F2 generation (black fish). For recessive mutant carriers, a second in-cross is performed and the progeny screened for behavioural alterations
if the inheritance in Mendelian then one quarter of the progeny should show the behavioural defect.

Male

X Qﬂé

+/+
ENU treatment

+/M
F2 dominant mutant screen

laborious. As an alternative to ENU treatment, insertional
mutagenesis looks particularly promising (Fig 2).
Although insertional mutations occur at a lower fre-
quency, isolation of the genetic lesion is much simpler
[66,67]. The mutagenic cassette may also be coupled to a
fluorescent reporter line thus highlighting the expression
profile of the mutated gene. This technique will allow fas-
ter and more reliable identification of animals carrying
the same insertion and so will facilitate mapping. This
has recently been powerfully demonstrated in juvenile
fish by using a reporter-tagged insertional mutagenesis

strategy to clone two nicotine-response mutants [68].
Finally, the usefulness of zebrafish is not limited to
screening paradigms. The advent of TILLING [69] and
zinc-finger nuclease technology [70] has opened the door
to targeted modification of the zebrafish genome, thus
allowing the behavioural function of known genes to be
probed.

Gene duplication and redundancy in zebrafish
In common with all ray-finned fishes (actinopterygii),
zebrafish underwent a third whole genome duplication
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F1

F1

F2

F3
+/M x +/M

monitored by western blot and PCR analysis.

Figure 2 Breeding scheme for the production of insertional mutants in zebrafish. Single-cell to blastula-stage embryos are injected with a
mutagen and grown to adulthood. The mature fish are then inbred twice to produce first an F1 and then an F2 generation. Mutants with
behavioural phenotypes (black and blue spotted fish) can be identified by in-crossing the F3 fish. The number- and position of insertions can be

+/M x +/M

around 350 million years ago and often have two copies
of genes found in other vertebrates [71]. The most likely
fate of a duplicate gene is loss of function. However, in
some cases both copies can be retained and subfunctio-
nalisation (splitting of the ancestral function between
the two new genes) or neofunctionalisation (acquisition
of a new function through mutation) can occur [72].
Redundancy can make analysis of a gene’s function
more difficult by masking mutant phenotypes. However,
redundancy can also be useful, exposing late functions
of genes that cause embryonic defects in other animals.
For example, zebrafish lacking activity of one copy of
fibroblast growth factor 1 (fgfrla) have a surprising lack
of developmental phenotype compared to mice and

medaka deficient in the gene [73,74]. Rather, adult
fefrla mutant fish exhibit several behavioural alterations,
including increases in aggression, boldness and explora-
tion (W Norton, personal observation).

Conclusion

Although anecdotally fish are thought to have poor
memories and display few complex behaviours, numer-
ous studies have disproved such beliefs. In this review
we have demonstrated ways in which studies of adult
zebrafish have contributed to our understanding of the
genetic basis of behaviour. We have described set-ups to
measure behaviour (e.g. Table 1) and some of the phar-
macological treatments that have already been employed
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in zebrafish (Table 2). However, fish also manifest other
behaviours, the discussion of which is unfortunately
beyond the scope of this review. These behaviours
include olfaction [75], vision [76], behavioural lateralisa-
tion [77], shoaling [3,78,79], locomotion [80,81] and
reproductive behaviour [82]. Finally, studies of adult fish
are also beginning to give clues about the initiation of
locomotion, an assay that might be modified to probe
the motivation to move. In the adult spinal cord, appli-
cation of 5-HT modifies the cyclical pattern of locomo-
tory activity by increasing mid-cycle inhibition and
reducing the onset of the next cycle, so reducing the
initiation of locomotion [83].

Larval zebrafish are also useful for studying simple
behaviours, and protocols have been established to
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measure locomotion and visuomotor behaviours such as
prey capture [1]. Coupled to the transgenic lines avail-
able and the emergence of optogenetic technology (e.g.
[84]), larvae may allow the dissection of behavioural cir-
cuits at the cellular level in intact living fish. Moreover,
in an elegant recent study by Engert and colleagues,
neural circuit activity has been analysed at the single-
cell level by recording bioluminescence in free-swim-
ming larvae [85].

In summary, zebrafish have many attributes that make
them an ideal model organism for the study of beha-
vioural genetics. Although to date there have been rela-
tively few studies of adult zebrafish behaviour, the ease
of carrying out pharmacological studies coupled to the
ever increasing number of available genetic tools suggest

Table 2 Pharmacological treatments with known behavioural effects on adult zebrafish

Behaviour Modulating agent Function / Activity Effect Reference
Aggression Ethanol GABA-A receptor modulator Increases aggression [85]
Aggression 17a-ethinylestradiol Synthetic oestrogen Reduces aggression [44]
Antipredation Ethanol GABA-A receptor modulator Impaired by high doses [6]
Anxiety Diazepam Benzodiazepine Reduces anxiety [49,86]
Anxiety FG-7142 Benzodiazepine inv. agonist Increases anxiety [49]
Anxiety Pentylenetetrazole GABA antagonist Increases anxiety [53]
Anxiety Ethanol GABA-A receptor modulator Reduces anxiety [50,53]
Anxiety Buspirone Htr1A partial agonist Reduces anxiety [55]
Anxiety Alarm substance Hypoxanthine-3N-oxide Increases anxiety [50,52]
Anxiety Nicotine NachR agonist Reduces anxiety [34]
Anxiety Methyllycaconitine Nicotinic antagonist Anxiolytic [55]
Anxiety Dihydro-B-erythroidine Nicotinic antagonist Anxiolytic [55]
Anxiety Mecamylamine Nicotinic antagonist Anxiolytic [34]
Anxiety Morphine Opiate Reduces anxiety [53]
Anxiety Cocaine (withdrawal) Psychostimulant Increases anxiety [49]
Anxiety Fluoxetine 5-HT reuptake inhibitor Reduces anxiety [50,53]
Anxiety Caffeine Xanthine alkaloid Increases anxiety [50,53]
Group preference Ethanol GABA-A receptor modulator Reduced at high conc. [6]
Learning o FMH HDAC inhibitor Impairs long term memory [30]
Learning Nicotine NachR agonist Improves learning [34,35]
Learning MK-801 NMDA antagonist Impairs memory [27,28]
Learning L-NAME NO synthase inhibitor Impairs memory retention [27]
Light/Dark pref Ethanol GABA-A receptor modulator Decreased at high conc. [6]
Locomotion Ethanol GABA-A receptor modulator Reduced at high conc. [6]
Reward Acetylcholine Cholinergic agonist Non-rewarding [13]
Reward Ethanol GABA-A receptor modulator Rewarding [7]
Reward Nicotine NachR agonist Rewarding [71
Reward Food Nourishment Rewarding [10]
Reward Morphine Opiate Rewarding [10]
Reward Morphine Opiate Rewarding [10]
Reward Cocaine Psychostimulant Rewarding [8]
Reward Amphetamine Psychostimulant Rewarding [9]
Sleep Dexmedetomidine alpha2 adrenoceptor agonist Sedative [61]
Sleep Pentobarbital Barbiturate Hypnotic [57]
Sleep Diazepam Benzodiazepine Hypnotic [57]
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that zebrafish are about to enter the limelight. Finally,
their small size and cheap maintenance costs suggest
that zebrafish are ideally suited for large-scale beha-
vioural screens. We look forwards to the next steps in
the establishment of this fascinating field.
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