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The analysis of electroencephalographic signals in frequency is usually not performed by

transforms that can extract the instantaneous characteristics of the signal. However, the

non-steady state nature of these low voltage electrical signals makes them suitable for

this kind of analysis. In this paper a novel tool based on Stockwell transform is tested, and

compared with techniques such as Hilbert-Huang transform and Fast Fourier Transform,

for several healthy individuals and patients that suffer from lower limb disability. Methods

are compared with the Weighted Discriminator, a recently developed comparison index.

The tool developed can improve the rehabilitation process associated with lower limb

exoskeletons with the help of a Brain-Machine Interface.

Keywords: brain-machine interface, EEG analysis, fast fourier transform, gait intention, Hilbert-Huang transform,

Stockwell transform

1. INTRODUCTION

Reduced mobility is a serious handicap for people who have suffered a cerebrovascular accident,
brain trauma or encephalitis. Orthesis and prosthesis devices have been developed in last years in
order to assist people with severe motor limitations. Although EMG-based interfaces have been
used in several applications for controlling these devices (Villarejo Mayor et al., 2017), the use of
Brain-Machine Interfaces (BMIs) can be a more suitable option to control a speller or a wheel
chair (Li et al., 2014) and especially exoskeletons, since they can improve the neuroplasticity in
rehabilitation therapies (Cramer, 2008; Gharabaghi, 2016; Barrios et al., 2017).

The basis of a BMI is to extract the brain waves, normally by electroencephalography (EEG),
process and translate them into commands to control a device. The electrical waves obtained
are categorized by their frequency components and the location where they are acquired (Rao,
2013). Usually, the following frequency bands are considered: delta (0.1–4Hz) which is associated
with deep sleep (Amzica and Steriade, 1998), theta (4–7Hz) which is associated with Rapid
Eye Movement (REM) sleep and transition from sleep to waking (Cantero et al., 2003), alpha
(8–15Hz) which is associated with relaxed, but awake state with eyes closed (Da Silva, 2010)
and beta (15–32Hz) and gamma (>25Hz) which are associated with movement and attentive
focus (Rao, 2013). Depending on the author, the bands can slightly differ and overlap. Thus,
it is hard to establish a precise limit for them. In literature, bands have received another
designation; for instance, mu band (8–12Hz) which is usually related to the event-related
synchronization phenomenon (Pfurtscheller and Neuper, 1994). In Cheron et al. (2012), it was
demonstrated that some EEG frequency bands (alpha, beta and gamma) are involved in the
control of the walking pattern, and that it is possible to extract EEG signals event-related
desynchronization/synchronization (ERD/ERS) (Severens et al., 2012; Wagner et al., 2012) from
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the sensorimotor cortex controlling the contralateral foot
placement. This confirmed the study of Gwin et al. (2011)
which stated that electrocortical activity is coupled to gait
cycle phase during treadmill walking. Cheron et al. (2012) also
used the two most representative independent components of
the sensorimotor cortex as input for a Dynamic Recurrent
Neural Network (DRNN) learning identification toward the two
principal components of the 3 elevation angles (foot, shank,
and thigh) of one lower limb kinematics which can be easily
interpreted by artificial actuators.

EEG signals are usually analyzed by Fourier transforms (FT).
Due to the discrete nature of the data analyzed, signals are cut in
several windows and processed (Fast Fourier Transform FFT or
Short Time Fourier Transform STFT). Although the information
extracted by each epoch can provide the evolution through time
of the frequency components, other techniques could be more
suitable for its time-frequency analysis due to the non-steady
nature of EEG signals.

In literature, there are a few examples of these techniques,
such as the wavelet transform (Subasi, 2005). However, it needs
a good choice of the wavelet mother function which can make
this process difficult. In our previous research (Ortiz et al.,
2017), we introduced the application of a time-frequency analysis
transform, the Hilbert Huang Transform (HHT) (Huang et al.,
1998), in an offline scenario for lower limb detection of start
and stop of gait cycle based on the ERD/ERS phenomenon.
HHT combines a decomposition algorithm Empirical Mode
Decomposition (EMD) and a mathematical transform Hilbert
Transform (HT). This paper expands our previous research
introducing a new transform, the Stockwell Transform (ST)
(Stockwell et al., 1996), in order to compare its performance
not only with HHT, but also with the FFT. Besides, the study is
carried out in an offline and a pseudo-online scenario for better
comparison of the techniques. In order to correctly measure
the performance of the different proposals, the Weighted
Discriminator index (WD) is used (Rodríguez-Ugarte et al.,
2017).

The purpose of this work is to show how time-frequency
techniques, such as the ST transform, improve the accuracy of
the start and the stop detection of gait cycles through the EEG
signal analysis, lowering the number of false detections. Sixteen
different subjects (eight healthy and eight patients) participated
in the research. Data was not only analyzed offline, but pseudo-
online as this approach simulates the behavior of the BMI
working with an external device in real time.

2. MATERIALS AND METHODS

This section provides information about the experimental setup,
equipment used for EEG acquisition, motion capture system
(MCS) and the data processing.

2.1. Experimental Setup
Data was collected on sixteen participants. Eight participants
(labeled as H1-8) were healthy and did not have any known
health issue. They were all right-handed, and were in the age
range of 24–29 years (28.2 ± 3.0) at the time of the experiment.

Additionally, there were eight patients (labeled as P1-8) of the
National Hospital for Spinal Cord Injury in Toledo (Spain), and
they were in the age range of 19–71 years (43.7 ± 18.4). This
study was carried out in accordance with the recommendations
of ethics committee of the Miguel Hernández University of Elche
(Spain) with written informed consent from all subjects. All
subjects gave written informed consent in accordance with the
Declaration of Helsinki. The protocol was approved by the ethics
committee of the Miguel Hernández University of Elche (Spain).

Healthy subjects performed ten different trials. However,
certain patients due to limitations, tiredness and hardware
detection problems completed less trials or some of the trials were
not correctly accomplished. Table 1 shows the number of trials
considered for analysis by each subject.

Each trial consisted of 4 complete gait cycles, each one with
two events: start and stop as can be seen in Figure 1. Each cycle
followed the next pattern: relax, start intention of gait, gait, stop
intention of gait and stop (out of the model analysis, although it
can be considered as a relaxed state).

The purpose of the paper is to measure the performance of a
BMI that detects the starts or stops of the gait cycle. Hence, two
different models were considered, one for the detection of start
and other for the detection of stop. The analysis was carried out
considering each event (start or stop intention) as the active part
of the model (state 1) and the previous state (relax or gait) as the
non-active (state 0).

Data processing was not performed in real time. Two different
approaches were considered in order tomeasure the performance
of the methods and the classification model: offline and pseudo-
online. Pseudo-online analysis simulated the behavior of the tool
in real-time conditions. State labels (0 and 1) were defined based
on the Inertial Measurement Units (IMU) activation. Active
windows had a 4 s duration starting 2 s previously to the IMU
activation. Non-active windows were considered before the active
windows with a time gap of 0.5 s. In the case of the offline
model, active windows had a duration of 4 s, covering the
whole previous time of analysis for the pseudo-online model.
Differences between the data windows are shown in Figure 1 for
both approaches. Nevertheless, data was sampled at 500 Hz and
sent every 0.2 s in epochs of 1 s duration to the data processing
tools. This allowed to treat the data in a similar way for all the
methods tested.

2.2. Brain-Machine Interface
2.2.1. EEG Data Acquisition
EEG signals were recorded using a commercial device developed
by Brain Products GmbH (Germany). 31 electrodes were used

TABLE 1 | Trials performed by subject.

Subject H1–H8 P1 P2 P3 P4 P5 P6 P7 P8

Total number of trials 10 10 7 6 7 8 9 10 9

Trials used for

pseudo-online model

1–6 1–6 1–4 1–4 1–4 1–5 1–6 1–6 1–6

Trials used for

pseudo-online testing

7–10 7–10 5–7 5–6 5–7 6–8 7–9 7–10 7–9
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with the help of an actiCAP for an easier placement. The system
registered the EEG signals through the actiCHamp amplifier.
They were wireless transmitted by aMOVE transmitter for offline
and pseudo-online analyses at a sampling frequency rate of 500
Hz. Electrodes were positioned according to the International
10/10 system. Figure 2A shows healthy subject H4 walking
during a trial. Although 31 electrodes were recorded, finally only

nine electrodes were used. This is based on previous studies
(Hortal et al., 2016b; Ortiz et al., 2017) and preliminary results
of the methods tested on this paper for offline scenario. The
electrodes chosen were those close to the electrode Cz (Fz, FC1,
FC2, C3, Cz, C4, CP1, CP2, and Pz). The reference was positioned
on the right ear lobe and the ground on AFz. Figure 3 shows the
electrode configuration used.

FIGURE 1 | Windows of analysis for offline and pseudo-online models. Time of simulation (broken line) for every trial contains 4 complete gait cycles (solid line).

Intention windows (red and magenta) were considered as the active data of the model (state 1). Relax and gait windows (cyan and green) were considered as the

non-active data of the model (state 0). The data represented in the figure correspond to the 10th trial of patient P1. (A) Offline windows of analysis. (B) Pseudo-online

windows of analysis.

FIGURE 2 | Data acquisition equipment. (A) Shows subject H4 wearing the fixing bands for the IMUs, the actiCAP, and Move transmitter. (B) Shows a scheme for the

positioning of the IMUs from front and rear view. (A) Healthy subject H4 wearing the data acquisition equipment. (B) IMUs positioning scheme.
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FIGURE 3 | Electrode configuration considered.

2.2.2. Motion Capture System
For the MCS a Tech MCS manufactured by Technaid S.L.
(Spain) was used. The system consisted of seven wireless Inertial
Measurement Units (IMUs) located on the following positions:
three at each limb (foot, thigh and leg) and one on the lumbar
position. Figure 2 shows the exact position of the units. Each
IMU had three different types of sensors: an accelerometer,
a gyroscope and a magnetometer. Each IMU provided 19
parameters: 9 for rotation, 3 for acceleration, 3 for angular
velocity, 3 for magnetic field and 1 for temperature. Rotation
parameters were used to detect the initiation and stop of the
movement. The data registered by each IMU were acquired
through a HUB connected to the PC USB port at a sampling rate
of 20 Hz. The MCS mission was to provide the feedback of gait
state changes for accuracy calculation of the tests, i.e., the correct
detection of the real initiation and stop of the gait.

2.2.3. Preprocessing
Reducing signal to noise ratio is important to improve the feature
extraction, so pre-processing of data was needed for each epoch.
Several filters were considered.

2.2.3.1. Hardware filter
As this depends on the equipment used for data acquisition, it was
the same for all the measurements. The hardware used applied a
low pass filter with a cut off frequency of 100 Hz and a notch filter
at 50 Hz in order to mitigate the power line interference.

2.2.3.2. Spatial filter
The use of a spatial filter helps to minimize the contribution
of the rest of the electrodes to each channel. This way the

information of each sensor is better isolated (McFarland et al.,
1997). In a previous study (Ortiz et al., 2017) a Laplacian (Lp)
and a Common Average Reference (CAR) spatial filter were
compared during offline analysis, obtaining Lp filter a better
outcome in average than CAR for both event detection (7.8 %
better comparison index for the FFT and 6.3 % better for the
EMD). Therefore, Lp was the spatial filter used in this study.
It aims to subtract the contribution of the rest of electrodes
based on distance. Equation 1 shows how the filtered voltage is
calculated for electrode i.

V
Lp
i = Vi −

∑
i6=j

gij · Vj (1)

Where V
Lp
i represents the voltage after filtering, Vj is the voltage

without filtering, j = 1 : 31 and gij:

gij =
1
dij∑
i6=j

1
dij

(2)

With dij representing the distance between the electrodes i and j
based on the three dimensional Euclidean method.

2.2.3.3. Frequency filter
The application of the frequency filter depends on the algorithm
ormathematical transform used for data analysis. In this research
it was only used before the FFT processing. Based on our previous
study (Ortiz et al., 2017) a 4th order Butterworth high-pass filter
with a cut off frequency of 0.2 Hz was used to extract the DC
component of the signal. HHT and ST methods are not affected
by the low pass filter, so it would only increase the computing
time without an improvement of the results.

2.2.4. Processing
Three different processing tools were tested to obtain the feature
vector of the signal: FFT, HHT, and ST. The three methods were
used to extract the data characteristics from the same frequency
bands: 8–13, 13–32, and 32–50 Hz. They are related to alpha, beta
(ERD/ERS phenomenon) and gamma (attentive focus) bands.
Therefore, for all processing methods, each electrode provides
three features. Following paragraphs describe the nature of these
methods.

2.2.4.1. Fast fourier transform
Fourier transform (Bracewell and Bracewell, 1986) is one of the
most extended tools in signal processing. The non-steady state
nature of EEG signals is minimized thanks to the analysis of
the signal in epochs. FFT provides information of the evolution
in time (different epochs moving every 0.2 s) of the harmonic
content. For each epoch and electrode, the harmonic content in
each band was computed.

2.2.4.2. Hilbert huang transform
HHT was developed by Huang et al. (1998) as an improvement
to Hilbert Transform (HT) application. It consists of a sifting
process based on the envelopes of data. This process, called
Empirical Mode Decomposition (EMD) separates a signal in
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several Intrinsic Mode Functions (IMFs). The process can be
described as follows:

1. Find the local extrema of x(t).
2. Find the maximum envelope e+(t) of x(t) by fitting a natural

cubic spline through the local maxima. Then, repeat this
step to find the minimum envelope, e−(t), by using the local
minima.

3. Compute an approximation to the local average: m(t) =
(e+(t)+ e−(t))/2.

4. Find the proto-mode function: pi(t) = x(t)−m(t).
5. Check if pi(t) is an IMF:

a. The number of extrema and the number of zero crossings
may differ by no more than one.

b. The local average is zero. The thresholds chosen to set this
condition are critical to avoid over or undertraining. In this
research the stopping criteria thresholds of Rilling et al.
(2003) were followed.

c. To avoid the extraction of accidental IMFs, the conditions
must be accomplished in at least two to three consecutive
iterations (three in our case).

6. If pi(t) is not an IMF, repeat the EMD sifting process by setting:
x(t) = pi(t). If pi(t) is an IMF then set: IMFi(t) = pi(t).

Every IMFi(t) is supposed to be monotonic if EMD is successfully
applied. Therefore, IMFi(t) and its HT are orthogonal and
instantaneous amplitude a(t) and pulsation ωi(t) can be
computed through the analytical complex function zi(t) analysis
(Huang et al., 1998) of every mode:

zi(t) = IMFi(t)+ jHT(IMFi(t)) = ai(t)e
jφi(t) (3)

ωi(t) =
dφi(t)

dt
(4)

Once all the modes are extracted (see Figure 4B for an example),
Hilbert Spectrum H(ω, t) (Huang et al., 1998) is calculated based
on ai(t) and ωi(t) for all the modes. H(ω, t) is computed as a
function of energy (square amplitude) by frequency and time
(right part of Figure 4A). As data volume of H(ω, t) can be
too large, the Hilbert Marginal Spectrum h(ω) is computed as
Equation (5). This is carried out for each epoch as:

h(ω) =
∫ t2

t1

H(ω, t)dt (5)

Being t2 − t1 = 1s.
For each electrode and epoch the peak value of each frequency

band is extracted as one feature of data. See Figure 4A for a
clearer representation of h(ω) features. Notice that in Figure 4A

H(ω, t) is represented in logarithmic square amplitude, instead of
square amplitude, for a better visualization.

However, there are difficulties related to the algorithm nature
of the EMD. The sifting process is sensitive to the thresholds
defined in the algorithm (Rilling et al., 2003) and the sampling
frequency (Rilling and Flandrin, 2006). Besides, it can be hard to
extract components that present similar tones (Rilling et al., 2003;
Rilling and Flandrin, 2008) which can affect to the quality of the
H(ω, t) due to the lack of orthogonality of some of the modes.

2.2.4.3. Stockwell transform
Stockwell transform, also known as S-Transform (ST), was
developed as a time-frequency decomposition tool (Stockwell
et al., 1996). It overcomes some of the disadvantages of
Short Time Fourier Transform (STFT) (better time-frequency
resolution) based on a scalable localizing Gaussian window. It is
defined as:

S(τ , f ) =
∫ +∞

−∞
x(t)

|f |
√
2π

e−
(τ−t)2 f 2

2 e−j2π ft (6)

One of the properties of ST is to define multiple frequency voices
as one dimensional functions of time scale (τ ) and frequency (fi):

S(τ , fi) = A(τ , fi)e
jφ(τ ,fi) (7)

Due to the orthogonal nature of voice functions, local frequency
and amplitude can be computed which allows to obtain H(ω, t).
Once it is created for each epoch, h(ω, t) is calculated in the
same way that was explained for HHT in paragraph 2.2.4.2 and
Figure 4A, obtaining the three features per electrode based on
the h(ω) peaks per band. ST and HHT are similar in the way
the features are extracted, but different in the way H(ω, t) is
computed. The main advantage of ST is its analytical nature
which makes it not dependable of any thresholds. However,
although it improves the frequency resolution of FFT, it has still
a worse frequency resolution the higher the frequency is. As the
frequency bands related to the characteristics (8–50 Hz) are far
from the Nyquist frequency (250 Hz), this is not a problem for
our study.

2.2.5. Post-processing
Once the features were extracted per each electrode (9×3 = 27
data vector per 1 s epoch). Two different tests were done: offline
and pseudo-online.

First, it was necessary to create a model for the later test
data identification. Each participant had this way four different
models associated: one for type of event detection (start or stop)
and one for approach (offline or pseudo-online). The model
allowed to identify testing epochs as non-active (0 label for rest
or gait) and active intention (1 label for start intention or stop
intention).

2.2.5.1. Classifier
The classifier chosen was the Support Vector Machine (SVM)
algorithm. The SVM is based on hyperplane separation by
maximizing the margin between the nearest points of different
classes (Steinwart and Christmann, 2008). SVM combined with
non-linear kernels, such as the radial basis used for this research,
results in a robust method (Hortal et al., 2016a; Sburlea et al.,
2017). Other alternative classifiers such as Self-organizing maps
(SOM) and Linear Discrimination Analysis (LDA) were also
considered and tested for some of the healthy subjects at the
first steps of the research. However, the higher time of processing
required for the model creation in the case of the SOM classifier
and the overall better results obtained by SVM were the reason
to select it. In order to limit the volume of data presented, only
SVM results are shown on this paper. The model creation and
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FIGURE 4 | Representation of Hilbert Spectrum (H(ω, t)) and IMFs of an epoch for the healthy subject H4. Hilbert Spectrum is represented in logarithmic scale for

better visualization. Marginal Spectrum h(ω) is shown as square amplitude per time. (A) Hilbert marginal Spectrum (h(ω)) and Hilbert Spectrum (H(ω, t)) in logarithmic

square amplitude. (B) Empirical mode decomposition.

evaluation was carried out in a different way for offline and
pseudo-online approaches.

In the case of offline analysis, subjects were evaluated by leave-
one-out cross-validation. This means that for each participant,
one trial was used for validation and the rest of the trials for
modeling. For instance, in the case of a subject with ten trials
registered, ten different models of nine trials were performed for
start intention and another ten for stopping. The ten test trials
were evaluated for each one of their models and finally the results
were averaged.

For pseudo-online tests, the first trials were used to create the
model and the last ones to test it as if they were processed in real
time. Therefore, evaluation was carried out without leave-one-
out cross-validation. In the case of healthy participants, the ratio
was six tests for modeling and four for testing (6/4 ratio). As the
number of trials for patients was inferior to ten in some cases, the
ratio presented minor differences, e.g., P2 had a 4/3 ratio. Table 1
shows the trials used for the model creation and testing by user.
The indices associated with the test trials of each subject were also
averaged.

For evaluation, each epoch, formed by a 27 features vector, was
tested over the classifier and a label 0 or 1 was returned. This label
was compared with the true nature of the epoch, based on the
MCS data, and a result of a true (T) or false detection (F) was
registered. The process is shown in Figure 5. This true and false
vector was used afterwards for the index evaluation.

2.2.5.2. Evaluation indices
The most common way to evaluate the results is using the
following indices: True Positive Rate (TPR), False Positive per
Minute (FP/min) and Accuracy (Acc).

TPR indicates the percentage of true start or stop intention
events detected. This was evaluated only for the active windows
(red or magenta in Figure 1). The evaluation of a true event
detection was a bit different for the two analysis. Offline, a
number of T > F was enough to consider a true event, while
on pseudo-online, more than five consecutive T were needed to
consider the whole event as true. A single trial TPR would be
defined as:

TPR =
Number of true event detections

Number of true events
(8)

Accuracy appoints how many start or stop intentions detected
were really a true detection. This means that it has to be evaluated
for active and non-active windows. In the case of non-active
windows, a false detection was achieved when F > T (offline)
or more than five consecutive F were accounted (pseudo-online).
In active windows, the calculation of a detection was the same as
TPR. The Acc of a trial would be:

Acc =
Number of true event detections

Number of total event detections
(9)

FP/min indicates the number of false detections per minute. It
is an important index, because a high number would result in
a disturbing operation of the mobility assistant device, in which
themechanismwould be activated without the real subject desire.
FP/min were computed for non-active windows when F > T in
the case of offline analysis. However, pseudo-online analysis is
a bit different. As it tries to simulate the real-time behavior of
the tool and several FP can occur during non-active windows, it
was necessary to compute all the false activations and not only
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FIGURE 5 | Scheme of evaluation of data epochs tested on the classifier.

one by event. This way, a FP was computed each time more than
five consecutives F were detected. The rest or gait windows (non-
active) for the offline scenario have the same length than active
windows: 4 s, i.e., 4/60 min, while for the pseudo-online scenario
expand for the whole rest or gait time previous to the 0.5 gap
between non-active and active windows per event. This can be
seen in Figure 1B as cyan or green windows for the start and the
stop models. FP/min can be expressed as:

FP/min =
Number of false activations

Rest or gait time windows in minutes
(10)

It is important to remark that the three indices are necessary in
order to correctly analyze the results. For instance, a trial test
with 100% Acc and 0 FP/min could seem a perfect one, but
it may only indicate that one of the four events of a trial was
detected, being in this case the TPR only 25%. Although the
previous indices provide a good information of the results, it
can be difficult to compare them based on three independent
indices. Consequently, in a previous research, a unified index
calledWeighted Discriminator (WD) was developed (Rodríguez-
Ugarte et al., 2017). WD takes into account TPR, Acc and the
False Positive Ratio (FPR) which provides the ratio of false
positives per event:

WD = 0.4 · TPR+ 0.6 · Acc− FPR (11)

with TPR and FPR in p.u. and:

FPR = FP/min · Duration of a single FP in mins (12)

Being the duration for the offline analysis 4/60 min and 1/60 min
for the pseudo-online one (equivalent to five consecutive
detections represented by the gap of 0.2 s). WD can oscillate
from a perfect performance value of 1 to the worst if value is

−1. Therefore, WD acts as a comprehensive index to compare
the performance of the different tests.

3. RESULTS

Results were obtained for the sixteen subjects and the offline
and pseudo-online analysis. The comprehensive WD index was
calculated from the determination of TPR, FP/min and Acc
indices in order to evaluate the performance of the BMI in every
case.WD index was statistically analyzed. A Shapiro-Wilks (S-W)
test of normality was applied in order to detect outliers (Ghasemi
and Zahediasl, 2012) and a factorial multivariate analysis of
variance (MANOVA) was carried out to detect the significant
differences between methods (ST/HHT/FFT), type of subject
(healthy/patient) and type of event (start/stop) with the help of
SPSS (Field, 2009).

3.1. Offline Analysis
As previously stated, offline analysis was carried out by leave-one-
out cross-validation technique. WD acts as a measurement of the
BMI performance. It was computed for each method, subject and
model. This can be seen in Tables 2–4.

The S-W test indicated that P2 was an outlier for theHHT stop
model (p< 0.05) and, as a consequence, it was not considered for
the stop model.

In order to carry out a MANOVA test, it is needed to
assess if the variances between groups are equal (assumption of
sphericity). This test is known as Mauchly’s test. In this case,
assumption of sphericity was not violated (p > 0.05).

Then, it was performed the MANOVA analysis. The
interaction between methods and type of event in the test of
within-subjects presented significant differences [F(2, 54) = 10.80,
p < 0.001, η2 = 0.29]. In order to see the cause of this, a pairwise
comparison using Bonferroni confidence interval adjustment was
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TABLE 2 | Offline results for the sixteen subjects.

Subject Method Start Stop

TPR (%) FP/min Acc (%) WD TPR (%) FP/min Acc (%) WD

H1 ST 87.50 3.75 77.83 0.50 75.00 1.13 92.17 0.76

HHT 77.50 4.50 74.79 0.38 82.50 1.88 89.00 0.71

FFT 65.00 3.75 71.50 0.38 80.00 2.63 85.17 0.61

H2 ST 87.50 2.63 88.00 0.66 85.00 1.50 91.50 0.76

HHT 77.50 4.13 70.67 0.39 75.00 1.88 87.67 0.67

FFT 70.00 3.00 79.33 0.51 80.00 2.25 84.83 0.64

H3 ST 82.50 2.63 84.83 0.62 82.50 0.75 95.50 0.84

HHT 65.00 6.75 60.17 0.06 75.00 1.88 89.67 0.68

FFT 70.00 5.25 75.21 0.29 77.50 2.63 82.00 0.58

H4 ST 95.00 1.50 93.33 0.81 87.50 0.38 98.00 0.91

HHT 82.50 2.63 86.71 0.63 72.50 0.38 98.00 0.85

FFT 80.00 1.13 93.00 0.78 85.00 2.25 88.17 0.68

H5 ST 88.00 2.10 87.14 0.70 82.00 1.50 92.14 0.76

HHT 78.00 3.60 76.95 0.47 74.00 1.80 85.17 0.66

FFT 72.00 2.10 85.14 0.62 84.00 3.60 83.06 0.53

H6 ST 90.00 2.70 84.79 0.64 66.00 0.90 93.33 0.75

HHT 72.00 3.00 84.10 0.54 44.00 1.20 90.00 0.62

FFT 82.00 1.80 89.31 0.71 58.00 2.70 78.50 0.48

H7 ST 86.00 3.90 81.25 0.51 82.00 0.60 96.00 0.85

HHT 58.00 7.50 54.76 -0.06 50.00 3.60 67.48 0.30

FFT 66.00 3.90 72.50 0.37 66.00 3.30 77.14 0.45

H8 ST 94.00 3.00 84.23 0.63 82.00 0.60 96.33 0.86

HHT 64.00 4.20 68.52 0.32 38.00 0.30 86.67 0.65

FFT 82.00 1.20 93.00 0.79 72.00 1.80 82.08 0.63

P1 ST 85.00 0.38 97.50 0.89 60.00 3.38 85.83 0.47

HHT 77.50 1.50 84.00 0.69 47.50 1.88 70.50 0.46

FFT 85.00 1.50 92.00 0.77 60.00 3.00 77.00 0.45

P2 ST 53.57 2.68 70.48 0.41 89.29 4.29 83.16 0.50

HHT 96.43 9.64 64.49 -0.03 46.43* 7.50* 26.19* -0.28*

FFT 67.86 4.82 65.24 0.26 71.43 5.36 73.81 0.28

P3 ST 66.67 5.63 66.67 0.20 50.00 1.88 73.61 0.49

HHT 54.17 6.25 47.50 -0.02 50.00 3.75 77.78 0.35

FFT 58.33 4.38 69.44 0.29 50.00 5.63 56.94 0.07

P4 ST 92.86 2.68 86.90 0.67 57.14 2.68 68.57 0.42

HHT 78.57 2.68 81.67 0.58 50.00 1.07 93.57 0.67

FFT 78.57 2.68 84.52 0.60 57.14 3.75 71.19 0.34

P5 ST 90.63 2.34 89.64 0.71 71.88 1.41 90.63 0.71

HHT 84.38 4.69 75.21 0.40 68.75 1.88 90.83 0.66

FFT 84.38 3.75 80.68 0.51 68.75 2.34 85.42 0.59

P6 ST 84.00 3.00 83.93 0.59 72.00 2.40 87.52 0.61

HHT 76.00 6.60 63.88 0.14 56.00 2.40 70.64 0.45

FFT 86.00 3.00 84.57 0.60 68.00 2.10 83.81 0.60

P7 ST 72.00 5.10 69.72 0.28 64.00 3.00 79.00 0.48

HHT 46.00 4.50 61.79 0.18 46.00 3.00 59.31 0.29

FFT 68.00 4.50 70.42 0.32 58.00 2.70 77.64 0.47

P8 ST 80.00 2.00 89.42 0.69 91.11 1.67 94.44 0.79

HHT 66.67 1.00 94.44 0.75 95.56 0.33 98.15 0.94

FFT 86.67 3.00 82.01 0.59 93.33 1.00 94.44 0.86

The data represent the average value of the trials (up to ten by subject) obtained by leave-one-out cross-validation technique for the different evaluation indices. Outliers identified by

SPSS are marked by *. Best WD results by subject are marked in bold for the start and stop models.
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TABLE 3 | Offline results by method.

Method Start Stop

TPR (%) FP/min Acc (%) WD TPR (%) FP/min Acc (%) WD

ST 83.45 ± 10.98 2.88 ± 1.27 83.48 ± 8.54 0.60 ± 0.18 73.88 ± 12.22 1.59 ± 0.93 88.97 ± 8.74 0.70 ± 0.16

HHT 72.14 ± 12.59 4.57 ± 2.30 71.85 ± 12.71 0.34 ± 0.27 61.65 ± 16.94 1.82 ± 1.08 83.63 ± 11.74 0.60 ± 0.19

FFT 75.11 ± 8.94 3.11 ± 1.31 80.49 ± 8.98 0.52 ± 0.19 70.51 ± 12.53 2.78 ± 1.05 80.49 ± 8.53 0.53 ± 0.18

Average 76.90 ± 11.75 3.52 ± 1.82 78.61 ± 11.20 0.49 ± 0.24 68.68 ± 14.69 2.06 ± 1.12 84.36 ± 10.19 0.61 ± 0.19

The data represent the average value ±, standard deviation by method for the subjects. P2 was not considered for the stop model as it was detected as outlier. Best results for start

and stop models appear in bold.

TABLE 4 | WD Offline results by method and type of subject.

Method Healthy Patient

Start Stop Start Stop

ST 0.64 ± 0.10 0.81 ± 0.13 0.56 ± 0.24 0.57 ± 0.14

HHT 0.34 ± 0.23 0.64 ± 0.16 0.33 ± 0.31 0.55 ± 0.23

FFT 0.56 ± 0.20 0.58 ± 0.09 0.49 ± 0.18 0.48 ± 0.24

Average 0.51 ± 0.22 0.68 ± 0.14 0.46 ± 0.26 0.53 ± 0.20

The data represent the average WD value ± standard deviation by method and type of subject: healthy or patient. P2 was not considered for the stop model as it was detected as

outlier. Best results in bold.

performed. ST and FFT had no significant differences (p > 0.05),
but HHT did (p < 0.01) for the start and stop models. On the
other hand, the interaction, in the test of within-subjects, between
methods and type of subject presented no significant differences
(p > 0.05). The interaction between type of event and type of
subjects in the test of between-subjects was also not significant
(p > 0.05).

Regarding the WD value, ST obtained the best results for both
start and stop models (bold text in Table 3). Although, there were
no significant differences depending on the type of subject, WD
results for healthy users were higher in average (bold text for
average in Table 4). ST was also the method with the highest
WD for both type of subjects as Table 4 shows, but with a lower
difference with the other methods for patients than for healthy
subjects. HHT performance was irregular with the lowest WD
results for the start model and the highest standard deviation in
Tables 3, 4.

3.2. Pseudo-Online Analysis
The actual application of the BMI is in a real-time situation
where the patient is trying to activate the motion device with
the BMI output. As the trials were acquired before the ST
and HHT implementation by the authors, a pseudo-online
approach was adopted to overcome this issue. In a pseudo-
online scenario, it is simulated that epochs are processed as they
are acquired. First trials were used for modeling, as stated in
subsection 2.2.5.1, and the rest of them were reserved for testing
(Table 1). It is important to notice that, FP/min was calculated
in a different way as several false activations can be registered
in real-time non-active windows. Therefore, this approach bring
us a more realistic outcome of the BMI behavior, while offline

tests gives information of the global performance when applying
the different methods. A bad trial performance of a subject had
a more relevant influence over the results, because not only an
inferior number of trials is considered, but false detections can be
multiple for each event.

Table 5 provides the TPR, FP/min, Acc, and WD results
for the different methods and subjects whereas Tables 6, 7

show the average WD value for the three methods and type
of subject. The results vary from the offline tests as there
were differences in the way a detection was computed and
the number of trials used for testing. This variation is more
noticeable in the case of the number of FP/min, as a comparison
between offline and pseudo-online tables shows. However,
as the WD takes into account the FPR and the FP time
length varies, WD still acts as a good index for the method
comparison.

The S-W test of normality was passed for all the models
(p > 0.05) and no outliers were detected. Hence, the sixteen
subjects were considered for pseudo-online analysis.

Mauchly’s test indicated that the assumption of sphericity
was violated (p < 0.05). Therefore, it was needed to apply the
corrector factor with the highest power, in this case Huynh-Feldt.

For the MANOVA analysis, the test of within-subjects effects
presented no significant differences (p > 0.05) for the interaction
between methods and type of event, and for the interaction
between the methods and the type of subject, applying for both
cases the corresponding corrector factor of Huynh-Feldt. The
interaction between type of event and type of subject in the
test of between-subjects effects presented significant differences
[F(1, 28) = 6.34, p < 0.05, η2 = 0.185]. The pairwise comparison
using Bonferroni confidence interval adjustment did not detect
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TABLE 5 | Pseudo-online results for the sixteen subjects.

Subject Method Start Stop

TPR (%) FP/min Acc (%) WD TPR (%) FP/min Acc (%) WD

H1 ST 81.25 7.68 66.67 0.56 93.75 3.99 79.52 0.79

HHT 68.75 6.43 58.75 0.52 68.75 3.36 75.18 0.67

FFT 68.75 7.27 66.19 0.55 81.25 3.91 78.04 0.73

H2 ST 100.00 5.14 83.57 0.82 100.00 8.86 64.09 0.64

HHT 56.25 4.10 55.36 0.49 68.75 0.65 93.75 0.83

FFT 75.00 3.97 73.87 0.68 100.00 12.05 58.69 0.55

H3 ST 93.75 13.16 66.98 0.56 81.25 1.35 92.26 0.86

HHT 68.75 10.27 59.38 0.46 43.75 0.00 75.00 0.63

FFT 93.75 14.76 57.78 0.48 62.50 0.69 91.67 0.79

H4 ST 100.00 0.00 100.00 1.00 81.25 0.00 100.00 0.93

HHT 62.50 7.44 40.21 0.37 25.00 0.00 75.00 0.55

FFT 75.00 1.80 82.50 0.77 56.25 1.89 68.75 0.61

H5 ST 85.00 9.06 75.70 0.64 85.00 1.83 92.26 0.86

HHT 75.00 4.34 86.31 0.75 55.00 3.64 66.67 0.56

FFT 75.00 8.80 80.31 0.64 70.00 4.32 56.52 0.55

H6 ST 70.00 1.78 78.33 0.72 95.00 3.05 81.26 0.82

HHT 65.00 4.66 73.61 0.62 35.00 3.03 52.50 0.40

FFT 70.00 3.56 78.41 0.69 80.00 8.33 53.84 0.50

H7 ST 70.00 1.93 82.14 0.74 85.00 2.69 83.33 0.80

HHT 30.00 7.74 27.68 0.16 40.00 3.60 56.25 0.44

FFT 50.00 4.29 49.43 0.43 55.00 2.69 70.42 0.60

H8 ST 90.00 4.06 67.38 0.70 100.00 1.75 83.33 0.87

HHT 50.00 3.45 50.00 0.44 55.00 2.73 57.50 0.52

FFT 85.00 5.43 61.81 0.62 95.00 2.42 78.82 0.81

P1 ST 100.00 3.58 84.18 0.85 31.25 0.00 100.00 0.73

HHT 100.00 2.13 89.58 0.90 37.50 0.00 75.00 0.60

FFT 93.75 3.30 87.61 0.85 25.00 0.00 50.00 0.40

P2 ST 50.00 2.62 72.22 0.59 91.67 3.54 75.93 0.76

HHT 100.00 21.42 60.58 0.41 100.00 40.14 36.25 -0.05

FFT 33.33 3.33 35.71 0.29 58.33 2.42 77.78 0.66

P3 ST 62.50 0.00 100.00 0.85 87.50 13.33 30.30 0.31

HHT 75.00 0.00 100.00 0.90 62.50 11.99 25.71 0.20

FFT 50.00 0.00 100.00 0.80 75.00 13.28 38.87 0.31

P4 ST 83.33 0.00 100.00 0.93 91.67 18.04 37.87 0.29

HHT 58.33 3.61 75.00 0.62 66.67 4.65 59.44 0.55

FFT 41.67 0.00 100.00 0.77 66.67 8.51 42.73 0.38

P5 ST 83.33 4.72 75.56 0.71 50.00 1.65 74.29 0.62

HHT 75.00 5.62 65.48 0.60 25.00 4.03 33.33 0.23

FFT 50.00 1.23 91.67 0.73 58.33 1.46 69.05 0.62

P6 ST 73.33 2.85 79.17 0.72 86.67 3.04 79.74 0.77

HHT 66.67 5.66 65.61 0.57 80.00 16.13 35.20 0.26

FFT 40.00 5.00 57.62 0.42 73.33 11.20 38.33 0.34

P7 ST 65.00 6.82 61.16 0.51 85.00 11.78 50.87 0.45

HHT 35.00 2.08 48.33 0.40 60.00 11.43 32.91 0.25

FFT 35.00 3.95 42.50 0.33 45.00 3.23 59.72 0.48

P8 ST 80.00 7.41 73.61 0.64 100.00 0.85 96.67 0.97

HHT 53.33 0.00 100.00 0.81 86.67 0.85 95.24 0.90

FFT 86.67 6.22 76.67 0.70 73.33 2.54 89.26 0.79

Data represent the average value of the tested trials. No outliers were identified by SPSS. Best WD results appear in bold.
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TABLE 6 | Pseudo-online results by method.

Method Start Stop

TPR (%) FP/min Acc (%) WD TPR (%) FP/min Acc (%) WD

ST 80.47 ± 14.63 4.43 ± 3.67 79.17 ± 12.19 0.72 ± 0.14 84.06 ± 18.40 4.73 ± 5.34 76.36 ± 20.95 0.72 ± 0.21

HHT 64.97 ± 18.96 5.56 ± 5.04 65.99 ± 20.59 0.56 ± 0.20 56.85 ± 21.68 6.64 ± 10.11 59.06 ± 21.90 0.47 ± 0.25

FFT 63.93 ± 20.96 4.56 ± 3.64 71.38 ± 19.46 0.61 ± 0.17 67.19 ± 18.40 4.93 ± 4.28 63.91 ± 16.82 0.57 ± 0.16

Average 69.79 ± 19.54 4.85 ± 4.11 72.18 ± 18.26 0.63 ± 0.18 69.37 ± 22.24 5.44 ± 6.95 66.44 ± 20.92 0.59 ± 0.23

The data represent the average value ± standard deviation by method for the sixteen subjects. Best results for WD start and stop models appear in bold.

TABLE 7 | WD pseudo-online results by method and type of subject.

Method Healthy Patient

Start Stop Start Stop

ST 0.72 ± 0.14 0.82 ± 0.09 0.73 ± 0.14 0.61 ± 0.24

HHT 0.48 ± 0.17 0.58 ± 0.14 0.65 ± 0.20 0.37 ± 0.30

FFT 0.61 ± 0.11 0.64 ± 0.12 0.61 ± 0.23 0.50 ± 0.17

Average 0.60 ± 0.17 0.68 ± 0.15 0.66 ± 0.19 0.49 ± 0.25

The data represent the average WD value ± standard deviation by method and type of

subject: healthy or patient. Best results in bold.

differences for healthy subjects (p > 0.05), but it did for patients
(p < 0.05). This indicated that patients performed significantly
different depending on the start or stop event detection.

Regarding the WD value, ST obtained the best results for
both start and stop models (bold text in Table 6), with lower
FP/min and higher TPR and Acc. Looking at Table 7, WD
results were similar in average for healthy subjects and patients,
not showing the apparently superior performance that offline
analysis attributed to healthy subjects. The same table also
shows that ST presented the highest WD value for both healthy
subjects and patients. HHT was again the method with the
most irregular performance, as the lower WD value and higher
standard deviation in Tables 6, 7 indicate. The HHT result was
specially low in the case of the stop model of patients which was
the reason of the previously detected difference in the pairwise
comparison.

4. DISCUSSION

A new BMI based on ST has been compared to another signal
analysis technique (HHT) and a traditional transform (FFT). The
tests were done for sixteen different subjects: eight healthy and
eight with lower limb disabilities. With the help of a recently
developed comprehensive index (WD), the different processing
methods were evaluated in an offline and a pseudo-online
scenario.

From the point of view of the differences between start
and stop event detection of gait, offline analysis seemed to

perform better for the stop detection. However, the pseudo-
online approach offered a similar performance in average, with
the same WD value in the case of the ST method. In addition,
statistical analysis showed no significant differences between the
start and stop models. Therefore, as pseudo-online model is a
more adequate way to represent the performance of the BMI in a
real-time scenario, it can be concluded that both event detection
models (start/stop) are similar.

Another conclusion is related to the individual performance
of the sixteen participants. Results of Tables 2, 5 show that
BMI performance was dependent on the subject, as the
performance of each of them was substantially different. This
means that the subjects need some time to get used to the
BMI in order to improve their results. However, there were not
significant differences between healthy subjects and patients in
the MANOVA test. Therefore, it is not needed to personalize the
BMI depending on the type of subject.

Regarding the different methods of analysis, indices showed
that ST obtained the best results with better Acc and TPR, and
even zero FP/min for certain subjects. All the models showed
higher WD value in average for ST (bold text in the tables) which
demonstrates the better performance of this transform. This is
mainly due to the analytical nature of ST that makes it a more
robust method than HHT. HHT had an irregular performance
with the lowest WD value for the start offline model of both
type of subjects and the stop pseudo-online model of patients
(WD < 0.4), but with similar results to the other methods in
the rest of the cases (WD > 0.55). HHT was also the method
with the highest standard deviation for all the models. The cause
of this irregular behavior is the EMD algorithm. EMD did not
always achieve to extract the different components related to the
bands of frequency considered in the paper. If the EMD of an
epoch mixes several tones in a IMF, H(ω, t) is not computed
correctly and the h(ω) does not provide the three features per
electrode in a constant way, which affects the classifier and the
event detection. FFT performed as the second best method, but
as it is not based on instantaneous amplitude and frequency,
provided a worse determination of the transition from a relax
to a starting gait state, and from a gait to a stopping gait state
than ST.

The comparison of this work with previous works is not
trivial. First, there are not many studies about detection of
intention of start and stop gait for lower limb that provide the
three parameters: TPR, FP/min and Acc. In addition, the FP/min
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can be computed differently depending on the approach. For
instance, a different number of consecutive detections could be
specified, or a statistical mode threshold could be used. And
finally, WD is hardly used as a comparison index because it was
recently developed.

In Jiang et al. (2015) an offline approach for single-trial
detection of gait initiation from movement related cortical
potentials was presented. The study, carried out for nine subjects,
provided the following averaged results: TPR = 76.80 ± 8.97%
and FP/min = 2.93 ± 1.09. No Acc was indicated in the
paper, being TPR a bit lower and FP/min a bit higher than
the offline ST results shown in Table 3 for the start model
(TPR = 83.45 ± 10.98% and FP/min = 2.88 ± 1.27). Looking
at previous work of the authors based on FFT (Hortal et al.,
2016b), Table 2 of the reference shows averaged indices of
TPR= 54.8± 9.3% and FP/min= 2.66± 2.24 for the offline start
and stop gait intention of six subjects (no Acc provided). This
example allows to compare the results in a similar scenario with
more subjects under analysis. In our research, the same averaged
indices (start and stop) show also an improvement: TPR= 78.82
± 12.39% and FP/min= 2.25± 1.28.

It has been demonstrated that the BMI developed allows to
detect the start and stop of gait intention through the use of
EEG signals improving the accuracy obtained. Future research
will aim the online implementation of the BMI with a motion

assistant device. This approach could be useful in the context
of the lower limb rehabilitation for patients that have suffered
stroke.
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