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Observing a scale anomaly and a universal
quantum phase transition in graphene
O. Ovdat1, Jinhai Mao2, Yuhang Jiang2, E.Y. Andrei2 & E. Akkermans1

One of the most interesting predictions resulting from quantum physics, is the violation of

classical symmetries, collectively referred to as anomalies. A remarkable class of anomalies

occurs when the continuous scale symmetry of a scale-free quantum system is broken into a

discrete scale symmetry for a critical value of a control parameter. This is an example of a

(zero temperature) quantum phase transition. Such an anomaly takes place for the quantum

inverse square potential known to describe ‘Efimov physics’. Broken continuous scale

symmetry into discrete scale symmetry also appears for a charged and massless Dirac

fermion in an attractive 1/r Coulomb potential. The purpose of this article is to demonstrate

the universality of this quantum phase transition and to present convincing experimental

evidence of its existence for a charged and massless fermion in an attractive Coulomb

potential as realized in graphene.
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Continuous scale symmetry (CS)—a common property of
physical systems—expresses the invariance of a physical
quantity f(x) (e.g., the mass) when changing a control

parameter x (e.g., the length). This property is expressed by
a simple scaling relation, f(ax)= bf(x), satisfied ∀a> 0 and
corresponding b(a), whose general solution is the power law
f(x)= Cxα with α= ln b/ln a. Other physical systems possess the
weaker discrete scale symmetry (DS) expressed by the same
aforementioned scaling relation but now satisfied for fixed values
(a, b) and whose solution becomes f(x)= xαG(ln x/ln a), where
G(u + 1)=G(u) is a periodic function. Physical systems having a
DS are also known as self-similar fractals1 (Fig. 1a). It is possible
to break CS into DS at the quantum level, a result which
constitutes the basis of a special kind of scale anomaly2, 3.

A well-studied example is provided by the problem of a particle
of mass μ in an attractive inverse square potential4, 5, which plays
a role in various systems6–9 and more importantly in Efimov
physics10, 11. Although well defined classically, the quantum
mechanics of the scale—and conformal12—invariant Hamiltonian
H= −Δ/2μ − ξ/r2 (with ħ= 1) is well posed, but for large enough
values of ξ, H is no longer self-adjoint13, 14. The corresponding
Schrödinger equation for a normalisable wave function ψ(r) of
energy k2= −2μE is,

ψ 00ðrÞ þ d � 1
r

ψ 0ðrÞ þ ζ

r2
ψðrÞ ¼ k2ψðrÞ; ð1Þ

where ζ≡ 2μξ − l(l + d − 2) is a dimensionless parameter, d the
space dimensionality and l the orbital angular momentum.
Equation (1) is invariant under the transformation r → λr and
k → k/λ, ∀λ (CS), namely to every normalisable wave function of
energy k2 corresponds a continuous family of states with energies
(λk)2, so that the bound spectrum is a continuum unbounded
from below. Various ways exist to cure this problem, based on
cutoff regularisation and renormalisation group15–21, and all lead
for the low-energy spectrum to a quantum phase transition
(QPT) monitored by ζ, between a single bound state for ζ< ζc to
an infinite and discrete energy spectrum for ζ> ζc, independent

of the regularisation procedure and given by

knðζÞ ¼ ϵ0 e
� πnffiffiffiffiffiffi

ζ�ζc
p

; n 2 Z; ð2Þ

which clearly displays DS. The critical value ζc= (d − 2)2/4
depends on the space dimensionality only, and ϵ0 is a regular-
ization dependent energy scale. In the overcritical phase ζ> ζc,
the corresponding renormalization group solution provides a
rare example of a limit cycle15, 16, 22. Building on the previous
example, it can be anticipated that the problem of a massless
Dirac fermion in an attractive Coulomb potential23–25, −Zα/r, is
also scale invariant (CS) and that the spectrum of resonant quasi-
bound states presents similar features and a corresponding QPT.

In this work, we demonstrate the existence of such a universal
QPT for arbitrary space dimension d≥ 2 and independently of
the short distance regularisation. We obtain an explicit formula
for the low-energy fractal spectrum in the overcritical regime.
In contrast to the Schrödinger case equation (1), the massless
Dirac Hamiltonian displays an additional parity symmetry which
may be broken by the regularisation. In that case, the degeneracy
of the overcritical fractal spectrum is removed and two inter-
twined geometric ladders of quasi-bound states appear in the
s-wave channel. All these features are experimentally demon-
strated using a charged vacancy in graphene. We observe the
overcritical spectrum and we obtain an experimental value for
the universal geometric ladder factor in full agreement with the
theoretical prediction. We also explain the observation of two
intertwined ladders of quasi-bound states as resulting from the
breaking of parity symmetry. Finally, we relate our findings to
Efimov physics as measured in cold atomic gases.

Results
The Dirac model. The Dirac equation of a massless fermion
in the presence of a −Zα/r potential is obtained from the
Hamiltonian (with ħ= c= 1),

H ¼ �iγ0γj∂j � β

r
; ð3Þ
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Fig. 1 Schematic visualization of the purpose and main results of this paper. a Sierpinski gasket as typical featuring of such iterative fractal structures. This
QPT is realized experimentally by creating single-atom vacancies in graphene. The function ρ(E) is the density of states and obeys a scaling relation
characterising the existence of discrete scale symmetry. b, c Illustration of the universal quantum phase transition (QPT) obtained by varying the
dimensionless parameter β≡ Zα (see text for precise definitions) in the low-energy spectrum of a massless fermion in a Coulomb potential V= −Zα/r
created by a charge Z. b For low values, β< βc, there is a single quasi-bound state close to zero energy. c For overcritical values, β> βc, the low-energy
spectrum is a ladder En characterized by a discrete scale symmetry {En}= {λEn} for λ ¼ expðπ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 � β2c

q
Þ. d, e Experimental dI/dV maps of charged

vacancy for fixed β< βc (d) and β> βc (e). The images illustrate the characteristic probability density of the resonances in (b, c). f Scanning tunnelling
microscopy (STM) setup. Local charge Z is accumulated at the single vacancy in graphene by applying voltage pulses to the STM tip
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where (γ0, γj) are Dirac matrices. Here the dimensionless
parameter monitoring the transition is β= Zα, where Z is the
Coulomb charge and α the fine structure constant. The QPT
occurs at the critical value βc= (d − 1)/2 (Supplementary Note 1)
(A related anomalous behavior in the Dirac Coulomb problem
has been identified long ago26 but its physical relevance was
marginal since it required non existent heavy-nuclei Coulomb
charges Z≃ 1/α≃ 137 to be observed. Moreover, the problem of a
massive Dirac particle is different due to the existence of a finite
gap which breaks CS.). For resonant quasi-bound states, we look
for scattering solutions of the form ψin + e2iηψsc, where η(E) is the
energy-dependent scattering phase shift and ψin,sc(r, E) are two
component objects representing the radial part of the Dirac spi-
nor which behave asymptotically as,

ψ in;scðr; EÞ ¼ r
1�d
2 Vin;sc ð2ijEjrÞ�iβ e�iEr
� �

ð4Þ

for Ej jr � 1 and, using γ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 � β2c

q
,

ψ in;scðr; EÞ ¼ r
1�d
2 U�

in;sc ð2iErÞ�iγ þ Uþ
in;scð2iErÞiγ

� �
; ð5Þ

for Ej jr � 1 and for the lowest angular momentum channels.
The two component objects Vin,sc and U ±

in;sc in Eqs. (4) and (5) are
constants. It is easy to infer from (5) that β= βc plays a special
role. Indeed for β> βc, there exists a family of normalisable
solutions that admit complex eigenvalues E= −iϵ, hence the
Hamiltonian (3) is not self-adjoint (H≠H†). To properly define
this quantum problem, a regularisation is thus needed for the
too strong potential at overcritical values of β= Zα. This is
achieved by introducing a cutoff length L and a boundary
condition at r= L, which is equivalent to replacing the
Coulomb potential at short distances by a well-behaved potential
whose exact form is irrelevant in the low-energy regime EL � 1.

The resulting mixed boundary condition can be written as
h ¼ Ψ2 r; Eð Þ=Ψ1 r; Eð Þjr!Lþ , where Ψ1,2 represent the two
components of the aforementioned radial part of the Dirac
spinor. The resulting scattering phase shift η(E, L, h), which
contains all the information about the regularisation, thus
becomes a function of L and of the parameter h. The quasi-bound
states energy spectrum is obtained from the scattering phase
shift by means of the Krein–Schwinger relation27, 28 which relates
the change of density of states δρ to the energy derivative of η,
(This is also related to the Wigner time delay29 and to the Friedel
sum rule)

δρðEÞ ¼ 1
π

dηðEÞ
dE

: ð6Þ

Theoretical structure of quasi-bound spectrum. From now on,
and to compare to experimental results further discussed, we
consider the case d= 2, for which there is a single orbital angular
momentum quantum number m 2 Z. The corresponding critical
coupling becomes βc= |m + 1/2|≥ 1/2, giving rise to the s-wave
channels, m= 0, −1, for which βc = 1/2. Depending on the
choice of boundary condition h, δρ(E) can be degenerate or
non-degenerate over these two s-wave channels. This degeneracy
originates from the symmetry of the (2 + 1) Dirac Hamiltonian
(3) under parity, (x, y) → (−x, y), and its existence is equivalent
to whether or not the boundary condition breaks parity
(Supplementary Note 2). In what follows, we will consider the
generic case in which there is no degeneracy. In the undercritical,
β< βc, and low-energy regime EL � 1, we observe (Figs. 1b, 2a)
a single quasi-bound state originating from only one of the s-wave
channels and which broadens as β increases. In the overcritical
regime β> βc, this picture changes dramatically. (We emphasize
that this picture remains valid for all values of β> βc and not
only in the vicinity of βc). The low-energy (EL � 1) scattering
phase shift displays two intertwined, infinite geometric ladders of
quasi-bound states (Figs. 1c, 3) at energies En still given by (2) but
with ζ − ζc now replaced by β2 � β2c . (Moreover, note that
the energy scale ϵ0 for the Dirac case is different from the
inverse square Schrödinger case defined in equation (1)). This
sharp transition at βc belongs to the same universality class as
presented for the inverse square Schrödinger problem, namely CS
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Fig. 2 Experimental and theoretical picture in the undercritical regime.
a Theoretical behavior of (1)/(π)dη/dE for d= 2 showing quasi-bound
states of a massless Dirac fermion in the undercritical regime β< 1/2. In the
scale-free low-energy, EL � 1 regime, the m= −1 (blue) branch contains a
single peak and the m= 0 (purple) branch shows no peak independently of
the choice of boundary condition (see Supplementary Note 2). While
increasing β, the resonance shifts to lower energy and becomes broader.
b Excitation spectrum measured in graphene using STM as a function of
the applied voltage V. The determination of the parameter β is explained
in the text
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of the quasi-bound states spectrum is broken for β> βc into a DS
phase characterized by a fractal distribution of quasi-bound
states. The QPT thus reflects the lack of self-adjointness of the
Hamiltonian equation (3) and the necessary regularisation pro-
cedure leads to a scale anomaly in which CS is broken into DS.

Experimental realization in graphene. A particularly interesting
condensed matter system, where the previous considerations
seem to be relevant is graphene in the presence of implanted
Coulomb charges in conveniently created vacancies30. It is
indeed known that low-energy excitations in graphene behave
as a massless Dirac fermion field with a linear dispersion
ϵ=±vF|p| and a Fermi velocity vF≃ 106 m/s31. These character-
istics have been extensively exploited to make graphene a very
useful platform to emulate specific features of quantum field
theory, topology and especially QED23, since an effective fine
structure constant αG≡ e2/ħvF of order unity is obtained by
replacing the velocity of light c by vF.

It has been recently shown that single-atom vacancies in
graphene can stably host local charge30. Density functional theory
calculations have shown that, when a carbon atom is removed from
the honeycomb lattice, the atoms around the vacancy site rearrange
into a lower energy configuration32. The resulting lattice recon-
struction causes a charge redistribution, which in the ground state
has an effective local charge of ≈+1. Recent Kelvin probe force
microscopy measurements of the local charge at the vacancy sites
are in good agreement with the Density functional theory
predictions. Vacancies are generated by sputtering graphene with
He+ ions33, 34. Charge is modified and measured at the vacancy site
by means of scanning tunnelling spectroscopy and Landau level
spectroscopy as detailed in ref. 30. Applying multiple pulses allows
for a gradual increase in the vacancy charge, which in turn acts as
an effective tunable Coulomb source. Moreover, the size of the
source inside the vacancy is small (≈1 nm) as compared to the
method of deposited metal clusters35. Using this method, we are
able to observe the transition expected to occur at β= 1/2 and to
measure and analyze three resonances for a broad range of β values.

To establish a relation between the measured differential
conductance and the spectrum of quasi-bound states, we recall

that the tunnel current I(V) is proportional to both the density of
states ρt(ϵ) of the STM tip and ρ(ϵ) of massless electronic
excitations in graphene at the vacancy location. We also assume
that the tunnel matrix element |t|2 depends only weakly on energy
and that both voltage and temperature are small compared to
the Fermi energy and height of the tunnelling potential, so
that the current I(V)=GtV is linear with V thus defining the
tunnel conductance Gt= 2π(e2/ħ)|t|2ρtρ(ϵ). Assuming that ρt of
the reference electrode (the tip) is energy independent, a variation
δρ(ϵ) of the local density of states at the vacancy leads to a
variation δI(V) of the current and thus to a variation δGt(V) of
the tunnel conductance so that, at zero temperature, we obtain36

δGtðVÞ
Gt

¼ δρðϵÞ
ρ0

; ð7Þ

where ρ0 is the density of states in the absence of vacancy.
By considering the vacancy as a local perturbation, each quasi-
particle state is characterized by its scattering phase shift taken to
be the phase shift η(E) of the quasi-bound Dirac states previously
calculated. Then, the change of density of states δρ(E) is obtained
from equation (6) and combining together with equation (7)
leads to the relation,

dδI
dV

¼ Gt

πρ0

dηðEÞ
dE

ð8Þ

between the differential tunnel conductance and the scattering
phase shift.

The measurements and the data analysis presented here were
carried out as follows: positive charges are gradually injected
into an initially prepared single atom vacancy and the differential
conductance δGt(V) is measured at each step as a function
of voltage. Since we are looking at the positions of resonant quasi-
bound states, both quantities displayed in Figs. 2, 4 give the same set
of resonant energies, independently of the energy-
independent factor Gt/πρ0. For low enough values of the
charge, the differential conductance displayed in Fig. 2b, shows
the existence of a single quasi-bound state resonance. The behavior
close to the Dirac point, namely in the low-energy regime
independent on the short distance regularization, is very similar to
the theoretical prediction of Fig. 2a. When the build up charge
exceeds a certain value, we note the appearance of
three resonances, emerging out of the Dirac point. We interpret
these resonances as the lowest overcritical (β> 1/2) resonances,
which we denote E1, E′

1, E2, respectively. The corresponding
theoretical and experimental behaviors displayed in Figs. 3, 4,
show a very good qualitative agreement. To achieve a quantitative
comparison solely based on the previous Dirac Hamiltonian
equation (3), we fix L and the boundary condition h and deduce
the theoretical β values corresponding to the respective positions
of the lowest overcritical resonance E1 (as demonstrated in Fig. 4).
This allows to determine the lowest branch E1(β) for n= 1
represented in Fig. 5. Then, the experimental points E′

1, E2
are directly compared to their corresponding theoretical branch as
seen in Fig. 5. We determine L and h, according to the ansatz
h= a(m + 1), and obtain the best correspondence for L≃ 0.2 nm,
a≃ −0.85. We compare the experimental E2/E1 ratio
with the universal prediction Enþ1=En ¼ e�π=

ffiffiffiffiffiffiffiffiffiffiffi
β2�1=4

p
as seen in

Fig. 6. A trend-line of the form e�b=
ffiffiffiffiffiffiffiffiffiffiffi
β2�1=4

p
is fitted to the ratios

E2/E1, yielding a statistical value of b= 3.145 with standard error of
Δb= 0.06 consistent with the predicted value π. An error of ±1
mV is assumed for the position of the energy resonances.

A few comments are appropriate: (i) The points on the E2(β)
curve follow very closely the theoretical prediction
Enþ1=En ¼ e�π=

ffiffiffiffiffiffiffiffiffiffiffi
β2�1=4

p
. This result is insensitive to the choice
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of h, thus manifesting the universality of the ratio En+1/En. (ii) In
contrast, the correspondence between the E′

1 points and the
theoretical branch is sensitive to the choice of h. This reflects the
fact that while each geometric ladder is of the form equation (2)
(with the appropriate ζ → β change), the energy scale ϵ0 is
different between the two thus leading to a shifted relative
position of the two geometric ladders in Fig. 3. The ansatz taken
for h is phenomenological (Supplementary Note 2), however, we
find that in order to get reasonable correspondence to theory, the
explicit dependence on m is needed. More importantly, it is
necessary to use a degeneracy breaking boundary condition to
describe the E′

1(β) points. For instance, if the Coulomb potential
is regularized by a constant potential for r≤ L37, then both
angular momentum channels (i.e., the E′

1 and E1 points) become
degenerate. The existence of the experimental E′

1 branch is
therefore a distinct signal that parity symmetry in the
corresponding Dirac description equation (3) is broken. In
graphene, exchanging the triangular sublattices is equivalent to a
parity transformation. Creating a vacancy breaks the symmetry
between the two sub-lattices and is therefore at the origin of
broken parity in the Dirac model. (iii) The value L≃ 0.2 nm is

fully consistent with the low-energy requirement E1L=�hvF ’
0:03 � 1 necessary to be in the regime relevant to observe the β-
driven QPT.

Discussion
A further argument in support of the universality of this QPT is
achieved by comparing the experimental results obtained in
graphene with those deduced from a completely different physical
problem. To that purpose, we dwell for a short while recalling
the basics underlying Efimov physics38. Back to 1970, Efimov10

studied the quantum problem of three identical nucleons of mass
m interacting through a short range (r0) potential. He pointed out
that when the scattering length a of the two-body interaction
becomes very large, a � r0, there exists a scale-free regime for
the low-energy spectrum, �h2=ma2 � E � �h2=mr20 , where the
corresponding bound-states energies follow the geometric
series

ffiffiffiffiffiffiffiffiffi�En
p ¼ �~ϵ0e�πn=s0
� �

; where s0 ’ 1:00624 is a dimen-
sionless number and ~ϵ0 a problem-dependent energy scale.
Efimov deduced these results from an effective Schrödinger
equation in d= 3 with the radial (l= 0) attractive potential
VðrÞ ¼ � s20 þ 1=4

� �
=r2. Using Eqs. (1) and (2) and the critical

value ζc= (d − 2)2/4= 1/4 for this Schrödinger problem, we
deduce the ζ value for the Efimov effect to be s20 þ 1=4> ζc
corresponding to the overcritical regime of the QPT. The value
of β matching to the Efimov geometric series factor eπ=s0 is
βE ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s20 þ 1=4
p ¼ 1:1236, referred to as the fixed Efimov value.

Despite being initially controversial, Efimov physics has
turned into an active field especially in atomic and molecular
physics where the universal spectrum has been studied
experimentally39–46 and theoretically38. The first two Efimov
states En (n= 1, 2) have been recently determined using an
ultracold gas of caesium atoms47. Although the Efimov spectrum
always lies at a fixed and overcritical value of the coupling, unlike
the case of graphene where β can be tuned, the universal char-
acter of the overcritical regime allows nevertheless for a direct
comparison of these two extremely remote physical systems. To
that purpose, we include the Efimov value βE in the expression
obtained for the massless Dirac fermion in a Coulomb potential
and insert the corresponding data points obtained for cold atomic
caesium in the graphene plot (Fig. 5) up to an appropriate scaling
of ~ϵ0. The results are fully consistent thus showing in another way
the universality presented.

There are other remote examples of systems displaying this
universal QPT, e.g., flavoured QED348, and the XY model (Kos-
terlitz-Thouless8 and roughening transitions22). Our results provide
a useful and original probe of characteristic features of this uni-
versal QPT and motivate a more thorough study of this transition.

Methods
Our sample is stacked two layers of graphene on top of a thin BN flake (see Fig. 1f).
The standard dry transfer procedure is followed to get this heterostructure. A large
twisted angle between the two layers graphene is selected in order to weaken the
coupling. The free-standing like feature for the top layer graphene is checked by the
Landau levels spectroscopy. To achieve the diluted single vacancies, the sample is
exposed to the helium ion beam for short time (100 eV for 5 s) followed by the high
temperature annealing. The experiment is performed at 4.2 K with a home-built
STM. The dI/dV (I is the current, V is the bias) is recorded by the standard lock-in
technique, with a small AC modulation 2 mV at 473.1 Hz added on the DC bias. To
tune the effective charge on the vacancy, we apply the voltage pulse (−2 V, 100 ms)
with the STM tip directly locating on top of the vacancy.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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