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A B S T R A C T   

As a typical complex network system, the operating environment of rail transit network (RTN) is 
complex and demanding. This study aims to accurate assess the weaknesses and vulnerability of 
RTN, which is crucial for ensuring its smooth operation. Taking Chongqing Rail Transit (CRT) as 
an example, this study developed a network topology model using the spatial L method and 
analyzed the network structure characteristics, along with the importance of key nodes under 
different indicators, based on complex network theory. Additionally, this study analyzed the 
geographical spatial distribution characteristics of nodes based on the topography and urban 
spatial structure of Chongqing. Then, this study classified the nodes in the RTN according to basic 
topological indicators, namely degree, betweenness centrality, network efficiency, and passenger 
flow volume (PFV). The results indicated six cluster of nodes, reflecting the variability in node 
vulnerability concerning overall influence (providing alternative paths, reducing path length), 
regional aggregation capacity, and transportation capacity. Finally, this study proposed targeted 
management strategies for different clusters of nodes and their respective geographical locations, 
providing necessary references for rational planning, safety protection, and sustainable con-
struction of RTN.   

1. Introduction 

Rail transit has become an essential tool for alleviating urban traffic demand due to its large capacity, fast speed, safety, and 
reliability. As new lines are continuously planned, constructed, and operated, China’s metropolitan areas have seen the development of 
rail transit network (RTN). Moreover, the growing passenger flow volume (PFV) and interconnectedness of stations in the expanding 
RTN have brought attention to the ripple effect and local problem linkage on the entire network. From a network structure perspective, 
any failure of a node within the network can reduce network connectivity and efficiency, resulting in weakened RTN service, passenger 
congestion, and potential safety issues [1,2]. Detecting the most critical station that impact the RTN during disturbances is crucial. By 
efficiently maintaining and recovering these critical station, the anti-disturbance capability, stability, and resilience of RTN can be 
enhanced, thereby mitigating adverse impacts of disturbance events on the RTN. 
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Therefore, research on key station identification in RTN has become a hot topic, and related scientific-technical advancements are 
constantly emerging. The first category includes intelligent monitoring systems such as image detection and sensors. In recent years, 
computer vision technology has made significant progress. Powerful algorithms like convolutional neural networks (CNN) were used 
to analyze images or videos from surveillance cameras or other sources to monitor PFV and human behavior [3]. By mining long-term 
PFV data for inertia features closely related to people’s travel habits [4], key stations and key lines can be identified. The second 
category included Geographic Information System (GIS) and Building Information Modelling (BIM). These technologies enabled 
intelligent functions such as precise mapping, visualization analysis, intelligent equipment inspection, equipment failure warning, 
intelligent maintenance, and emergency response [5,6]. However, the application of GIS and BIM technology in rail transit was mainly 
focused on the design and construction stages, with limited applications during the operation and maintenance stages. The third 
category was big data analytics. The rapid development of big data technology provided support for studying passenger travel in rail 
transit, such as Smart Card Data [7] and Automatic Fare Collection System (AFCS) [8]. These technologies could mine spatiotemporal 
characteristics of passenger travel based on historical and real-time data, predict passenger demand, identify key stations, and optimize 
station operations. 

These technological advancements are continuously evolving, improving the accuracy, efficiency, and intelligence of key station 
identification in RTN. However, existing scientific and technical approaches to key station identification in RTN often relied on single 
PFV data, real-time monitoring, and historical pattern analysis of factors such as travel time and PFV to define key stations that have 
the most significant impact on the performance of the transportation network. They overlooked the topological characteristics of the 
overall RTN and the impact of stations on the structural performance of the transportation network, making it challenging to predict 
unforeseen circumstances. 

The development of graph theory has made network analysis the most effective method for transportation research [9,10]. 
Numerous studies have explored the vulnerability of RTN using complex network theory [11–14]. In this theory, stations are treated as 
nodes, and the connections between stations are called edges. The structure of the stations is established and analyzed based on the 
relationship between nodes and edges. Some nodes have been found to play a critical role in network performance [15,16]. Previous 
literature has used various indicators, including degree and betweenness centrality, to select critical nodes, revealing that intentional 
attacks based on these indicators were more likely to cause network collapse than random attacks [17–19]. Vulnerability assessments 
of RTN attacked nodes have also been conducted based on overall network connectivity or network efficiency loss [20,21]. Results 
have shown that the vulnerability and resilience of the RTN depended not only on the degree of disrupted nodes but also on their 
contribution to overall network connectivity [22]. In general, different importance assessment indicators had diverse impacts on RTN 
performance. Many previous studies on key node selection were relatively simple and lacked a unified indicator system, resulting in 
limited analysis of network structure characteristics. 

Currently, some scholars have recognized the variations in node importance across different environments and attempted to 
enhance or even create new assessment methods to identify key nodes with the greatest impact on the structure of RTN [23,24]. For 
instance, some scholars have combined network efficiency with global indicators like the maximum connected subgraph [25,26] and 
the largest connected component (LCC) ratio [27]. Others have integrated degree and betweenness centrality with accessibility [28], 
connectivity [29], and network efficiency [30,31] using the entropy method and weighting method. Compared to using a single in-
dicator, these new assessment methods offered a more accurate evaluation of the key nodes in RTN [28,32]. Moreover, some scholars 
have considered PFV (passenger flow volume) while exploring network features, as it reflected the transportation capacity of RTN. The 
importance ranking of RTN nodes has been determined based on the variance contribution of each indicator using techniques like 
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and factor analysis [33,34]. It has been pointed out that 
attacks based on the highest load node could result in more damages compared with the attacks based on the largest degree node [35]. 
Networks that take PFV into account differ to some extent from those that don’t, with PFV-inclusive networks tending to be more 
vulnerable [36]. Despite these developments, previous research often focused on individual indicators or limited combinations of 
indicators. The theoretical foundations and factors considered varied among different methods, resulting in different identified key 
nodes. There is a lack of comprehensive approaches that consider global, regional, and transportation indicators together when 
evaluating key nodes and intervals in the RTN. 

Table 1 provided an overview of the research objects, vulnerability assessment indicators, and strategy-related suggestions derived 
from pertinent literature within the preceding five-year period. Notably, several novel assessment methodologies have been devised to 
ascertain the importance of nodes in RTN. Nevertheless, these approaches have seldom integrated global, regional, and transportation 
indicators comprehensively. When appraising key nodes and intervals within the RTN, it is imperative to consider both their localized 

Table 1 
Literature in related fields in the last five years.  

Research object Vulnerability assessment indicator Suggestion or not Publication year 

Suzhou Degree, betweenness centrality, and operation accessibility No 2023 [28] 
Shanghai Network efficiency, and Largest connected component ratio Yes 2022 [27] 
Shenzhen Several different centrality measures No 2020 [37] 
Nanjing Degree distribution, and passenger flow volume No 2019 [35] 
Shenzhen Network efficiency No 2019 [20] 
Shanghai Degree, connectedness, and network efficiency No 2019 [30] 
Shenzhen Largest connected component ratio, and network efficiency No 2018 [25] 
Beijing Largest connected component ratio, and network efficiency No 2018 [26]  
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significance and overall network influence, while also the influence of PFV on network operation. Additionally, previous literature has 
mainly focused on large plain cities such as Beijing, Shanghai, and Shenzhen, with limited studies on mountainous cities with complex 
terrain. Furthermore, few studies have provided specific policy or strategy-related impacts and suggestions, based on the importance of 
key nodes, indicating a weak link between theory and actual policy-making. 

Taking Chongqing Rail Transit (CRT) as an example, this study addresses the gaps in previous research by developing a network 
topology model using the spatial L method and applying complex network theory to analyze the characteristics of the network 
structure. The nodes in the RTN are categorized based on three fundamental topological indicators: degree, betweenness centrality, 
network efficiency, and PFV. These indicators help assess the vulnerability of nodes concerning global, local, and transportation 
performance, enabling us to propose tailored management recommendations for nodes in different clusters. Noteworthy innovations in 
this study include the assessment of key nodes, considering global, local, and transportation indicators; the selection of CRT located in 
mountainous regions with complex terrain as the research subject, taking into account practical factors such as the geographic location 
of each node in the network; and the clustering of importance assessment results, leading to targeted management strategies for nodes 
in different clusters. As a result, this research offers valuable insights for identifying and maintaining critical nodes in RTN. 

The rest of the paper was organized as follows. Section 2 introduces the case study and methodology of the study; proposes four key 

Fig. 1. Group Analysis of rail nodes based on Chongqing’s topography and urban spatial structure.  
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node identification indicators; gives the vulnerability assessment method and data sources. Section 3 shows the results of vulnerability 
of CRT based on the proposed method. Section 4 analyzes the nodes within different clustering levels based on the results presented in 
Section 3, and proposes corresponding targeted management strategies. Section 5 provides the conclusions. 

2. Methodology 

2.1. Case study 

RTN plays an important role in Chongqing’s urban transportation system and urban economic development. The CRT network has 
been steadily expanding, and there are plans to establish a “22-line-1-ring” layout covering 1252 km by 2035, making it one of the 
longest RTNs in Chinese metropolitan cities. However, the CRT faces unique challenges compared to other RTNs due to its extensive 
mountainous routes. Fig. 1 illustrates the terrain and urban spatial structure of Chongqing’s main urban area (within the ring 
expressway). Shaped by natural mountains and water bodies, the city has evolved into a diverse urban landscape with multiple groups. 
Adhering to the principles of balanced local communities, Chongqing, in contrast to similarly sized flat cities, demonstrates a higher 
prevalence of short-distance travel within groups. Residents’ travel patterns reveal a distinctive distribution characterized by “closer 
proximity and shorter distances.” The CRT plays a pivotal role in connecting the central group with others. The spatial configuration of 
the RTN intricately aligns with the mountainous city’s organization, featuring a “radial and circular” layout pattern that harmonizes 
with natural contours. Given the exceptional characteristics and significance for Chongqing of CRT, this study has chosen it as the 
primary research subject, warranting further investigation and exploration. 

Fig. 2 illustrates the CRT system plan, comprising 9 rail lines and a loop rail, encompassing a total of 233 nodes. This “nine lines and 
one loop” RTN structure forms a non-oriented network denoted as “G,” composed of rail lines and nodes. To construct the network 
topology model for CRT, the Space L method was employed, and the resulting model is depicted in Fig. 3. 

Fig. 2. CRT system plan (Chongqing Rail Transit group, 2023).  
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2.2. Analysis process 

The analysis flow chart is shown in Fig. 4. The research involved the development of a network topology model using the spatial L 
method, followed by an analysis of the network structure characteristics and the importance ranking of key nodes under different 
indicators, all based on complex network theory. The nodes within the RTN were classified according to three fundamental topological 
indicators: degree, betweenness centrality, network efficiency, and PFV, by k-means clustering. Finally, this study proposed specific 
management strategies tailored to different clusters of nodes. 

2.3. Complex network 

Complex network theory and its applications have emerged as a significant research focus across various disciplines, including 
social sciences [38], biological sciences [39], and computer sciences [40]. To portray the fundamental structure of complex networks, 
existing studies have employed topology models, depicting directed and non-oriented networks comprising nodes and edges con-
necting them. These models facilitated a clearer analysis of network structure characteristics by incorporating different indicators. 
Notably, in recent years, numerous scholars have utilized complex network theory to study the topology and structure of RTN [41]. 

2.3.1. Topology modeling of RTN 
Topology modeling involves creating a mathematical representation of a system’s network topology [42]. Space P, Space B, Space C 

and Space L are four common methods for developing topology models of RTN [43]. In the Space P model, nodes represent stations, 
and a link is established between two stations if they share at least one common route. This feature makes the Space P model ideal for 
analyzing transfer characteristics in RTN [44]. The Space B model constructs the transportation network based on individual activities 
or trips, encompassing the entire travel chain, including origins, destinations, and activities at different locations [45]. The Space C 
model divides the RTN into cells or zones, examining the movement of vehicles or flows between these cells, representing spatial units 
within the network. Commonly used in dynamic traffic assignment and transportation planning, the Space C model provides insights 
into the network’s spatial dynamics [45]. In the Space L model, stations function as nodes, and links between nodes represent routes 
connecting two consecutive stations without intermediate stops [46]. The Space L model offers a more intuitive representation of the 
RTN, closely resembling the actual network and is particularly suitable for studying network structure characteristics and vulnera-
bility. Therefore, this study adopted the Space L method to develop the topology model of the RTN. Based on graph theory, the RTN 
was defined as a non-oriented network denoted as “G", comprising n nodes and m edges. The topological connection between node i 
and node j in the graph was denoted by aij. If there was a straight edge between node i and node j, aij equaled to 1; otherwise, aij equaled 

Fig. 3. Network topology model of CRT.  
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to 0. The path consisted of edges between two target nodes, and the path length equaled to the number of edges along the path. If no 
path exists between the selected pair of nodes, the distance between the two nodes is considered infinite. 

2.3.2. Network structure characteristic indicators 
To analyze the basic network structure characteristics of CRT, static statistical indicators, such as degree, average degree, degree 

distribution, average shortest paths and clustering coefficient were calculated. 

2.3.3. Degree, average degree and degree distribution 
The degree and degree distribution are crucial measures for nodes in a complex network. Specifically, the degree ki of a node i is 

defined as the total number of edges connected to that node. 
The average of the degree ki of all nodes i in the network is called the average degree k of the nodes, which can be written as [42]: 

K =
1
N

∑N

i=1
ki (1) 

P (k) the degree distribution, representing the probability of any node having a degree of k. Pc (k) represents the probability 
distribution of nodes with degree equal to or greater than ki, which can be written as [42]: 

pc(k)=
∑

k’≥k
p(k‘) (2)  

2.3.4. Average shortest paths 
The average shortest paths refer to the average value of the shortest path between any two nodes in the network, which is a global 

indicator to measure the transmission efficiency of the network. A smaller average path length indicates a more closely connected 
network. The equation for this measure can be written as [42]: 

Fig. 4. Analysis flow chart.  
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L=

∑

i=j
dij

n(n − 1)/2
(3)  

where L is the average path length; n is the number of nodes in the network; i, j are nodes; dij denotes the shortest path length between i 
and j. 

2.3.5. Clustering coefficient 
The clustering coefficient Ci is defined as the ratio of the number of edges Ei existing between node i and ki neighboring nodes in the 

network to the total number of possible edges ki
2 (ki − 1), which can be written as [42]: 

Ci =
2Ei

ki(ki − 1)
(4) 

The clustering coefficient C of the whole network refers to the average of the clustering coefficients of all nodes in the network, 
which can be written as [42]: 

C=
1
N

∑N

i=1
Ci (5)  

2.4. Key node identification method 

In this study, three fundamental topological indicators, namely, degree, betweenness centrality, network efficiency, and PFV, were 
selected to rank the importance of key nodes. Then, the key nodes were classified by K-means clustering according to three funda-
mental topological indicators and PFV. 

2.4.1. Fundamental topological indicators  

(1) Degree 

Degree refers to the number of connections a node has with other nodes, indicating its importance. The variable aij represents the 
adjacency matrix variable. The equation can be written as follow [42]: 

ki =
∑

j
aij (6)    

(2) Betweenness centrality 

Betweenness centrality measures the number of times a node lies on the shortest path between other nodes, indicating its ability to 
control behavior and information transfer. Normalized betweenness centrality (nbetweenness) is used for comparison with 
betweenness centrality values in other networks. In the equation, Dij(i) represents the number of shortest paths through node i. Dkj 

represents the number of shortest paths between nodes k and j. The equation can be written as follow [42]: 

Bi =
∑

k∕=j∈G

Dij(i)
Dkj

(7)    

(3) Network efficiency 

The network efficiency of a network serves as a comprehensive measure of its connectivity characteristics and is considered a 
comprehensive metric. When certain nodes in the network are attacked, the connectivity or average clustering coefficient may 
decrease, causing some pairs of nodes to become disconnected from each other, leading to an infinite distance between these pairs. The 
efficiency of any two nodes i and j is expressed as the reciprocal of the distance between the two nodes, namely 1

dij
. Then the network 

efficiency of the whole network is expressed as the average efficiency between any two nodes, which can be written as [42]: 

E=
1

N(N − 1)
∑N

i∕=j

1
dij

(8)  

2.4.2. Fundamental topological indicators 
The PFV data of CRT from August 22–28, 2022 was provided by the Automatic Fare Collection System (AFCS). This data was 

utilized to identify key nodes that play a crucial role in transportation within the RTN. 
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2.4.3. K-means cluster analysis 
K-means clustering analysis method has been widely recognized and extensively utilized in previous studies [47]. It is known for its 

remarkable computational efficiency and effectiveness in handling large datasets with a moderate number of clusters. K-means al-
gorithm is particularly suitable for grouping similar documents together by clustering data points. By organizing the nodes into groups, 
it facilitates the identification of outliers or anomalies that deviate from the predominant patterns observed in the majority of nodes. 
Some researchers adopted K-means to evaluate and classify the surrounding environments of nodes [48]. Other researchers used 
K-means to identify the major functions of nodes [49]. There were also scholars who utilized GIS, Kernel Density Estimation, and 
environmental data to create a classification of road accident hotspots using the K-means clustering method [50]. Therefore, the 
K-means clustering analysis method was chosen in this study for node classification. 

It takes k as an input parameter and partitions m object sets into k clusters, maximizing the similarity of items within the same 
cluster while minimizing the similarity between different clusters. The algorithm aims to minimize the within-cluster sum of squares by 
dividing the data points into k clusters within certain dimensions [51]. The equation can be written as follows [47]: 

E=
∑k

i=1

∑

PϵCi
|p − mi| (9)  

Where E refers to the square error-sum of all objects, p denotes the point in space, and mi denotes the average of cluster Ci. The sum of 
squares of the distance between each object and its cluster center is calculated [47]: 

In this study, we used k-means to classify the key nodes based on three fundamental topological indicators: degree, betweenness 
centrality, network efficiency, and PFV. 

3. Result 

3.1. Topology model of RTN 

The static statistical indicators of CRT based on complex network theory were calculated in Table 2. The results indicated there 
were 233 nodes and 254 connected edges in CRT. The average degree was found to be 2.197, signifying that each node was, on average, 
directly connected to 2.197 other nodes. The degree distribution and cumulative degree distribution are shown in Fig. 5. Notably, the 
figure showed that the maximum degree of nodes in CRT was 6, with only one node falling into this category. Meanwhile, the majority 
of nodes (82.85% of all nodes) had a degree of 2. 

The average shortest path length was 15.529 nodes; the network efficiency was 9.972%; and the clustering coefficient was only 
0.002. Fig. 6 illustrates the shortest path statistics of the CRT network, with the horizontal coordinate d indicating the shortest path 
length and the vertical coordinate P(k) representing the cumulative probability of the shortest path being less than or equal to d. The 
analysis of actual data revealed the longest distance between any two nodes in the RTN was 52 nodes. Approximately 49.9% of nodes 
could be reached within 15 nodes, and an impressive 79.2% or more nodes could be reached within 23 nodes. 

Based on Fig. 1, the spatial distribution of nodes in each group was shown in Fig. 7. The distribution of nodes exhibited a noticeable 
spatial imbalance, with a concentration of nodes in the central group, followed by the northern and southern groups, while fewer nodes 
were situated in the peripheral groups. 

3.2. Network structure characteristics 

3.2.1. Degree 
Degree represents the number of connections a node has with other nodes, indicating its local aggregation ability and importance. 

The calculation of the degrees in the network revealed some significant findings. Specifically, the maximum degree observed was 6, 
which was associated with only one node, accounting for a mere 0.43% of the total. On the other hand, the majority of nodes, a 
staggering 82.85% of them, had a degree of 2. Additionally, nodes with degrees of 5, 4, 3, and 1 accounted for 0.86%, 7.3%, 4.7%, and 
3.86% of the total, respectively. Table 3 presents the ranking of nodes with degrees greater than or equal to 4, while Fig. 8 illustrates 
their distribution in the network topology model. 

3.2.2. Betweenness centrality 
The betweenness centrality metric measures the number of pairs of nodes that pass through a specific node in the network, 

Table 2 
Characteristics of CRT network indicator values.  

Characteristic indicators Numerical value 

Number of nodes 233 
Number of edges 254 
Average degree 2.197 
Clustering coefficient 0.002 
Average shortest paths 15.529 
Network efficiency 9.972%  
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indicating its ability to control behavior and information delivery by providing alternative paths. The betweenness centrality and 
relative betweenness centrality of each node in the network were calculated. Out of all the nodes, 13 had a relative intermediate 
centrality of 0, making up 5.58% of the total. The majority of nodes (176 in total) had intermediate centrality greater than 0 and less 
than or equal to 10, accounting for 75.5% of the total, which represented the largest proportion. Additionally, there were 41 nodes 
with intermediate centrality greater than 10 and less than or equal to 20, comprising 17.6% of the total. Only 2 nodes had intermediate 
centrality greater than 20 and less than or equal to 30, amounting to 8.6% of the total. Moreover, there was just one node with in-
termediate centrality greater than or equal to 30, making up 4.3% of the total. Table 4 displays the top 20 nodes based on their in-
termediate centrality, and their distribution in the network topology model is illustrated in Fig. 9. 

3.2.3. Network efficiency 
The network efficiency is directly influenced by the level of connectivity between nodes in the network. A higher level of 

disconnection among nodes leads to lower network efficiency and increased vulnerability. To assess the clustering degree among nodes 
in the RTN, a deliberate attack was conducted on 233 nodes of the CRT. The network efficiency was then compared before and after the 
attack, and the rate of change represented the ability of the nodes to reduce the path length of the entire network. The 10 nodes with 
the most significant impact are listed in Table 5, and their distribution in the network topology model is illustrated in Fig. 10. 

The analysis revealed that several nodes, namely Ranjiaba, Shapingba, Baoshuigang, Cuntan, Heshizi, Chongqing West Station, 
Taipingchong, Lijia, Tangjiatuo, and Tieshanping, played crucial roles in the network. If any of these nodes were targeted and attacked, 
the overall network efficiency would decrease by more than 6%. Interestingly, the impact of nodes on the network’s efficiency did not 
always align with their degree or betweenness centrality rankings. For instance, Chongqing North Station North Square had a degree of 
4 and ranked third in terms of betweenness centrality, but its removal only resulted in a 3% reduction in network efficiency. 
Conversely, Cuntan had a degree of 2 and its betweenness centrality was 24th, yet its removal led to an 8% decrease in overall network 
efficiency. 

3.2.4. PFV 
Fig. 11 displays the average PFV data of the top 30 nodes in CRT from August 22–28. Among these nodes, the top 10 nodes with the 

highest PFV values were Guanyinqiao, Xiaoshizi, Guangianyuan, Hongqihegou, Lianglukou, Nanping, Jiazhou, Ranjiaba, Huahuiyuan, 
and Changshengqiao. Their distribution in the network topology model is visualized in Fig. 12. 

Fig. 5. Scatter plot of degree distribution and cumulative degree distribution.  

Fig. 6. Cumulative probability of shortest path length.  
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The results indicated that among the top 10 nodes in terms of PFV, five were interchange nodes, while the rest were ordinary nodes. 
Most nodes had a degree of either 4 or 2, with only one node among the top 10 having a degree of 5, and two nodes among the top 30. 
However, apart from Ranjiaba, the betweenness centralities of the other nodes were relatively lower. 

3.3. Cluster analysis 

The nodes were clustered based on degree, betweenness centrality, network efficiency, and PFV using k-means. The results revealed 
six clusters of nodes, and the cluster centers of the four indicators for different clusters after dimensionless processing are shown in 
Table 6. For detailed clusters and corresponding nodes, please refer to the Appendix. 

The data in Table 5 and Appendix revealed that the only node in cluster A, Ranjiaba, achieved the top rank in betweenness, degree, 
and network efficiency, while securing the second position in terms of PFV. This indicated that all four indicators demonstrated a high 
level for this node. 

Cluster B comprised 16 nodes, ranking 2nd in terms of betweenness and degree, and 3rd in terms of network efficiency and PFV. 
Notably, all four indicators were at a slightly higher level, second only to Cluster A. 

Cluster C consisted of 22 nodes, ranking 3rd in terms of betweenness, 5th in terms of degree and network efficiency, and 4th in 

Fig. 7. Spatial distribution of six groups.  

Table 3 
Node degree ranking.  

Name Degree Name Degree 

Chongqing N. Station S. Square 6 Hongtudi 4 
Ranjiaba 5 Guanyinqiao 4 
Wuli dian 5 Sigongli 4 
Chongqing N. Station N. Square 4 Chongqing W. Station 4 
Daping 4 Zengjiayan 4 
Niujiaotuo 4 Hongqihegou 4 
Shangwanlu 4 Shangxinjie 4 
Xiejiawan 4 Xiaoshizi 4 
Liyuchi 4 Central Park E. 4 
Lianglukou 4 Qixinggang 4  
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terms of PFV. The results suggested that all four indicators were generally at a low level, with the exception of a moderate level of 
betweenness. 

Cluster D comprised 2 nodes, ranking 4th in terms of betweenness and network efficiency, 3rd in terms of degree, and 1st in terms of 
PFV. This cluster was distinguished by its highest PFV, while the other three indicators remained at a low level. 

Cluster E contained 19 nodes, ranking 5th in terms of betweenness, 4th in terms of degree, 2nd in terms of network efficiency, and 
6th in terms of the PFV. This category was characterized by a higher network efficiency, while lower betweenness, degree and PFV. 

Cluster F was the largest cluster among the six with a total of 132 nodes. It ranked 6th among all clusters in terms of betweenness 

Fig. 8. Spatial distribution of node degree.  

Table 4 
Betweenness centrality ranking.  

Name Betweenness nBetweenness 

Ranjiaba 8886.22 33.16 
Shapingba 5966.00 22.26 
Chongqing N. Station N. Square 5724.25 21.36 
Daping 5085.31 18.98 
Niujiaotuo 5039.56 18.81 
Toutang 4704.67 17.56 
Sports Park 4625.95 17.26 
Shangwanlu 4604.00 17.18 
Toutang 4556.41 17.00 
Chongqing N. Station S. Square 4530.27 16.91 
Nanqiaosie 4514.95 16.85 
Xiejiawan 4435.91 16.55 
Yudaishan 4432.76 16.54 
Chongqing University 4377.69 16.34 
Wulidian 4324.86 16.14 
Liyuchi 4230.00 15.79 
Min’an Ave. 4132.45 15.42 
Guangdianyuan 4115.18 15.36 
Honghudonglu 4067.45 15.18 
Dongbu Park 4058.62 15.15  
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and network efficiency, and 5th in terms of degree and PFV, indicating that all four indicators were at a low level. 

4. Discussion 

4.1. Topology model of CRT 

The results in Table 2 showed that the current average degree of the CRT network was 2.197. Comparatively, the average degree of 
rail transit networks in some large cities had already reached 2.4 [52], indicating that the mutual crossover among CRT nodes was 
relatively lower. The scatter diagram of degree distribution and cumulative degree distribution further supported this observation, as 
there were relatively few crossed lines in CRT. These findings implied that the CRT network required further improvement in its future 
development. Moreover, the average shortest path length was 15.529 nodes, signifying that the average shortest distance was rela-
tively large, indicating the need to enhance the connectivity of the CRT, which aligned with the fact that the development of RTN in 
China was at a preliminary stage [53]. The clustering coefficient of CRT is relatively low, indicating a weaker connectivity between rail 
transit nodes. From Fig. 1, it could be observed that only the central group exhibit higher network density, while there were fewer 
connections between nodes in the peripheral groups. This suggested that the overall density of the CRT was relatively low, and there 
was an imbalance in the development among different groups. 

Fig. 9. Spatial distribution of betweenness centrality ranking.  

Table 5 
Changes in network efficiency after node failure.  

Name Degree Betweenness centrality ranking Network efficiency after the attack Network efficiency change rate/% 

Ranjiaba 5 1 0.089 11 
Shapingba 5 2 0.091 9 
Baoshuigang 3 7 0.091 9 
Cuntan 2 23 0.092 8 
Heishizi 2 28 0.092 8 
Chongqing W. Station 4 34 0.093 7 
Taipingchong 2 33 0.093 7 
Lijia 3 24 0.094 6 
Tangjiatuo 2 38 0.094 6 
Tieshanping 2 10 0.094 6  
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Fig. 10. Spatial distribution of network efficiency change ranking after node failure.  

Fig. 11. Average PFV of CRT from August 22–28.  
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4.2. Network vulnerability analysis under different indicators 

Through the comparison of Figs. 8–10 and 12, notable disparities emerged in the ranking of key nodes across different metrics. 
Notably, there was no strict positive correlation between network efficiency and degree, betweenness centrality, or PFV. Furthermore, 
The comparison of Figs. 8–10 and 12 with Fig. 7 unveiled distinct distribution patterns of key nodes among groups under varying 
metrics. 

Analyzing Fig. 8 in conjunction with Fig. 7 revealed a notable concentration in the central group, with 90% of nodes exhibiting a 
degree equal to or greater than 4. This concentration was attributed to the abundance of large-scale transfer nodes within the central 
group, contributing to an increased network density. 

Upon comparing Figs. 9–7, it became apparent that nodes with high betweenness centrality fall into two distinct categories: 1) 
central nodes or hub nodes within the central group, often serving as intersections for multiple urban rail transit lines; 2) transitional 
nodes located between the central and northern groups, enhancing connectivity between the two groups with the highest number of 
nodes. 

By comparing Fig. 10 with Fig. 7, it became apparent that nodes significantly influencing network efficiency were mainly situated 
along transitional lines connecting the central group to the peripheral groups. As per the network efficiency definition, removing 
central nodes had minimal impact on network efficiency, given the presence of alternative lines in the denser road networks of the 
central group. On the contrary, removing nodes that connect the central group to the peripheral groups disrupted inter-group con-
nectivity, leading to a substantial change in network efficiency. 

Comparing Figs. 12–7 revealed that nodes with high PFV were primarily concentrated within the central group. This concentration 
could be attributed to the elevated prosperity, the focal point of commercial districts, and the existence of multiple attractions within 

Fig. 12. Spatial distribution of the top 10 nodes in terms of PFV.  

Table 6 
Cluster centers of different indicators of the six clusters.  

Clustering A B C D E F 

Betweenness 1 0.43 0.39 0.32 0.32 0.11 
Degree 0.8 0.6 0.2 0.6 0.3 0.2 
Network efficiency 1 0.26 0.22 0.23 0.51 0.09 
PFV 0.37 0.22 0.2 0.86 0.05 0.1  
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the central group, attracting a dense influx of people. 
In summary, the RTN could be analyzed from four different aspects using the following indicators: degree, which reflected the local 

aggregation ability of nodes; betweenness centrality, which reflected the ability to provide optional paths; network efficiency, which 
reflected the ability to reduce the average path of the whole network; and PFV, which reflected the importance of nodes and edges in 
transportation. Previous studies [17,31,34,36] have also drawn similar conclusions, showing that the ranking of key nodes varied 
significantly under different indicators. Therefore, it was not reasonable to assess the overall function of a node using just one indicator 
without considering its global effects. Additionally, solely relying on holistic indicators did not effectively measure the local clustering 
characteristics of nodes. Furthermore, the impact of PFV carried by nodes and intervals in operation on the RTN could not be ignored. 
Hence, when assessing the network vulnerability, it was crucial to consider the impact of different aspects to get a comprehensive 
understanding. 

4.3. Strategies to improve the vulnerability of RTN 

In order to enhance the response to interference and ensure the safe operation of the system, the corresponding strategies was 
proposed based on the network structure characteristics, vulnerability analysis, and urban spatial structure. 

Nodes of cluster A had the highest network-wide ability to provide alternative routes, the highest ability to reduce rout lengths, the 
highest local impact and higher transportation capacity. Their influence on the entire network, both in terms of physical topology and 
PFV, was substantial. Analyzing the characteristics of the node revealed that Ranjiaba was situated in a densely populated central 
group. As a major interchange hub, it lay along the connecting paths of most nodes, serving as a bridge connecting the central group 
with the northern and Beibei groups. Additionally, it was surrounded by tourist attractions such as parks and squares. Given its 
vulnerability as a critical node, comprehensive improvements should be implemented. To enhance the overall network, the end of 
single-chain lines could be looped to enhance efficiency and network integrity, thereby increasing resistance to damage [54]. On a 
local level, additional transfer nodes near Ranjiaba would reduce reliance on this central hub [27]. To address PFV concerns, it was 
essential to increase the frequency of rail train and bus services on this line and improved risk resistance capabilities of the nodes and 
adjacent nodes. Such measures would enable timely diversion of unexpected interferences, mitigating adverse impacts. Additionally, 
priority should be given to these nodes when establishing emergency facilities for the RTN [21,55]. 

Cluster B nodes possessed the second-highest local impact capacity, ability to provide alternative routes, and showed higher ef-
ficiency in reducing route length and transportation capacity. An analysis of the nodes characteristics revealed that 87.5% of the nodes 
were situated in the central group, while 12.5% of the nodes were located in the northern group. Importantly, all of these nodes served 
as major interchange hubs, with a degree of connectivity equal to or greater than 4. On the periphery of the network, there were fewer 
interchange nodes, resulting in a lower number of nodes extending outward. The key node identification indicators for this cluster were 
slightly lower than those of cluster A. Consequently, similar strategies could be employed, considering them as the second priority 
nodes. 

Nodes of cluster C had higher ability to provide alternative routes, but lower local impact and transportation capacity, as well as 
lower ability to reduce route length. An analysis of the nodes characteristics revealed that these nodes could be divided into two 
categories: 1) regular nodes located within the central group, and 2) interchange nodes that connected the central group with the 
southern and northern groups respectively (with a degree of connectivity equal to or less than 3). Consequently, when considering the 
addition of transfer nodes, priority should be given to this cluster to ensure there were more alternative routes for the normal operation 
of the network, particularly when the nodes or lines were under attack. 

Cluster D nodes exhibited the highest transportation capacity and higher local impact capacity, but their ability to provide 
alternative routes and reduce route length was only 20%–30% of that seen in cluster A. The network structure characteristics revealed 
that the two nodes in cluster D were interchange nodes located at the central group, and they possessed significant PFV due to the 
presence of numerous scenic spots or commercial complexes in their vicinity. Therefore, increasing the frequency of the metro and bus 
departures on these lines was necessary. Additionally, efforts should be made to shorten the headway and following distance of 
consecutive trains during peak hours to enhance capacity and accommodate the exceptionally high PFV during busy times [56]. 
Furthermore, it was crucial to ensure seamless connections to adjacent nodes and enhance the risk resistance of the nodes and their 
neighbors. Proper maintenance and repair of the railroad system were also of great significance in facilitating timely diversions and 
minimizing adverse impacts during attacks [57]. 

Cluster E nodes demonstrated a very high ability to reduce route length, but their local impact capability and ability to provide 
optional routes were low, and they possessed the lowest transportation capability. An analysis of the node characteristics revealed that 
nodes of cluster E served as transitional nodes within the northern and southern groups, connecting them individually to the central 
group. Additionally, the majority of these nodes had a degree of connectivity equal to 2. The network structure characteristics revealed 
that these nodes were predominantly interchange nodes located at the edge of the network or single-chain nodes that extend outward. 
To enhance network efficiency and integrity, it was advisable to consider looping the end of such single-chain lines, as this measure 
could play a crucial role in fortifying the network against damage [54]. Additionally, in the event of an unforeseen disruption, ensuring 
the uninterrupted operation of the nearby bus system was essential to safeguard the safety of passengers [58]. 

Cluster F nodes had low global, local, and transportation capacity. Their impact on the whole network was minimal, both in terms 
of topology and PFV. The network structure characteristics revealed that the majority of nodes in this category were common nodes 
located at the peripheral groups. Consequently, in the subsequent operation and maintenance, these nodes held a lower priority. 
Collecting and analyzing the historical accidents related to these nodes, followed by summarizing the vulnerability factors, would aid 
in promoting safety management [59,60]. 
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4.4. Implication and limitation 

This study has put forward optimization schemes and differentiated protection plans for different clusters of nodes in the CRT 
system, with the aim of effectively preventing accidents and minimizing potential losses. The research findings can serve as valuable 
references and decision support for RTN planning, line design, and optimization not only in Chongqing but also in other cities, thus 
laying the foundation for the development of a more secure and reliable RTN. 

Additionally, it was worth mentioning that this paper explored the structure of the RTN by examining the distinctive characteristics 
of mountainous cities through a group-based analysis of its horizontal layout. However, the vertical aspect, specifically the variations 
in elevation between nodes, was not considered. To ensure a more comprehensive analysis, our future research endeavors would 
incorporate the elevation values of the nodes, unveiling the three-dimensional spatial structure of RTN influenced by the unique 
terrain and topography of mountainous cities. 

Furthermore, it was crucial to acknowledge that the topology model of the RTN discussed in this study assumed a non-oriented and 
unweighted network. Practical factors, such as the physical length of tunnels between nodes, the timing and routes of line transfers, the 
capacity of different lines, and political considerations, have not been incorporated into the model. Exploring the relationship between 
these factors and the RTN would be essential for conducting a more comprehensive analysis in the future. 

5. Conclusion 

Taking CRT as an example, this study developed a topology model via spatial L method, and analyzed the network structure 
characteristics based on complex network theory and urban spatial structure. Then the nodes in the RTN were classified into six 
clusters according to the three basic topological indicators as well as the PFV. The main conclusions are shown as follows:  

1) Based on the complex network theory, the network structure characteristic and performance were analyzed, revealing an average 
degree of 2.197, an average shortest path length of 15.529, a network efficiency of 9.972%, and a clustering coefficient of 0.002. 
There existed lack of connection between nodes and topological waste. By conducting a group analysis of nodes based on the 
topography and urban spatial structure of Chongqing, it could be observed that the distribution of nodes exhibited a noticeable 
spatial imbalance, indicating an imbalance in the development among different groups.  

2) The importance ranking of key nodes based on four different indicators showed significant variations. The analysis resulted in the 
identification of six clusters of nodes, each representing distinct global capacity, local capacity, and transportation capacity. For 
instance, nodes in cluster D had a lesser influence on the physical topology but carried more passengers in operation, whereas nodes 
in cluster A were critical to both the physical topology and specific transportation functions.  

3) Considering the characteristics of RTN, it was essential to propose distinct protection and emergency rescue strategies for different 
clusters of nodes. Among all the nodes, Ranjiaba stood out as the most crucial node, drawing high attention due to its overall 
performance, local performance, PFV performance, and actual geographical location. Consequently, comprehensive safety pro-
tection and emergency rescue measures should be implemented. This included establishing connecting loops, adding extra transit 
nodes, increasing departure frequency and improving node accessibility by carrying out infrastructural interventions to enhance 
the network’s vulnerability. 

RTN plays a pivotal role in urban transportation systems and urban economic development. The key node identification method 
developed in this study establishes a theoretical and empirical foundation for evaluating network topology and transportation con-
ditions. Furthermore, the results of this method can assist in controlling critical nodes to reduce the occurrence of accidents. Building 
on this foundation, our future research will explore the following aspects: firstly, we will integrate elevation values as weights for each 
node to construct a spatially weighted three-dimensional network topology model for RTN. This model will allow us to quantitatively 
characterize and analyze the spatial structure of nodes, highlighting the uniqueness of RTN in mountainous cities. Secondly, it would 
be intriguing to introduce new indicators such as rail transit time between nodes, a factor significantly influencing the resilience of the 
overall network by providing alternative paths [61]. Lastly, exploring the vulnerability of the integrated public transportation system 
by combining the RTN and the bus network in further studies is also a worthwhile pursuit. 
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Appendix  

Table 7 
Nodes classification  

Clusters Name Number of 
clusters 

A Ranjiaba 1 
B Chongqing N. Station N. Squear; Daping; Niujiaotuo; Shangwanlu; Chongqing N. Station S. Squear; Xiejiawan; Wulidian; Liyuchi; 

Lianglukou; Hongtudi; Sigongli; Zengjijayan; Hongqihegou; Shangxinjie; Central Park E.; Qixinggang 
16 

C Sports Park; Toutang; Nanqiaosi; Yudaishan; Min’an Ave.; Guangdianyuan; Honghudonglu; Dongbu Park; Dazhulin; Kangzhuang; 
Minxinjiayuan; Jiuquhe; Sanyawan; Yuanjiagang; Dalongshan; Huahuiyuan; Chongqing Technology & Business University; 
Shiqiaopu; Terminal 2 of Jiangbei Airport; Shiyoulu; Liugongli; Xietaizi 

22 

D Guanyingqiao; Xiaoshizi 2 
E Baoshuigang; Cuntan; Lijia; Heishizi; Taipingchong; Chongqing W. Station; Tangjiatuo; Tieshanping; Luqi; Guoyuan Logistics Hub; 

Huayansi; Yuzui; Huachenglu; Yuelai; Yanping; Banshan; Zhongliangshan; Bijin; Jinshansi 
19 

F Gailanxi; Eling; Huanshan Park; Huaxinjie; Changhe; Happy Valley; Chongqing Jiaotong University; Longtousi Park; Terminal 3 of 
Jiangbei Airport; Shiheqing; Huangmaoping; Haitangxi; Qinggangping; Gaoyikou; Luajiaba; Fusheng; Jinjianlu; Liziba; Ping’an; 
Fotuguan; Jiangbeicheng; Baoshenghu; Sanbanxi; Huayan Center; Dajuyuan; Xingke Ave.; Longtousi; Dadukou; Longyi Ave.; 
Xingfu Squear; Tiaodeng; Caojiawan; Wangjiazhuang; Olympic Sport Center; Tongjiayuanzi; Xinshancun; Nanhu; Haixialu; Central 
Park; Danzishi; Hejialiang; Tongyuanju; Central Park W.; Chenjiaping; Tushan; Jinyu; Laijiaqiao; Shuangfengqiao; Longxing; 
Renhe; Caijia; Shilinsi; Qingxihe; Shipanhe; Tiantangbao; Renji; Gongmao; Yulu; Caiyunhu; Erlang; Hualong; Nanping; 
Mahuangliang; Jintonglu; Jianqiao; Weidianyuan; Konggang Squear; Gaoshita; Hemulu; Xiangjiagang; Jiulongyuan; Liujiayuanzi; 
Shixinlu; Lijiaping; Yuanyang; Jinjiawan; Bashan; Hualongqiao; Yubei Squear; Chenjiaqiao; Gaobaohu; Pufu; Chongguang; 
Liujiaping; Longfengxi; Shuangfu; Siyuan; Jiaochangkou; The EXPO Garden; Fengxilu; Fuhualu; Lushan; Liujiaba; Hongyancun; 
Cuiyun; Daxuecheng; Guanyuelu; Tongxinlin; Huxiajie; Changshengqiao; Zhuangyuanbei; Xiangtang; Huangnibang; Changfulu; 
Baijusi; Shuanglong; Huixing; Liujiatai; Jiazhoulu; Shiziping; Daxigou; Jiandingpo; Lianhua; Shichuan; Danhe; Qiujiawan; S. W. 
University; Jiangjin High-Speed Railway; Yudong; Zhengjiayuanzi; Tangjiayuanzi; Huanghuayuan; Linjiangmen; Chaotianmen; 
Bishan; Jurenba; Huangling; International EXPO Center; Dashiba; Chayuan; Beibei; Shengquansi 

132  
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