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of nerve impulses
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Abstract

Background: Stochastic processes leading voltage-gated ion channel dynamics on the nerve cell membrane are a
sufficient condition to describe membrane conductance through statistical mechanics of disordered and complex systems.

Results: Voltage-gated ion channels in the nerve cell membrane are described by the Ising model. Stochastic
circuit elements called “Ising Neural Machines” are introduced. Action potentials are described as quasi-particles of a statistical
field theory for the Ising system.

Conclusions: The particle description of action potentials is a new point of view and a powerful tool to
describe the generation and propagation of nerve impulses, especially when classical electrophysiological
models break down.
The particle description of action potentials allows us to develop a new generation of devices to study
neurodegenerative and demyelinating diseases as Multiple Sclerosis and Alzheimer’s disease, even integrated
by connectomes. It is also suitable for the study of complex networks, quantum computing, artificial
intelligence, machine and deep learning, cryptography, ultra-fast lines for entanglement experiments and
many other applications of medical, physical and engineering interest.

Keywords: Action potentials, Ion channels, Hodgkin-Huxley model, Ising model, Statistical field theory, Quasi
particles, Multiple sclerosis, Particle physics, Complex networks

Background
In 1952 British physiologists Sir Alan Lloyd Hodgkin
(1914–1998) and Sir Andrew Fielding Huxley (1917–
2012) at the University of Cambridge demonstrated
the existence of selective and voltage-dependent ion
channels in the nerve cell membrane with five fam-
ous pioneers works published in the Journal of
Physiology. They received the Nobel Prize for Medi-
cine in 1963 together with the Australian physiolo-
gist Sir John Carew Eccles (1903–1997) [1–5].
Nowadays, after almost 68 years, the success and
evolution of the Hodgkin and Huxley models, here-
inafter referred to simply as” HH models”, are still
alive and continuously stimulate the development of

new topics and branches of physiology and neurosci-
ences [5–8]. In 1976, the “Patch Clamp” method, de-
veloped by Erwin Neher and Bert Sakmann [9], who
received the Nobel Prize in Medicine in 1991, dem-
onstrated among other things:
1. Microcurrents. The existence of microscopic elec-

tric currents of intensity in the order of pA (picoampere)
that flow through each ion channel, transporting on
average thousands of ions per millisecond (Fig. 1);
2. Stochastic channels. The stochastic dynamics of

opening/closing (“gating”) of each ion channel.

Methods
The recording of current flow through individual
channels (Fig. 1), shows stochastic fluctuations be-
tween closed and open states. This is a sufficient
condition to define the concept of membrane
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conductance through statistical mechanics of disordered
and complex systems [10–15]. We will therefore start from
the basic formalism developed by Hodgkin and Huxley to
describe the processes carried out by the conductances of
the Na+ and K+ channels to explain the generation of action
potentials. The opening and closing of voltage-gated ion
channels (“gating”) is a physical process that involves com-
plex conformational changes in the structure of each chan-
nel, or in the sub-units of which it is composed. Opening a
gate is generally called “conductance activation”, while clos-
ing “conductance deactivation” [5–8].

The Ising model
We define gating as an Ising spin variable. We will
therefore consider a distribution of N voltage-dependent
ion channels on an elementary region (slice) of a nerve
membrane (axon) made by a thin ring of radius ρ ≈
10 μm and thickness h ≈1 nm. (See Fig. 2). A population
of N ion channels of a certain superfamily (Na+, K+, Cl−,
..) will be distributed on an axon section made by a thin
ring (represented in Fig. 2 and topologically modeled in
Fig. 3), formally described by the Hamiltonian of the
one dimensional Ising Model for each superfamily of
channels:

HI ¼ − J
XN

i¼1
SiSiþ1 − ϕ

XN

i¼1
Si ð1Þ

The border condition (See Fig. 3) is SN + 1 = S1, where
Si are N Ising variables (Si = +1 corresponds to an open
channel state, while Si = − 1 corresponds to a closed
channel state, for i = 1, ….,N). The energy of interaction
between the channels of the same superfamily is repre-
sented by the variable J > 0, which we assume isotropic
and” ferromagnetic”, while ϕ (mV) is the electrochemical
driving force, hereinafter called “driving force” ϕ = V -
Eγ where V (mV) is the membrane potential and Eγ
(mV) is the equilibrium potential of each superfamily of
ion channels.
The Helmholtz Free Energy will be [13].

AI ϕ; βð Þ ¼ −NJ −
N
β

log cosh βϕð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 βϕð Þ þ e − 4βJ

q� �

ð2Þ

And the magnetization will be

Fig. 1 The flow of an ionic current of the order of 6.6 pA through a small axonal membrane element shows eight ion channel openings
(corresponding to a flow of 4.1 × 107 ions per second through a single pore). (Courtesy of B. Hille, [5])

Fig. 2 N voltage-dependent ion channels on an elementary region (slice) of an axon made by a thin ring of radius ρ ≈10 μm and
thickness h ≈1 nm
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MI ϕ; βð Þ ¼
XN

i¼1
Si

D E
¼ −

∂
∂ϕ

AI ϕ; βð Þ½ �

¼ Nsinh βϕð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 βϕð Þ þ e − 4βJ

q ð3Þ

Where β ¼ 1
kBT

; kB is the Boltzmann constant and T

the absolute temperature. We will see shortly what the
observables of the Ising model mean in our case, above
all the magnetization, which will be our main observable.
Before that it is necessary to discuss a formal issue about
the relationship between our stochastic model and the

Hodgkin-Huxley model, which will help us to explain
our choices.

Ising and Hodgkin-Huxley
The sigmoid distribution of spin magnetization repro-
duced in Fig. 4 recalls the activation and inactivation
limit functions n∞, m∞, h∞ defined by the HH models
(Fig. 5) and the conductances in function of the mem-
brane potential for the Na+ and K+ channels (Fig. 6).
The sigmoid characteristic is typical of a cooperative
process, as in the present case. In the HH model, the
limit function for the conductance is

n∞ ϕð Þ ¼ αn ϕð Þ
αn ϕð Þ þ βn ϕð Þ ð4Þ

expressed by the gating fractions αn(V) and βn(V) as a
function of the potential [5, 7, 8].
The gating fractions are defined on the basis of general

thermodynamic considerations (Boltzmann) [5, 7, 8].

n∞ Vð Þ ¼ 1

1þ A2

A1

� �
exp

B1 − B2ð Þϕ
ϕT

� � ð5Þ

In the present case, the choice of the one-dimensional
Ising model obeys a different methodological choice that
we use to call “congruence” because it wants to express
a “special” link between the physics of gating process
and its mathematical law in a closed form, that is with-
out using a “metatheory”. Therefore, to interpolate the
experimental data (Fig. 6), we discard function (5) of the
HH model because it is a “metatheory”, but we choose

Fig. 3 Topology of the one-dimensional Ising model, after K.
Huang [13]

Fig. 4 Spin magnetization in the one-dimensional Ising Model for three different “temperatures” and J = 1
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the one-dimensional Ising model because it presents the
congruence in closed form we are looking for.1

Results
The Ising conductance
Recall the expression (3) for the magnetization in the
one-dimensional Ising model. According to our meth-
odological constraint, here the magnetization becomes
the conductance of the nerve membrane.
We thus define the “Ising conductance” gI as the

magnetization:

gI≔MI ¼
XN

i¼1
Si

D E
ð6Þ

In practice, we will consider the specific conductance
(mSiemens / cm2) so that the membrane current per
unit area will be expressed by Ohm’s Law

im ¼ gI V − Eγ
� � ð7Þ

Where V (mV) is the membrane potential and Eγ
(mV) is the equilibrium potential of each superfamily of
channels.
From our model we define a stochastic circuit element

which we call for convenience of reading “Ising Neural
Machine” (INM), briefly “Ising Machine” (which we ab-
breviate as “Ising N-Machines”, “INMs” or just “Ising
Machines”) and we indicate it with a rhomboid frame
icon.2 We place the INMs in the equivalent circuit with
single compartment of Fig. 7 defined for two superfam-
ilies of ion channels (Na+ and K+).
Now we want to discuss the problem of the generation

of action potentials. In the following we will for brevity
refer to action potentials as spikes.

Nuons
With reference to Fig. 8 [6], which shows the recon-
struction of an action potential after Hodgkin and Hux-
ley, 1952d [4, 6], we find that an increase in the
conductance of the Na+ channels triggers a spike. A flow
of Na+ ions enters the nerve cell, causing the membrane
potential to depolarize up to the ENa value. The
depolarization activates the (delayed) conductance of the
K+ channels which provokes the escape of K+ ions from
the nerve cell, thus blocking the Na+ channels and repo-
larizing the membrane up to the EK value (“refractory
period”). Since K+ conductance becomes transiently
higher than its rest value, the membrane potential ex-
ceeds its negative rest value (“hyperpolarization”), so that

Fig. 5 Characteristic limit ratios as a function of membrane potential in the HH model. The figure on the left shows the limit functions for
activating the K+ conductance (n∞) and the activation and inactivation functions for the Na+ conductance (m∞, h∞). The relative time constants
(as a function of potential) are shown on the right. (courtesy of P. Dayan et Al., [8])

1The concept of congruence was used by the present author in the
context of the unconventional statistical calculus system called “SHT”,
based on the theory of categories and intended for the study of
complex and disordered systems (derived and patented between 1997
and 2011 [16]). From a practical point of view, the SHT calculus does
not “destructively interfere” with the sample, but analyzes the system
sic rebus stantibus, considering also the “junk”, the environmental
background and the noise. SHT treats the sample as a “dynamic
system”. It studies maps and transforms, looks for critical points and
transitions, bifurcations and attractors. For example, if SHT finds an
attractor, it will become a “category” of the experiment. This is
precisely our meaning of “congruence”. From a statistical point of
view, a congruent model has the same properties as a probability
density. Any metatheory is not a category of the experiment. In the
case of very large and complex systems, the analysis is generally
carried out on many logical levels (see for example some works on
complex systems and particle physics [17, 18]). In other cases, the
analysis is conducted by arranging the data on an REM energy
landscape and studying the configurations of minimum entropy [19].

2As a functional icon synonymous of complexity, we chose the
“complex” polyhedron called Icosi-icosahedron first described by Ed-
mund Hess in 1876. It is the result from the auto dual composition of
10 tetrahedra enclosing a dodecahedron, all intersected by an icosahe-
dron. The compound of ten tetrahedra is one of the five regular poly-
hedral compounds. This polyhedron can be seen as either a stellation
of the icosahedron or a compound. The vertices correspond to the
pairs 2 {5,3} [10 {3,3}] 2 {3,5}. After “Polytopes and their Incident
Matrices”, courtesy of Richard Klitzing [20, 21].
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both the K+ conductance and the (possibly) residual Na+

conductance are inactivated. Finally, the membrane
returns to its resting value and it is ready to trigger a
new spike.
With reference to the next Fig. 9, the local

depolarization of the nerve membrane is started by a
current of carriers (i.e. a synaptic potential, an artificial
stimulus, or a passive current) which triggers a spike
(see Fig. 9a and d). From our point of view, consider for
a certain instant t > 0 a single carrier triggering a pair of
“Ising machines” (Na+/K+) housed into an annular sec-
tion of the nerve cell membrane (See Figs. 2, 9b and e).
As it will be clarified below, only one annular section is
activated at a time t > 0.

At this point, we remind that the activation of the
voltage-dependent ion channels involves reversible
conformational changes in the membrane of the
nerve cell (gating) which configure a structural de-
formation of the membrane itself. The deformation
tends to chase the carrier and to propagate along
the nerve axis in the direction of the carrier itself,
activating one annular section at a time. The refrac-
tory period prevents the spike from propagating
backwards and, at the same time, stops the gener-
ation of further spikes, in order to fire one spike at
a time.
This phenomenon shows strong similarities with the

concept of polaron by H. Fröhlich [22–27] which de-
scribes an electron that moves with its field of de-
formation (see also RP Feynman, 1954, [28, 29]). In
that case, the carrier together with the induced de-
formation can be considered as one entity: a quasi-
particle called polaron.
In the present case, following H. Fröhlich’s con-

cept of polaron, we define the spike wave function
Ψ spike by exploiting the formalism of the “Produkt-
Ansatz” by L. D. Landau (1933) [30] as the follow-
ing (in kets):

Ψspike >¼ φ rð Þcarrier
				 		field≔ j φ rð Þcarrier j Ising ð8Þ

Where | φ(r)carrier is the carrier wave function while
∣field is the field of the Ising Machine and r is the
position operator of the carrier along the axon axis in
the direction of propagation of the carrier.
The total Fröhlich Hamiltonian function of our model

will be given by:

H ¼ HCarrier þ HIsing þ HCarrier⋇Ising

¼ p2

2mc
þ HIsing þ HCarrier⋇Ising ð9Þ

Where p is the canonically conjugate momentum
operator of the carrier of mass mc and HIsing the

Fig. 6 Conductances as a function of the membrane potential for the Na+(left) and K+(right) channels. (Courtesy of Purves [6], after Hodgkin and
Huxley [2])

Fig. 7 The “Ising Neural Machine”. The equivalent single
compartment circuit containing two stochastic elements called
“Ising Neural Machines”, respectively for the Na+channels and for the
K+channel s[1]. By “inside” and “outside” is meant inside and outside
the nerve cell membrane. The specific capacity of the membrane is
indicated as cm while iL, gL and EL indicate respectively the “leakage
current ”[2] per unit area, the leakage conductance and potential.
The currents leaving the two Ising machines are total currents (per
unit area)

Zangari del Balzo Theoretical Biology and Medical Modelling            (2021) 18:1 Page 5 of 10



Hamiltonian function (1). In this way, we can inter-
pret the spike as a quasi- particle which represents
the carrier together with the induced deformation on
the nerve cell membrane.
We call this quasi-particle nuon and denote it with the

letter ñ. The statistical field theory that foresees the con-
cept of nuon will for brevity be called SFT [ñ].
As a first approximation, if we consider the density of

ion channels on the axonal membrane of non-
myelinated axons almost constant [6, 31–34], we can
neglect the composition terms HCarrier*Ising in (9) after
the trigger of the first spike, because the process is ruled
only by the Ising machines.
Therefore, we consider the process of generation and

transmission of a spike for a time t > τ, where τ is the
generation time of each spike by each pair (Na/K) of
Ising Machines. If we indicate with s the coordinate
along with the axis of the axon (which coincides with
the axis of the coaxial annular sections), then each sec-
tion (housing a pair of Ising Machines Na/K) will be
traveled in a time t by the coordinate s = s (t) Therefore,
the velocity v = ds/dt of the nuon will be given by the
limit of the difference quotient Δs/Δt with Δt ≠ 0. Our
choice of the one-dimensional Ising model is thus clear.
Finally, we will have

H ≈
p2

2mc
þ HIsing ð10Þ

Discussion
The saltatory conduction
An application case of neurological interest is that of the
so-called “saltatory conduction” in myelinated axons.
Measures of the average velocity of spikes in non-
myelinated axons are between 0, 5 and 10m/s, while in
myelinated axons are up to circa 150 m/s [6, 31–34].
Multiple Sclerosis (MS) is a serious pathology of the
central nervous system (CNS) characterized by a com-
plex of clinical disorders caused by the bad conduction
of spikes, as a consequence of damage and/or total or
partial loss of the myelin sheath (demyelination) due to
the inflammation of the axon pathways [6, 31–35]. The
study of saltatory conduction is therefore crucial to
understand and deal with these serious diseases. Salta-
tory conduction is described by means of the “cable the-
ory”. Let’s now see how some relations derived from
cable theory can be interpreted in the context of SFT
[ñ]. We can model the myelin sheath as composed of a
series of concentric thin cylindrical surfaces of length L,
capacity per unit of area cm and thickness dm distributed
from the radius a1 of the axon core to the external ra-
dius a2, that is to the axon radius (See next Fig. 10).
We will then have a total capacity Cm (series) given by

the following relations [8]

1
Cm

¼ 1
cm2πdmL

Z a2

a1

da
a

¼
ln

a2
a1

� �

cm2πdmL
ð11Þ

Where the myelin sheath extends from the radius a1
of the axon core to the outer radius a2, that is to the
axon radius (See Fig. 10d, e).
Performing the (linear) cable theory, we obtain the dif-

fusion equation:

Cm

L
∂v
∂t

¼ πa21
rL

∂2v
∂x2

ð12Þ

The diffusion coefficient is:

D ¼ πa21L
CmrL

¼
a21 ln

a2
a1

� �

2cmrLdm
ð13Þ

Where rL is the intracellular resistivity. The optimal
value of the internal radius a1 - which maximizes the dif-
fusion constant- is a1~0.6a2 [8]. In the case of a myelin-
ated axon the propagation velocity is thus proportional
to the outer radius a2, that is to the axon radius, while
for an unmyelinated axon it is proportional to the square
root of the axon radius (a2) [8].

Fig. 8 Reconstruction of an action potential after Hodgkin and
Huxley, 1952d [4], courtesy of Purves [6]
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v∼a2: ð14Þ

Let us show with an example the versatility of the
particle description of nerve impulses. Here we ex-
ploit the physics of particle accelerators [39, 40] be-
cause from our point of view the functionality of a
myelinated axon is that of a (micro) linear particle ac-
celerator (μLINAC).
The myelinated regions behave like Faraday cages

(drift tubes) while at the gaps of the nodes of Ranvier
there is a non-zero electric field that provides the accel-
eration of the particle along the axon (see Fig. 10f). Dur-
ing the acceleration the velocity increases monotonically.
In the ith drift tube the velocity vi is reached. Now, con-
sidering the effective mass m ñ of a nuon, we thus have
an energy:

Ei ¼ 1
2
m~nv

2
i ð15Þ

From cable theory we deduce that the average velocity
is proportional to the radius of the myelin axon (14). In
this way, we can estimate the effective mass and charge
of the nuon and the modulus of the electric field at the
nodes of Ranvier. This is a crucial result. To explain the
biophysical mechanism of demyelinating pathologies we
can use the nuon model because it provides advantages
over the “classic” electrophysiological description. How-
ever, the model is congruent with the “classic” descrip-
tion because a spike is the electrophysiological trace and
probe of the passage of a nuon.
Demyelination, due to the interruption of the parano-

dal myelin circuits, causes the dispersion of all the ion
channels, pumps and exchangers along the axon [6, 31–

Fig. 9 Spikes and nuons. a and d (modified after D. Purves, [6]), show the motion of a spike for t = 1 and t = 3 (arbitrary units). b and e show the
trigger of a pair of Na+/K+ Ising machines housed in annular regions of the membrane for t = 1 and t = 3 (arbitrary units). c and f show the
motion of a nuon along the axon for t = 1 and t = 3 (arbitrary units)
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36]. Sodium overload causes axonal calcium to reach
toxic levels and so on [31]. As the conduction velocity in
normal conditions (up to circa 150 m/s) is much higher
than the velocity in pathological conditions (about 5 or
10 m/s), we can predict that, in pathological conditions,
the resultant of the field-forces on the system will con-
tain a finite set of deterministic dissipative fields acting
on the demyelinated axon, generating instabilities and
losses (that we can think as in the damaged drift tubes
of our μLINAC). This model can also offer an operative
tool characterized by self-similarity and reproducibility
properties for polytype diffusion, since the etiology of
the disease is presumably caused by a pathological (in-
flammatory) process that affects the whole body. Know-
ledge and measurement of these dissipative fields can
therefore lead to significant progress in the study and
treatment of neurodegenerative and demyelinating dis-
eases. Furthermore, our considerations on the dissipative

field model can be used to define a special circuitry
intended to integrate the equivalent models (See Rich-
ardson [41]).

Conclusions and possible insights
In this work we found a particle description of action po-
tentials, based on considerations of statistical mechanics
of complex and disordered systems, independently of clas-
sic electrophysiological models, such as Hodgkin-Huxley
(HH).
Nevertheless, as soon as we consider the action poten-

tial as the electro-physiological trace of the nuon, we
thus have the opportunity to exploit a full dualism of
points of view and formal descriptions in order to de-
scribe the generation and propagation of nerve impulses,
especially when classic electrophysiological models break
down. In this case, SFT [ñ] is a powerful tool that allows
us to use the techniques and results of theoretical and

Fig. 10 Nodes of Ranvier and Myelin Sheath. a-Courtesy of Anne Desmazieres et. Al. [36]. b-Courtesy of Prof. Peter Brophy [37]. c-Transmission
electron micrograph of a myelinated axon. The myelin layer (concentric) surrounds the axon of a neuron, showing cytoplasmathic organs inside
[38]. d, e-The nodes of Ranvier and the myelinated regions of an axon are represented as an equivalent circuit within a intercompartmental
model, modified after F, Dayan et al., [8]. f-Schematic of our model a μLINAC, where an electric field acts in the nodes of Ranvier and accelerates
the nuons in the myelinated sections that behave like drift tubes
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general physics [42, 43]. As we have just pointed out in
the previous paragraph for the case of saltatory conduc-
tion, it is advantageous to exploit the dualism perform-
ing both the representations. But we expect the dual
representation to be useful in many other cases as well.
Functional Magnetic Resonance (fMRI) can be inte-
grated by specific hardware devices and algorithms cur-
rently employed in particle physics in order to obtain
real-time velocity field maps, even led by connectomes
[44]. A detailed integrated real time imaging is therefore
suitable to study a non-active area of the brain (i.e. in
the presence of ischemia, injury, ictus, neurodegenerative
pathology or tumor), by considering an” activity” tensor
dependent on the nuon frequencies and fluxes defined
on a dendritic density field [45]. Furthermore, the study
of the activity tensor with the particle model can try to
explain evolutionary puzzles related to multiple sclerosis,
difficult to solve with electrophysiological models (see
[46]). Other possible applications will exploit “nuon cod-
ing” [7] to study and develop complex networks,
quantum computing, artificial intelligence, machine and
deep learning, cryptography, ultra-fast lines for entangle-
ment experiments and so on. A particle model of synap-
tic transmission through a “nuon number” conservation
law can be also derived and will be the subject of a future
work.
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