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This Special Issue collects current knowledge on the molecular mechanisms underly-
ing mitochondrial dysfunction and its related diseases, as well as therapies and perspectives
pertaining to their treatment. Mitochondrial dysfunction can be the primary cause or a
secondary effect of many human disorders, including neurodegenerative diseases, obesity
and cancer. However, mitochondrial diseases specifically refer to a group of heterogeneous
disorders characterized by impaired oxidative phosphorylation, the process by which cells
transform nutrient-derived energy into ATP [1]. Mutations in both the nuclear and mito-
chondrial genomes can lead to mitochondrial dysfunction, and a growing body of evidence
suggests that the crosstalk between the two genomes coordinates both mitochondrial and
cellular functionality. In the case of mitochondria-to-nucleus retrograde signaling, the
dysfunctional organelle induces alterations in the expression of nuclear genes that look
to preserve functional mitochondria while eliminating defective ones [2]. Mitochondrial
DNA (mtDNA)—a circular molecule of about 16.5 Kb in mammals, which is present in
multiple copies—encodes 13 core proteins of complexes I, III, IV and V of the respiratory
chain, as well as 22 tRNAs and 2 rRNAs required for their translation inside the mito-
chondrion. All the other proteins required for mtDNA replication and maintenance are
encoded in the nuclear genome and actively imported into the mitochondria [1]. Due to
the highly oxidative environment and the very few non-coding regions, mtDNA mutations
are frequent and usually affect coding sequences; this leads to a recessive-like condition
termed heteroplasmy, characterized by a mixture of wild-type and mutated mtDNA [3].
Nevertheless, the polyploid state guarantees the synthesis of enough functional mtDNA-
encoded polypeptides, tRNA or rRNA over the mutated ones. The permissive threshold
and physiopathological relevance are discussed in this Special Issue by Perez-Amado and
colleagues. They review how heteroplasmy might evolve towards a predominant wild-type
or mutated genotype in the cell, reporting mtDNA mutations that prevail in specific tumors
with respect to the non-tumoral tissue, and suggest a positive contribution to the prolifer-
ation and survival of neoplastic cells [4] (Figure 1). Furthermore, Ramòn and colleagues
discuss the processes and proteins governing mtDNA copy number and stability, in which
dysregulation triggers the onset of mtDNA depletion and deletion syndromes [5].

Another fascinating topic is that of why and how mtDNA is released from mitochon-
dria. The presence of circulating mtDNA in the plasma of patients with different pathologi-
cal conditions was initially considered a technical problem during blood withdrawal and
processing. However, a few years ago, several groups described an inflammatory response
triggered by mtDNA release or mtRNAs during apoptosis [6,7]. In the cytosol, the mtDNA
molecule triggers a pro-inflammatory and type-I interferon response by activating multiple
sensor pathways. These aspects are herein reviewed by Luna-Sanchez and colleagues. The
authors also discuss how aberrant innate immune signaling might contribute to the devel-
opment of neurodegenerative disorders such as Huntington’s disease and Amyotrophic
lateral sclerosis, or whether mt-nucleic acid release can be considered an age-related phys-
iological marker [8]. To identify the molecular events regulating mtDNA release, it is
necessary to better understand how mtDNA is organized in nucleoids, how nucleoid sta-
bility is controlled, and whether mtDNA and mtRNA release are independent or linked.
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Although mtDNA replication, transcription and translation occur contextually, microscopy
and biochemical approaches revealed the presence of nucleic acid–protein aggregates
that likely host mtDNA- or mtRNA-related processes [9–11]. In this Special Issue, Xavier
and colleagues discuss the different putative non-membranous compartmentalization of
mtDNA- and mtRNA-containing granules and their protein composition [12].
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hallmarks. However, the introduction of induced pluripotent stem cells (iPSCs) has 
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of mitochondrial diseases resulting from mutations in genes that encode components of 
the replication/transcription machinery, of nucleotide metabolism, and of mitochondrial 
dynamics. Several approaches have been tested over the last 10 years, including direct 
scavenging of toxic metabolites, enzyme-replacement therapy, hematopoietic stem-cell 
transplantation, liver transplantation, the administration of deoxyribonucleotides, and 
gene therapy. Additionally, metabolic reprogramming may be exploited to improve mi-
tochondrial functions in some cancers by exploiting melatonin, an endogenous compound 
that is able to shift the metabolism from glycolysis to OXPHOS, as discussed by Reiter and 
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Although research on the topic is still in its infancy, the possibility of having a cure 
for at least some mitochondrial diseases and diseases with mitochondrial alterations fi-
nally seems to be looming. 
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A limiting factor in developing new therapies for mitochondrial diseases has been the
substantial lack and/or inappropriateness of suitable models. Mouse models have been,
and still are, central in this process; however, they often fail to recapitulate the clinical
features of human syndromes, even in the presence of the biochemical and molecular
hallmarks. However, the introduction of induced pluripotent stem cells (iPSCs) has changed
this paradigm, as discussed by McKnight and colleagues [13]. Interestingly, the authors
also underscore some limitations in the use of iPSCs, including the challenges related to
their maintenance and differentiation, and the intrinsic difficulties in using differentiated
cells for drug-screening.

Despite the many difficulties in developing therapies for mitochondrial diseases, some
important milestones have been reached, as discussed by Ramòn and colleagues [5]. These
authors focused on mtDNA maintenance defects; these are a highly relevant group of
mitochondrial diseases resulting from mutations in genes that encode components of
the replication/transcription machinery, of nucleotide metabolism, and of mitochondrial
dynamics. Several approaches have been tested over the last 10 years, including direct
scavenging of toxic metabolites, enzyme-replacement therapy, hematopoietic stem-cell
transplantation, liver transplantation, the administration of deoxyribonucleotides, and
gene therapy. Additionally, metabolic reprogramming may be exploited to improve mito-
chondrial functions in some cancers by exploiting melatonin, an endogenous compound
that is able to shift the metabolism from glycolysis to OXPHOS, as discussed by Reiter and
colleagues [14].

Although research on the topic is still in its infancy, the possibility of having a cure for
at least some mitochondrial diseases and diseases with mitochondrial alterations finally
seems to be looming.
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