
ORIGINAL RESEARCH ARTICLE
published: 08 October 2014

doi: 10.3389/fncom.2014.00111

The ISI distribution of the stochastic Hodgkin-Huxley
neuron
Peter F. Rowat1* and Priscilla E. Greenwood2

1 Institute for Neural Computation, University of California, San Diego, La Jolla, CA, USA
2 Mathematics Department, University of British Columbia, Vancouver, BC, Canada

Edited by:

Benjamin Lindner, Bernstein Center
for Computational Neuroscience,
Germany

Reviewed by:

Benjamin Lindner, Bernstein Center
for Computational Neuroscience,
Germany
Sten Rüdiger, Humboldt University
at Berlin, Germany

*Correspondence:

Peter F. Rowat, Institute for Neural
Computation, University of
California, San Diego, 9500 Gilman
Drive, La Jolla, CA 92093, USA
e-mail: prowat@ucsd.edu

The simulation of ion-channel noise has an important role in computational neuroscience.
In recent years several approximate methods of carrying out this simulation have been
published, based on stochastic differential equations, and all giving slightly different
results. The obvious, and essential, question is: which method is the most accurate
and which is most computationally efficient? Here we make a contribution to the
answer. We compare interspike interval histograms from simulated data using four
different approximate stochastic differential equation (SDE) models of the stochastic
Hodgkin-Huxley neuron, as well as the exact Markov chain model simulated by the
Gillespie algorithm. One of the recent SDE models is the same as the Kurtz approximation
first published in 1978. All the models considered give similar ISI histograms over a wide
range of deterministic and stochastic input. Three features of these histograms are an
initial peak, followed by one or more bumps, and then an exponential tail. We explore how
these features depend on deterministic input and on level of channel noise, and explain the
results using the stochastic dynamics of the model. We conclude with a rough ranking of
the four SDE models with respect to the similarity of their ISI histograms to the histogram
of the exact Markov chain model.
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1. INTRODUCTION
Channel noise is important because it contributes to spike-time
variability (Sigworth, 1980; White et al., 2000) and has been
shown to be essential for subthreshold oscillations in stellate cells
(White et al., 1998; Dorval and White, 2005), and for response
variability in sensory cells (Fisch et al., 2012). In addition it
contributes importantly to intrinsic irregular firing in cortical
interneurons (Englitz et al., 2008; Stiefel et al., 2013), while in cer-
tain small neurons a single channel opening can initiate a spike
(Lynch and Barry, 1989).

In this paper we compare published SDE approximation meth-
ods that simulate the stochastic Hodgkin-Huxley (HH) neuron
model, by comparing the inter-spike-interval (ISI) distributions
produced when driven by a constant DC current I. Theoretical
work on the ISI distributions of stochastic neuron models was
carried out by Chow and White (1996); Gerstein and Mandelbrot
(1964); Gutkin and Ermentrout (1998); Tuckwell (2005), and
Wilbur and Rinzel (1983).

In all cases the deterministic model used as a basis for the var-
ious stochastic schemes is the classical model of Hodgkin and
Huxley (1952). This model was introduced to describe action
potentials in the squid giant axon, and remains a foundation of
modern neuroscience. Its dynamics comprise a subcritical Hopf
bifurcation together with a switching region in phase space where
a fixed point is near to a limit cycle, the two being separated by
an unstable limit cycle (Figures 1A,B). Thus, the deterministic

HH model has a bistable range: when the input current, I, lies
between 6.2 and 9.8 µA/cm2 (approximately) it is either spik-
ing tonically—represented by the system traversing the locally
stable limit cycle—or is quiescent—represented by the system spi-
raling inside the unstable limit cycle in toward the fixed point.
When noise is present, and a trajectory traverses the switch-
ing region where the fixed point is close to the stable limit
cycle, the system can switch between limit cycle behavior and
quiescence. Thus, its overall behavior exhibits irregular switch-
ing between bursts of tonic spiking and periods of quiescence.
This stochastic behavior continues to occur for a considerable
range of the input, I, both below and above the determinis-
tic bistable region I = [6.2, 9.8] (Yu and Lewis, 1989; Rowat,
2007).

Here we study the dependence of firing and quiescence pat-
terns on the way noise is modeled, as reflected in the resulting
distribution of inter-spike intervals (ISIs). The models we investi-
gate are presented and studied in the papers by Fox and Lu (1994),
Fox (1997), Goldwyn et al. (2011), Linaro et al. (2011), Orio and
Soudry (2012), and Güler (2013).

In the standard stochastic model for the HH neuron each
potassium channel has four binary gates, all of which must
be open for potassium to be conducted. Each sodium chan-
nel has three activation gates and one inactivation gate, pro-
ducing eight states, the channel being open only when it is
in a particular one of these states [for complete details see
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FIGURE 1 | (A) Bifurcation diagram of the deterministic Hodgkin-Huxley
model. Solid line, stable fixed point (SFP). Long-dashed line, unstable fixed
point (UFP). Dot-dashed lines, extreme values of voltage on the stable limit
cycle (SLC). Short-dashed lines, extreme voltage values on the unstable
limit cycle (ULC). (B) The switching region in the two-dimensional
Morris-Lecar model neuron. A similar, but four-dimensional, region is
present in the Hodgin-Huxley phase-space. (B1) The fixed point is very
close to the stable limit cycle with an unstable limit cycle (ULC) between
them. Inset: the switching region, enlarged. (B2) This shows a noisy
trajectory that emits one spike followed by sub-threshold oscillation inside
the ULC and then another spike.

Rowat (2007)]. The voltage dependent rates of moving between
states have been established from data by Hodgkin and Huxley
(1952).

A Markov chain algorithm for keeping track of the number of
channels in each state was developed by Chow and White (1996),
Gillespie (1977), and Skaugen and Walløe (1979). The algorithm
was used by Rowat (2007) to compute several aspects of HH
stochastic dynamics. This “exact” method of simulation of the
stochastic HH we call the Micro model.

Because of both computation speed and ease of analysis, it is
useful to replace the Micro Markov chain model with a system of
stochastic differential equations, an SDE model. In fact we were
shown how to do this already in a paper of Kurtz (1978), where
a system of SDE’s is constructed that approximates a density

dependent Markov chain at a rate depending on population size
N, with error of order log (N)/N.

Without knowing about the results of Kurtz (1978), authors
of a number of papers, Fox (1997); Güler (2013); Linaro et al.
(2011), and Orio and Soudry (2012), have devised systems of
SDEs to approximate the Micro model. In fact Orio and Soudry
(2012), using heuristics, derived the same set of approximating
SDEs which a theorem of Kurtz (1978) defines for the Micro
model. Here we call this model the Orio-Kurtz or simply Orio
model, and sometimes the Kurtz approximation. However, it
should be kept in mind that Kurtz proved the approximation for
general Markov chain models in 1978. The complete Langevin
system of SDEs proposed by Fox (1997), which requires taking
two matrix square-roots at every time-step, was implemented for
the first time by Goldwyn et al. (2011) so we sometimes refer to
this as the Fox-Goldwyn model.

In neuroscience it is widely accepted that the distribution of
spike timing, not simply mean spike frequency, is important.
While the Micro, Fox-Goldwyn, Güler, Linaro, and Orio-Kurtz
models all produce nearly the same mean spike frequency, it is
not known how well these models capture the inter-spike-interval
(ISI) distributions of the Micro model. Here we generate and
compare the ISI distributions of the four SDE models with the
ISI distributions of the Micro model, for a range of input cur-
rent, I, that includes the region of bistability in the deterministic
Hodgkin-Huxley model.

We find that, in fact, the ISI distribution is quite similar for
all these models over a large range of (constant) determinis-
tic inputs, I, and over a large range of channel numbers, which
are proportional to A, the membrane area used. This result is,
in fact, expected from analytic considerations, since, arguably,
all the models are at least fairly well-approximated by the same
diffusion process (Kurtz, 1978), which is based on a approxima-
tion theorem with a known error rate and can be regarded as
a “gold standard.” We will see that both the Fox-Goldwyn and
the Orio-Kurtz approximations give ISI distributions which are
both quite close to that of the approximated Markov chain model.
The Güler model compares well with the Fox-Goldwyn and Orio-
Kurtz approximations while the Linaro model is somewhat less
successful.

Our second main result is the first detailed description of the
form of the ISI distribution of the stochastic HH, which appears
in Section 3. In addition we explore how each of the features of the
ISI distribution depends on I, the input to the model neuron, and
on the number of channels in play, which is functionally related
to the standard deviation of the noise in the system.

1.1. FOUR SDE MODELS OF HODGKIN-HUXLEY NOISE
The current conservation equation for voltage V (mV) and
applied current I (µA/cm2) in the deterministic HH model is

CV̇ = I − [
gNa(V − VNa) + gK (V − VK ) + gL(V − VL)

]
(1)

where the constants are given in Table 1.
Equation (1) is the deterministic basis of the four stochastic

differential equation (SDE) models we study: the Fox approxi-
mation, the Orio-Kurtz approximation, and the models of Güler
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Table 1 | Hodgkin-Huxley parameters for model simulations.

C Capacitance 1 µF/cm2

ḡK Maximal potassium conductance 36 mS/cm2

VK Potassium reversal potential −12 mV
ḡNa Maximal sodium conductance 120 mS/cm2

VNa Sodium reversal potential 115 mV
gL Leak conductance 0.3 mS/cm2

VL Leak reversal potential 10.6 mS/cm2

ρK Potassium channel density 18/µm2

ρNa Sodium channel density 60/µm2

NK Total number of potassium channels ρK ×Area
NNa Total number of sodium channels ρNa×Area

Table 2 | Correspondence between si variables and states mjhk.

s0 s1 s2 s3 s4 s5 s7 s7

m0h0 m0h1 m1h0 m1h1 m2h0 m2h1 m3h0 m3h1

Table 3 | Changes in ISI distribution parameters with changes in noise

level and applied current.

Parameter

change

Height and position

of main peak

Prominence of

bumps

Negative tail

exponent

Increasing
noise

Slight decrease in
height; position
moves left

Large reduction Increases
linearly

Increasing
current

Large decrease in
height; position has
larger move left

Little change;
bumps begin to
disappear for I < 2

Increases
super-linearly

(2013) and Linaro et al. (2011). Simulation of the Markov chain
model called “ Micro” is detailed in Rowat (2007). A potas-
sium channel has four activation n-gates, where each gate has
the (opening, closing) rates (αn(V), βn(V)). The corresponding
Markov network is

n0 n1 n2 n3 n4

α
n2α

n
3α

n
4α

n

β
n 2β

n
3β

n 4β
n (2)

where a channel in state ni, i = 0, 1, . . . , 4, has i open n-gates.
The channel is closed except when in state n4.

A sodium channel has 3 activation m-gates and one inacti-
vation h-gate, where the m-gates have (opening, closing) rates
(αm(V), βm(V)) , and the h-gates have rates (αh(V), βh(V)) . The
corresponding Markov network is

0h3m0h0m m1h0 m2h0

m3h1m1h1 m2h1m0h1

3αm 2α
m

α
m

3β
m

2β
mβ

m

α
h

β
h

α
h

β
h

α
h

β
h

α
h

β
h

α
m

3β
m

2α
m

2β
m

3α
m

β
m (3)

and the channel is open only in state m3h1. In state mjhk, there
are j open m-gates and k open h-gates. The gate transition rates
are given by the following functions:

αm(V) = 0.1(V + 40)

1 − e−(V + 40)/10
, βm(V) = 4e−(V + 65)/18,

αh(V) = 0.07 e−(V + 65)/20, βh(V) = 1

1 + e−(V + 35)/10
,

αn(V) = 0.01 (V + 55)

1 − e−(V + 55)/10
, βn(V) = 0.125 e−(V + 65)/80,

(4)

In the Orio and Linaro models one writes an SDE for the pro-
portion of channels in each of the states shown above. Because
the K+ channels have 5 states and the Na+ channels have 8 states,
these approximations consist of a system of 13 SDEs for Orio or
11 SDEs for Linaro, plus Equation (1), which has no explicit noise
term.

In the K+-channel equations that follow, each variable ni rep-
resents the proportion of channels in state ni, for i = 0, 1, . . . , 4.
In the subsequent Na+-channel equations, for ease of notation we
use variables s0, s1, . . . , s7 to stand for the proportions of chan-
nels in states m0h0, m0h1, . . . , m3h1. The correspondence is
given in the Table 2.

When Equation (1) is integrated, the values of the K+- and
Na+-conductances are given by the definitions:

gK = n4 ḡK , gNa = s7 ḡNa (5)

Here we write, in algorithmic form, how the SDEs which, in fact,
follow from the Kurtz approximation (Kurtz, 1978), are formu-
lated by Orio and Soudry (2012). A few words about the proof of
the Kurtz approximation are in Section 1.2. To obtain each of the
13 equations for proportions of channels in each state, we first
write the equation as an ordinary differential equation (ODE),
thinking of the dynamics for a particular state as deterministic,
i.e., the rates are deterministic input and outputs. For each state
that is directly linked to the current state, we add to the right hand
side a 2-component deterministic term with a positive input com-
ponent and a negative output component. Then, for each of these
deterministic terms on the right hand side, we add a noise term
which has the form

√
x dW where x, in each case, is the deter-

ministic term with any ‘−’ signs changed to ‘+,’ and dW is a
Brownian increment. This gives the effective variance when the
rates are considered as Poisson rates instead of deterministic rates.
In each pair of directly linked states, the stochastic mass going out
of one state is the same as the stochastic mass going into the other
state. In these cases the terms

√
x dW are kept separate and have

opposite signs in the two equations. We see examples in Equations
(6) and (7) below. This simple description of the procedure
for obtaining the Kurtz approximation (Kurtz, 1978) together
with its justification is sketched in Greenwood and Gordillo
(2009). Another version is in Orio and Soudry (2012), and its
supplement S1.

The full system of SDEs for the potassium channel is
given by:
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ṅ0 = ( − 4αnn0 + βnn1) + ξ1√
NK

√
4αnn0 + βnn1

ṅ1 = (4αnn0 − βnn1) + (2βnn2 − 3αnn1)

− ξ1√
NK

√
4αnn0 + βnn1 + ξ2√

NK

√
2βnn2 + 3αnn1

ṅ2 = (3αnn1 − 2βnn2) + (3βnn3 − 2αnn2)

− ξ2√
NK

√
3αnn1 + 2βnn2 + ξ3√

NK

√
3βnn3 + 2αnn2

ṅ3 = (2αnn2 − 3βnn3) + (4βnn4 − αnn3)

− ξ3√
NK

√
2αnn2 + 3βnn3 + ξ4√

NK

√
4βnn4 + αnn3

ṅ4 = (αnn3 − 4βnn4) − ξ4√
NK

√
αnn3 + 4βnn4 (6)

Here ξi, i = 1, . . . , 4 are Gaussian noise terms with mean 0 and
standard deviation 1. Note that there are 5 SDEs but only 4 noise
terms.

The SDEs for the sodium Markov network (3) can be read
off directly from the network using the recipe described above
between Equations (5) and (6):

ṡ0 = (βms2 − 3αms0) + (βhs1 − αhs0) + ξ20√
NNa

√
βms2 + 3αms0

+ ξ10√
NNa

√
βhs1 + αhs0

ṡ1 = (αhs0 − βhs1) + (βms3 − 3αms1) − ξ10√
NNa

√
βhs1 + αhs0

+ ξ31√
NNa

√
βms3 + 3αms1

ṡ2 = (3αms0 − βms2) + (2βms4 − 2αms2) + (βhs3 − αhs2)

− ξ20√
NNa

√
3αms0 + βms2 + ξ42√

NNa

√
2βms4 + 2αms2

+ ξ23√
NNa

√
αhs2 + βhs3

ṡ3 = (3αms1 − βms3) + (2βms5 − 2αms3) − (αhs2 − βhs3)

− ξ31√
NNa

√
3αms1 + βms3 + ξ53√

NNa

√
2βms5 + 2αms3

− ξ23√
NNa

√
αhs2 + βhs3

ṡ4 = (2αms2 − 2βms4) + (3βms6 − αms4) + (βhs5 − αhs4)

− ξ42√
NNa

√
2αms2 + 2βms4 + ξ64√

NNa

√
3βms6 + αms4

+ ξ54√
NNa

√
βhs5 + αhs4

ṡ5 = (2αms3 − 2βms5) + (3βms7 − αms5) + (αhs4 − βhs5)

− ξ35√
NNa

√
2αms3 + 2βms5 + ξ75√

NNa

√
3βms7 + αms5

− ξ54√
NNa

√
αhs4 + βhs5

ṡ6 = (αms4 − 3βms6) + (βhs7 − αhs6) − ξ64√
NNa

√
αms4 + 3βms6

+ ξ76√
NNa

√
βhs7 + αhs6

ṡ7 = (αms5 − 3βms7) − (αhs6 − βhs7) − ξ75√
NNa

√
αms5 + 3βms7

− ξ76√
NNa

√
αhs6 + βhs7 (7)

Güler (2013) presented a different stochastic Hodgkin-Huxley
model. This model also approximates the stochastic dynamics
of the membrane potential, arising from random opening and
closing of sodium and potassium channels, by a system of seven
differential equations, five of them stochastic, together with a
modified version of Equation (1), appearing here as Equation (8).
The stochastic dynamics, which follow, in a sense, more directly
from the approach pioneered by Fox and Lu (1994) than the
others, are approximated using carefully constructed diffusion
coefficients. In addition, the drift coefficients contain stochas-
tic components, qK and qNa, designed to capture “non-trivial
cross-correlation persistence” (NCCP) effects, namely correla-
tions between transmembrane voltage fluctuations and the com-
ponent of open channel fluctuations due to gate multiplicities
(Güler, 2011). Since properties of the NCCP effects are similar
to those of a harmonic Brownian oscillator, the equations that
describe qK and qNa are written as those of a Brownian oscil-
lator. Güler argues that NCCP effects have a major influence
on excitability, spontaneous firing, and spike coherence. Güler
reports that his model captures very accurately the functional cor-
respondence between input current and mean spike frequency as
obtained from the Micro structure (Markov network) model, as
well as the mean spike frequency obtained from the Linaro model.

In the Güler SDE model, the current conservation Equation
(1) is modified to read:

CV̇ = −gKψK (V − VK ) − gNaψNa(V − VNa)

− gL(V − VL) + I (8a)

where ψK = n4 +
√

n4(1 − n4)

NK
qNa (8b)

and ψNa = m3h +
√

m3(1 − m3)

NNa
hqNa (8c)

and the periodic stochastic variables qK and qNa satisfy two
second-order linear SDEs written as four first-order SDEs:

τ q̇K = pK (8d)

τ ṗK = −γK pK − ω2
K [αn(1 − n) + βnn] qK + ξK (8e)

τ q̇Na = pNa (8f)

τ ṗNa = −γNapNa − ω2
Na [αm(1 − m) + βmm] qNa + ξNa (8g)
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The gating variables n,m, and h are given by three more SDEs as
in Fox and Lu’s (1994) paper:

ṅ = αn(1 − n) − βnn + ηn (8h)

ṁ = αm(1 − m) − βmm + ηm (8i)

ḣ = αh(1 − h) − βhh + ηh (8j)

The Gaussian noise terms have zero means, with variances
given by

Var(ξK ) = γK TK [αn(1 − n) + βnn] (9a)

Var(ξNa) = γNaTNa [αm(1 − m) + βmm] (9b)

Var(ηn) = αn(1 − n) + βnn

4NK
, (9c)

Var(ηm) = αm(1 − m) + βmm

3NNa
, (9d)

Var(ηh) = αh(1 − h) + βhh

NNa
(9e)

where the values of the fixed parameters in the Equations (8e,g)
and (9a,b) are:

γK = γNa = 10, ω2
K = 150, ω2

Na = 200,TK = 400,TNa = 800.

The functions αx and βx, x = n, m, h, were given earlier in
Equation (4). There are similarities between the Kurtz approx-
imation and the Güler model, e.g., the Güler Equations (9c–e)
specify that the diffusion terms of the SDEs (8h,i,j) are similar to
the drift terms with ‘−’ changed to ‘+’ just as in the Kurtz approx-
imation. There are significant differences seen in Güler’s (8b,c)
and in the fact that his SDEs (8d,e) form a second order SDE with
a single noise term, and similarly for his SDEs (8f,g). Still it may
be that Güler’s model is an approximation to the Micro model in
the same sense as the Kurtz approximation, or nearly so.

The Linaro model (Linaro et al., 2011) starts from the same
current conservation Equation (1), appearing as Linaro et al.
(2011; Equation 18). As in the Kurtz approximation, 11 SDEs are
introduced Linaro Equation (19), but were obtained through the
introduction of Orstein-Uhlenbeck processes for M-1 of the M
elements of an M-state Markov process and applying this to the
K- and Na- Markov processes. Hence both the drift terms and
the diffusion coefficients take a different form from the Kurtz
approximation Linaro Equation (19). In view of these differences
it is perhaps surprising that the Linaro model produces ISI dis-
tributions which are rather close to those produced by the Micro
model, the Fox-Goldwyn model, the Orio-Kurtz approximation,
and the Güler model.

Diffusion approximations for this stochastic HH Markov
chain model have also been studied by Bruce (2009); Goldwyn
et al. (2011), and Huang et al. (2013). Engel et al. (2008) and
Verechtchaguina et al. (2007) also study ISI histograms for a
different modeled neuron and by a different approach.

1.2. KURTZ’S STRONG APPROXIMATION THEOREM FOR MARKOV
CHAINS

Here we describe briefly a theorem of Kurtz (1978) and how
it applies to approximate the stochastic HH model by the
system of SDE’s consisting of Equations (1) and (4–7). A more
complete version, including an alternate approach using a van
Kampen expansion, is described by Baxendale and Greenwood
(2011).

In fact one can approximate any normed density dependent
Markov process, XN (t) = X(t)/N, with values in Z

d, for large
population size N, by a diffusion process with small error. The
method of Kurtz (1978) represents a Z

d -valued Markov pro-
cess as a sum of Poisson processes. The essential step is replacing
each normed compensated, or conditionally centered, Poisson
process with a scalar Brownian motion, where an error of order
log (N)/N is introduced. The resulting stochastic system can be
written as

dX̃N (t) = F(X̃N (t))dt + 1√
N

C(X̃N (t))dW(t), (10)

where F is the vector field of conditional means of the terms in
Kurtz’s sum, and the d × d diffusion coefficient matrix function
C(z) is chosen so that C(z)C(z)∗ = B(z), the covariance function
arising from interactions of the terms. One avoids computing the
square root of the matrix B by retaining the conditional centerings
as separate Brownian increments as in Orio and Soudry (2012),
Equation (13). We see these terms written out in Equations (5)
and (6). This produces a sum of noise terms in each equation so
that in distribution the system is the same as (9). The paper (Allen
et al., 2008) gives the details of this process.

1.3. THE FORM OF THE ISI DISTRIBUTION
Suppose we have a recording of membrane potential from a neu-
ron firing in response to a fixed input current I, or we are looking
at the output of a simulation of a neuron firing model such as one
of those we are considering. An inter-spike interval (ISI) is the
time between two successive downward crossings of the record-
ing across a potential level chosen to be well above the range
of sub-threshold oscillations. In general the successive ISIs of a
simulation of a stochastic model are regarded as independent
whereas those of a real neuron are not necessarily so. However,
we do not pursue this question here. We are interested only in the
distribution of the random ISIs.

The mean spiking frequencies of three models, Micro, Fox-
Lu, and Güler are compared for a range of input currents in
Figures 6–8 by Güler (2013). These means are not exactly the
same but are rather similar. Here we look instead at the entire dis-
tribution of ISIs. In Figure 1A of Rowat (2007) we find, already,
with Area = 100 µm2 and I = 0 µA/cm2, ISI histograms for the
stochastic HH model considered by Chow and White (1996).
Figure 16 of Rowat (2007) shows that the histogram of Figure 1A
is nearly identical to that obtained when Gaussian noise is added
to the HH current balance equation for a particular level of noise
and a particular constant deterministic input. The effects of care-
fully modeled channel noise and an equivalent level of Gaussian
noise added to the current balance Equation (1) are found to
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be nearly indistinguishable on the basis of the resulting ISI his-
tograms. This observation motivates the present study where we
compare ISI distributions more systematically and for additional
recently studied SDE models of the stochastic HH equation.

The form of the ISI histograms indicates that the mean of the
ISI distribution is in fact an inadequate parameter to use for com-
parison of stochastic models. The distribution is not unimodal
but instead has the following characteristic form (see Figures 2,
3). For short time intervals there is a tall, narrow peak even on a
log scale which represents the distribution of times taken by those
individual spike firings which are preceded by one or more spikes,
i.e., the times taken by the simulated stochastic path to traverse
the locally stable limit cycle of the dynamics when there was a pre-
ceding spike. The fact that this first peak is narrow indicates that
the variance of the time taken by a stochastic firing is small. The

FIGURE 2 | Each panel compares the ISI distributions generated by the

Micro, Güler, Linaro, Orio, and Fox methods, for a particular area,

applied current combination. Here, the current is constant at 6.0 µA/cm2

while the area takes values 100 µm2 (A), 500 (B), 900 (C). Equivalently, the
noise amplitude decreases from (A to C).

area under this first peak indicates the proportion of ISIs in runs,
or “bursts,” of two or more spikes. As was found by Rowat (2007),
Figure 4, the height of this spike increases with the deterministic
input, I.

The second obvious feature of the histogram, plotted on a
log scale, as in Figure 16B of Rowat (2007) and Figures 2, 3, is
that the right tail of the distribution is exponential, as indicated
in our linear-log plots by a straight line, starting soon, though
not immediately, after the initial peak. The histogram appears
increasingly noisy as the length of the ISI time interval increases
since the amount of data for estimation decreases, and because
short histogram bars are enlarged by the log-scale.

The fact that the right tail of the ISI histogram is expo-
nentially decreasing for the stochastic Morris Lecar model is
studied in detail and explained by Rowat and Greenwood (2011).

FIGURE 3 | Each panel compares the ISI distributions generated by the

algorithmic methods Micro, Güler, Linaro, Orio, and Fox, for a

particular area, applied current combination. Here, the area is constant
at 400 µm2 while the applied current takes values 10.0 µA/cm2 (A),
6.0 µA/cm2 (B), 2.0 µA/cm2 (C).
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FIGURE 4 | ISI distributions obtained by the Orio-Kurtz method, for

fixed current I = 6.0 µA/cm2, as area increases from 100 to 1000 µm2.

The explanation is based on the dynamics of the sub-threshold
stochastic process which is in a conditional equilibrium begin-
ning soon after a sub-threshold interval begins. The exit time
from such an equilibrium must be exponentially distributed. This
argument will apply to all stochastic HH models.

A third feature, less obvious but quite distinct, is that there
are one or more small bumps or local maxima in the ISI his-
togram just after the initial peak, and before the exponential tail
begins.

The one or more small local maxima in the ISI histogram
are explained by considering the dynamics of the stochastic HH
model just at the end of firing, i.e., as the stochastic path crosses
into the basin of attraction of the locally stable fixed point of the
deterministic HH model. The first orbit begins near the outer
edge of the basin of attraction—the unstable limit cycle—and so
the probability that the next firing (traverse of the locally stable
limit cycle) comes after just one sub-threshold orbit is relatively
high: see Figure 1B. Hence the probability that the ISI ends at the
time taken by one such orbit from the end of the previous firing
is relatively high. This produces the first small local maximum of
the ISI distribution (see Figures 2, 3). Given that the next firing
does not occur in this first small orbit of the fixed point, the next
subthreshold orbit takes again a similar length of time, and again
the probability of firing near the end of this second orbit is some-
what increased, producing the second local maximum, and so on.
When there is less noise the pattern is more distinct. After one
or two, or at most three such random orbits, the stochastic path
is very nearly in its temporary, conditional stationary distribution
concentrated close around the fixed point, so the remainder of the
ISI distribution is exponentially distributed as discussed above.
This description is made more explicit in the Morris Lecar two-
dimensional system since the “inside” and “outside” of a limit
cycle are well defined. In the four-dimensional HH system, the
argument is made plausible by examining the relationships in 4
dimensions between the stable limit cycle, the unstable limit cycle,
and the fixed point, and by projections onto a 2D plane (e.g.,
Rowat (2007), Figure 10, and the discussion).

The ISI distribution of any stochastic HH neuron model
can, therefore, be resolved into three sections, an initial peak

representing the distribution of times taken up by contiguous
spike firings, followed by one or more local maxima represent-
ing the additional times taken up by each of a few subthreshold
orbits of the fixed point immediately after firing, followed by
an exponential tail representing time until escape from the sub-
threshold state once the process is in its conditionally stationary
distribution. Thus, a complete comparison of ISI histograms for
simulations of stochastic HH models built from different noise
models can be made by comparing the defining parameters of
these three components: the center, height, and width of the ini-
tial peak, the shapes and placement of the local maxima, and the
parameters of the exponential tails. We can use these criteria for
comparing the ISI histograms produced by the four stochastic HH
models described in Section 1.1.

2. METHODS AND IMPLEMENTATION DETAILS
All model computer runs used the standard Hodgkin-Huxley
parameter values, as in Table 1, and all data sets used for the ISI
histograms had 105 elements. All histograms were normalized so
that their bars sum to 1, and all are displayed with a log scale on
the y-axis because the first peak is often an order of magnitude
higher than the second and third peaks. The integration time-step
was 0.005 ms. An SDE was used for each state. If a potassium vari-
able became negative the random number generator was called
again. If a sodium variable became negative it was immediately
reset to zero. At the end of each integration step, but before
integrating Equation (1), the potassium variables ni, i = 0, . . . , 4
were normalized to satisfy

∑
ni = 1, and the sodium variables

sj, j = 0, . . . , 7 were normalized by
∑

sj = 1. This seems more
correct than defining the last variable (n0 or s0) in terms of
the others, since it preserves the relative values of the variables,
but has the disadvantage of using two extra SDEs. However, for
the Orio method and any Kurtz-type approximation it does not
increase the number of random number generator calls.

3. RESULTS
In Figures 2, 3 we see ISI histograms from simulations of the
Markov chain model and the four SDE models, which are labeled
Micro, Güler, Linaro, Orio, and Fox, to refer to the five ways
of modeling HH channel noise described in Section 1.1. The
noise level is proportional to Area−1/2 since the standard devi-

ation of the Na+-channel noise (K+-channel noise) is ∝ N−1/2
Na(

∝ N−1/2
K

)
and the number of channels is a constant times the

area. In Figure 5 where the area A = 400 µm2, NNa = 60 × A =
24000 and NK = 18 × A = 7200 Separate sets of plots show the
results for fixed applied current I = 6 µA/cm2 and area A =
100, 200, . . . , 1000 µm2, and for fixed area A = 400 µm2 and
applied currents I = 2, 3, . . . , 12 µA/cm2. See Figures 4, 5. All
the histograms show the features detailed in Section 3: an initial
peak, followed by local maxima, followed by an exponential tail,
that appears linear on a log scale. The Güler, Micro, Orio, and Fox
histograms are nearly identical in all respects and the Linaro plots
are very similar.

The histograms computed by the Güler method all have a
slightly higher proportion of area under the initial peak, cor-
responding to runs of successive spikes, than Micro-generated
histograms, while Orio-generated histograms always have slightly
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FIGURE 5 | ISI distributions obtained by the Orio-Kurtz method, for

fixed area = 400 µm2 and current I = 2, 3, . . . , 12 µA/cm2.

lower proportion of ISIs in runs than Micro (differing by no more
than 4%), while the Linaro histograms have proportions of ISIs in
runs that are 8% lower than in Micro histograms.

Since the plots for the different SDE models are so similar it
may not be worth dwelling on the differences. The exponential
parameters of the tails are very close as evidenced by the nearly
parallel plots. Also the timing of all features is nearly identical,
showing that the different ways of modeling noise by SDEs have
had little effect on the pattern of firing of the simulated neuron.

In Figures 2, 3 we see what happens to the three parts of the
ISI histogram as the area A increases and the applied current
I increases. Since A is proportional to the numbers of chan-
nels, in fact the standard deviation of the noise per unit time
is proportional to A−1/2. We see in Figure 2 that the slope of
the exponential part of the histogram, i.e., the slope of the last
part, becomes less negative as A increases, equivalently, as the
noise decreases. The height of the initial peak barely changes,
but we see that the bumps in the middle part of the histogram
become more prominent as noise decreases. When A is fixed and
I, the deterministic input, decreases, in Figure 3 we see that the
negative slope, i.e., the negative exponent of the exponential tail
also decreases but, opposite to the case when noise decreases, the
bumps (only one can be seen) become less prominent. The height
of the initial peak decreases considerably, and its position moves
right as I decreases. These effects are studied in more detail for
the Orio model in Figures 4, 5. We discuss their interpretation in
the next section, but give a summary in Table 3.

4. DISCUSSION
The models we have simulated produce similar histograms with
the same basic features in good alignment. Here we discuss fur-
ther how these features depend on two important parameters of
the stochastic Hodgkin-Huxley model, the deterministic input, I,
and the strength of the stochastic input which is proportional
to A−1/2. Notice that these two parameters can be regarded as
measures of deterministic and stochastic input, respectively.

First let us focus on how these two inputs affect the param-
eter of the ISI tail distribution. We see from the log-linear plots

FIGURE 6 | Comparison of exponential tail exponents generated by the

five methods, for fixed current I = 6.0 µA/cm2, plotted as a function of

Area−1/2 where Area takes the values 1000, 900, . . . , 100 µm2.

FIGURE 7 | Comparison of exponential tail exponents generated by the

five methods, for fixed area A = 400 µm2, as current increases from 2

to 12 µA/cm2.

in Figures 2–5 that the negative slope of the final segment of the
ISI distribution, which is the negative exponent of the exponen-
tial tail of the distribution, increases with increasing deterministic
I, as well as with increasing stochastic input, A−1/2, i.e., these
become steeper with decreasing A and with increasing I. In
Figures 6, 7 the tail exponents are plotted as functions of A−1/2

and of I, respectively.
To understand this result we return to the state space pic-

ture of the stochastic dynamics of the neuron model, represented
by Figure 1B2, which shows the dynamics for the analogous
Morris-Lecar model. Between firings the state of the neuron is
in the subthreshold region centered on the fixed point but well
inside the unstable limit cycle except while traversing the switch-
ing region. The probability that it moves out of this region and
fires is greater if either the noise has greater standard devia-
tion or if the deterministic input to which the noise is added
is greater. Hence an increase of either I or A−1/2 should have a
similar effect on the parameter of the ISI exponential tail distri-
bution. Furthermore, as I changes the configuration pictured in
Figure 1B changes. As I moves toward the bifurcation at I ≈ 9.8,
the bifurcation diagram in Figure 1A shows us that the stabil-
ity of the fixed point decreases, becoming zero at I = 9.8, while
the unstable limit cycle shrinks and disappears. Correspondingly,
the subthreshold region shrinks in size, but does not disappear
since one sees short intervals of subthreshold behavior for val-
ues of I ranging at least as high as 12.0. In Figure 8 one might
note that when I = 12 none of the curves have reached 1. Both
these effects cause the probability of firing to increase. Reduction
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in stability means it is easier to escape from the fixed point, while
reduction in size of the unstable limit cycle means the size of the
subthreshold regime is smaller, thus reducing the expected time
to reach the deterministic basin of attraction of the stable limit
cycle. The combination of these effects seem to cause the relation
between I and the exponential tail to be concave, as in Figure 7,
instead of nearly linear as in the case of noise, as in Figure 6.
Switching to spiking and maintenance of spiking become more
probable, and the exponential tail of the ISI distribution becomes
steeper.

Next we consider the effect of increasing I or A−1/2 on the
bumps in the middle part of the ISI histograms. To understand
this we need to review some theory about the behavior of a simi-
lar neuron model during its subthreshold phase. This was studied
in detail for the Morris-Lecar model by Ditlevsen and Greenwood
(2013). The same analysis applies here with some alterations
because the deterministic HH model is 4-dimensional. If we lin-
earize the stochastic model at the fixed point we obtain a linear
stochastic system of the form

dX = −A X dt + C dW . (11)

The deterministic matrix C is obtained by evaluating the stochas-
tic diffusion coefficient matrix at the fixed point. The matrix A
will have a pair of complex eigenvalues, −λ± iω with negative
real part λ � ω and other negative eigenvalues −β, −γ where
β, γ are greater than λ. This means the system, started near
the fixed point, moves rapidly toward the plane defined by the
eigenvectors corresponding to the complex eigenvalues. Thus, the
4-dimensional system can be studied in terms of a 2-dimensional
system. Other examples are found in Baxendale and Greenwood
(2011).

When the neuron fires and then becomes subthreshold, the
stochastic path enters the region “inside” the unstable limit cycle
at its edge and proceeds to roughly circle the fixed point at
a frequency ω, the orbit being damped at a rate λ while also
being restrained from damping by the stochastic aspect of the

FIGURE 8 | Proportion of ISIs in runs of two or more spikes, compared

by method, for fixed area A = 400 µ m2, as a function of I.

model. The path of this process can be approximated in terms
of a fixed rotation multiplied by a 2-dimensional Ornstein-
Uhlenbeck process as shown by Baxendale and Greenwood
(2011). The sample path of the process orbits the fixed point
for some time, with frequency ω, until it arrives at its station-
ary distribution. Before stationarity sets in we see one or more
decreasing “bumps” in the ISI histogram, with frequency ω, and
after stationarity sets in we have the exponential tail, being the
escape distribution from a stationary distribution by a standard
argument.

As examples, according to computation by Hassard (1978):
for I = 5, λ± iω= −0.097 ± 0.521i, −β =−0.129, −γ = −4.60;
for I = 9, λ± iω=−0.015 ± 0.578i, −β = −0.137, −γ = −4.73.
We find that the spacing between the second and third bumps in
Figure 4, where I = 6, and also for larger areas (not shown), is
approximately 12 ms, which is in rough agreement with 2π/ω ≈
12.05 ms for I = 5 above. It is notable that the eigenvalue fre-
quency ω, and thus the bump spacing, bears no particular rela-
tionship to the frequency of the unstable limit cycle (ULC), as
computed by Rinzel and Miller (1980). Let I1 ≈ 9.8 be the sub-
critical Hopf bifurcation. For I close to I1, I < I1, the eigenvalue
frequency and the ULC frequency are the same at approximately
90 Hz, but as I decreases toward Iv ≈ 6.26, ω decreases by only
9% while the ULC frequency decreases steeply from 55% from
90 Hz at I1 to approximately 40 Hz at I = 7.5 then smoothly
reverses direction and increases back up to about 50 Hz at Iυ .
One might also note the reduction in λ as I increases from 5 to
9, while β and γ are both much larger than λ, as predicted by
Equation (10).

Here we make a comment on the existence of exponential tails
for I > I1. The underlying mechanism of this has been discussed
in Rowat and Greenwood (2011). Numerically, it has been shown
by Rowat (2007) and Tateno and Pakdaman (2004) that the prob-
ability p(I) that a spike is followed by a non-spike is continuous
across I1. Note that 1 − p(I) is the proportion of ISIs in runs of
two or more spikes (see Figures 8, 9).

When I > I1, say with I = 11 or I = 12, the equilibrium
point is now unstable with dominant eigenvalues λ± iω, where
λ is small, 0 < λ � ω. Since λ is small one sees numerically
that a deterministic trajectory started very close to the unstable

FIGURE 9 | Proportion of ISIs in runs of two or more spikes, compared

by method, for fixed current I = 6.0 µA/cm2, as a function of Area−1/2.

Area takes values 1000, 900, . . . , 100 µm2.

Frontiers in Computational Neuroscience www.frontiersin.org October 2014 | Volume 8 | Article 111 | 9

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Rowat and Greenwood ISI distribution of the stochastic Hodgkin-Huxley neuron

equilibrium makes several very tight, small, slowly expanding spi-
rals around the equilibrium before switching out to the stable
limit cycle (SLC)—i.e., the spiking cycle.

When I is below the Hopf bifurcation, with dominant
eigenvalues λ± iω where λ < 0 and −λ � ω, Baxendale and
Greenwood (2011) identify the stochastic process whereby deter-
ministic damped oscillations, with the addition of noise, show
sustained oscillations at an amplitude well above the expected
noise level. The exit time from this stochastic equilibrium process
is what creates the exponential tail when I < I1.

In view of the observation above, that when I > I1, several
small tight spirals may occur before a deterministic trajectory,
started close to the unstable FP, switches out to the SLC, it seems
reasonable to propose that in the presence of noise there is a
short-term stochastic process that tends to contract the slowly
expanding deterministic spirals, thus creating a conditional equi-
librium for a short time before the trajectory switches out to the
SLC. Thus, the exit time from this conditional stochastic equilib-
rium has an exponential distribution that creates the exponential
tail when I > I1.

The number and pronounced definition of the bumps become
less as the noise increases because the onset of stationarity is has-
tened by more noise. We see this effect in Figure 4. In Figure 5 we
observe that changing I with the noise level fixed has much less
effect on the size and definition of the “bumps.”

Finally, how do the parameters I and A−1/2 affect the height,
width, and location of the main peak of the ISI histogram? In
Figure 8 we have plotted the proportion of ISI mass in runs of
two or more spikes as a function of input I for fixed A = 400 µm2.
This is represented in the histogram as the area under the first
peak. It increases roughly linearly with I except for saturation
at 0 and 1. The main peak moves right as I decreases and as A
increases.

Note that any occurrence of a run of two or more spikes cor-
responds to the occurrence of a spike immediately followed by
another spike, hence the proportion of ISI histogram mass under
the first peak is in fact the probability that a spike is followed
by another spike. Equivalently, the histogram mass or area under
the tail (including any “bumps”) is the probability that a spike is
followed by a period of quiescent behavior.

Figures 8, 9 show that the proportion of ISIs occurring in
runs of two or more spikes increase roughly linearly with I and

with A−1/2, respectively, when the other variable is fixed. This
is reflected in the ISI distribution as an increase in the height
and width of the initial peak. The reasons for increasing steep-
ness of the exponential tail apply equally to the increase we
observe in Figures 8, 9. A large negative tail exponent implies
less area, or “probability mass,” under the tail and more mass
in the main peak. Thus, the increases seen in Figures 8, 9
correlate well with the increases in negative tail exponent in
Figures 6, 7.

In Table 4, we give numerical values for the exponential tail
exponent, the proportion of ISIs in runs of two or more spikes,
and the running times, across all the models, for one specific
(Area, I) combination, namely Area = 400 µm2, I = 6.0 µA/cm2.
These computer simulations were all run consecutively on the
same hardware. We see that for these parameters, the Fox-
Goldwyn and Orio-Kurtz methods are equally close (within a few
percent), the Güler method a little further away, and the Linaro
method further away again.

ISI densities were also computed by Verechtchaguina et al.
(2007) and Engel et al. (2008) by a different method and for a
different neuron. An electrical circuit was used to capture the
frequency-dependent subthreshold dynamics in stellate and pyra-
midal cells of the entorhinal cortex, which was converted to
a noise-driven harmonic oscillator; from this they analytically
computed ISI densities.

5. CONCLUSION
Figures 6–9 and Table 4 together show that the Fox-Goldwyn,
and Orio-Kurtz methods both generate ISI histograms very close
to those of Micro. The Güler histograms are not quite as close and
the Linaro histograms are only a little further off.

According to Kurtz’ theorem the Orio method gives an error
of at most log (N)/N which is 0.0001 for the data sets computed
here (N = 105). Hence it should be regarded as a “gold standard”
for producing a good approximation to the ISI distribution of
the Markov chain model. However, when computation time is an
issue, one might well prefer to use the Güler model which runs
about three times as fast as the Linaro and Orio models. This was
true for our Python implementations on a 2.5 GHz Intel Core i5
and will no doubt generalize to other languages and systems. We
used the same basic code framework for the Güler, Linaro, and
Orio methods. The main reason for the increased speed is that

Table 4 | Parameters associated with each method, obtained from simulations with area = 400 µm2, I = 6.0 µ A/cm2, # ISIs = 10,000.

Method Histogram tail exponent Probability a spike is immediately Compute time, 2.5 GHz Intel chip Implementation

followed by another spike

Micro 0.04117 0.6302 84:34 C (gcc4.9)
Fox-Goldwyn 0.04164, 0.0005 0.6189, −0.011 28:28 Fortran95
Güler 0.04316, 0.0020 0.6587, +0.028 16:48 Python 2.7
Linaro 0.03614, 0.0050 0.5233, −0.107 52:10 Python 2.7
Orio-Kurtz 0.04133, 0.0002 0.6089, −0.021 45:44 Python 2.7

Column 2 lists the exponential exponent of the histogram tail, while column 3 lists the probability that a spike is immediately followed by another spike. This is

equivalent to the proportion of spikes that occur in a run of two or more spikes. In the lower four rows of columns 2 and 3, the first figure is the actual parameter

value while the second figure is its difference from the corresponding value for the Micro simulation. The fourth column gives the running time on our hardware and

the fifth the computer language used. Both the Fox-Goldwyn and Linaro code were retrieved from the ModelDB repository.
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the Güler simulation calls the random number generator much
less often than the others. In addition, the Güler method uses
considerably fewer algebraic operations. Unfortunately the Fox-
Goldwyn model was implemented in Fortran so its computation
time cannot reasonably be compared with the other three SDE
models.

Although the Güler method generates histogram parame-
ters further away from the Micro histogram parameters than
either the Fox-Goldwyn or Orio-Kurtz histogram parameters, one
must bear in mind that when introducing harmonic Brownian
oscillator-type SDEs, there are six phenomenological parameters
in the Güler method that were carefully chosen by examination
of simulations of Micro voltage data in a subthreshold regime,
with I = −4 µA/cm2 (to avoid spikes). It may be that if these
parameters were chosen with reference to Micro simulation volt-
age data generated with another I-value, e.g., in the middle of
the bistability interval [6.2, 9.8], the parameters of the Güler his-
tograms could be much closer to the parameters of the Micro
histograms.
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