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Methods: Twenty-one eyes of 21 healthy volunteers were scanned with noneye-
tracking nonframe-averaged OCT device and active eye-tracking frame-averaged OCT
device. Virtual averaging was applied to nonframe-averaged images with voxel

Accepted: 29 November 2015 resampling and adding amplitude deviation with 15-time repetitions. Signal-to-noise
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Keywords: image processing; op- nasal retinal nerve fiber layer (RNFL) and the foveola were assessed to evaluate the
tical coherence tomography; retina  image enhancement effect and retinal layer visibility. Retinal thicknesses before and
Citation: Chen C-L, Ishikawa H, after processing were also measured.
Wollstein G, Bilonick RA, Kagemann  Results: All virtual-averaged nonframe-averaged images showed notable improve-
L, Schuman JS. Virtual averaging ment and clear resemblance to active eye-tracking frame-averaged images. Signal-to-
making nonframe-averaged optical noise and CNR were significantly improved (SNR: 30.5 vs. 47.6 dB, CNR: 4.4 vs. 6.4 dB,
coherence tomography images original versus processed, P < 0.0001, paired t-test). The distance between the end of
comparable to frame-averaged im-  yjsible nasal RNFL and the foveola was significantly different before (681.4 vs. 446.5
ages. 2016;5(1):1, doi:10.1167/ pm, Cirrus versus Spectralis, P < 0.0001) but not after processing (442.9 vs. 446.5 um,
tvst.5.1.1 P = 0.76). Sectoral macular total retinal and circumpapillary RNFL thicknesses showed
systematic differences between Cirrus and Spectralis that became not significant after
processing.

Conclusion: The virtual averaging method successfully improved nontracking
nonframe-averaged OCT image quality and made the images comparable to active
eye-tracking frame-averaged OCT images.

Translational Relevance: Virtual averaging may enable detailed retinal structure
studies on images acquired using a mixture of nonframe-averaged and frame-
averaged OCT devices without concerning about systematic differences in both
qualitative and quantitative aspects.

x images in a noncontact and noninvasive fashion as

well as objective assessment of the tissue structures.'
Currently, multiple spectral-domain (SD-) OCT

Since its first appearance in the clinical application, devices from several manufacturers are commercially
optical coherence tomography (OCT) has become a available. While all manufacturers aim to improve

standard in daily clinical care in ophthalmology. The OCT technology in order to improve their clinical
technology provides high-resolution cross-sectional diagnoses, disease detection ability, measurement
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reproducibility, signal quality, and image appearance,
each manufacturer also dedicates their efforts to
advancing their products without paying much
attention to data/measurement compatibility and
comparability. This diversity causes OCT data
inconsistency and OCT measurement incompatibili-
ty,”'? and further limits the application of OCT in
the clinical practice for clinicians need to stick to one
OCT device, to assure the measured thickness data
are consistent and comparable for their follow-up
patients.'*"”

Among all the advances in both hardware and
software, eye-tracking system has been recognized as
one of the most valuable developments in SD-OCT
device lately. Active eye-tracking systems in OCT
devices are used for two purposes: (1) frame averaging
to improve signal-to-noise ratio (SNR), and (2)
ensuring consistent image registration from visit to
visit. Although this is a great technological advance-
ment, it creates even wider diversity and inconsistency
among OCT devices in terms of signal quality, image
appearance, and quantitative measurements, especial-
ly in multicenter studies, where each center collects
OCT data with different devices, or in longitudinal
studies, where the devices used to acquire image data
changed with time.

Previously, we developed a signal normalization
method, which successfully normalized OCT signal
characteristics and reduced the measurement differ-
ences between two nonframe-averaged SD-OCT
devices.'®! Yet, this method did not work well in
reducing the retinal thickness measurement differenc-
es between nonframe-averaged and frame-averaged
images (unpublished data). To solve this problem, we
developed a method called virtual averaging. We
hypothesize that both signal characteristics variation
and the systematic differences in OCT measurements
between nonframe-averaged and frame-averaged
OCT images get reduced by virtually averaging
nonframe-averaged OCT signal and integrating it
into our signal normalization method.

Subjects and Image Acquisitions

Twenty-one healthy subjects volunteered to par-
ticipate in this prospective cross-sectional study. The
right eye from each subject was used in the study. All
subjects were recruited at the University of Pittsburgh
Medical Center Eye Center. The University of
Pittsburgh institutional review board and ethics

committee approval were obtained for the study,
and informed consent was obtained from all subjects.
This study followed the tenets of the Declaration of
Helsinki and was conducted in compliance with the
Health Insurance Portability and Accountability Act.

For each participant, both macular and optic nerve
head (ONH) regions were scanned at the same visit
using two commercially available SD-OCT devices,
where one generated nonframe-averaged images while
the other had eye-tracking system and provided
frame-averaged images.

Nonframe-Averaged OCT Image Acquisition

Cirrus HD-OCT (software version 6.1; Zeiss,
Dublin, CA) was used to collect nonframe-averaged
OCT image data, where Macula Cube 200 X 200 and
Optic Disc 200 X 200 scan protocols were used. These
scans consisted of 200 X 200 sampling points on a 6 X
6 mm? area centered on the foveola and the center of
ONH, respectively, and 1024 samplings within a 2.0-
mm axial scan depth.

Frame-Averaged OCT Image Acquisition

Spectralis (software version 1.5; Heidelberg Engi-
neering, Heidelberg, Germany) was used to collect
corresponding active eye-tracking frame-averaged
OCT image data. Macular raster volume scan
centered at the foveola covering 20° X 20° region
(193 sections, 1024 sampling points in one section, 9-
frame averaged), and Circle retinal nerve fiber layer
(RNFL) scan (circumpapillary RNFL or cpRNFL;
100-frame averaged) were used to acquire the image
data for macular and ONH regions, where 496
sampling points were collected within 1.9-mm axial
scan depth.

For both Cirrus and Spectralis data, multiple scans
were acquired at the same visit to ensure that the
collected OCT images have good signal quality and
spatial integrity for further processing. Images with
image quality below the manufacturer recommended
cutoff, signal strength (SS) below 6 for Cirrus images
and image quality score below 15 for Spectralis
images, retina structures outside the scanning win-
dow, or images with apparent eye movement during
scanning were considered poor quality images and
discarded. Eye movement was subjectively defined as
image artifacts on OCT en face (or OCT fundus)
images showing a horizontal frame shift larger than
one average size retinal blood vessel diameter and a
major distortion of the fovea or ONH region. All the
image raw data files (for Cirrus data, we used the z-
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(1) Randomly select a voxel value
from 3x3 neighboring voxels
based on 2D Gaussian distribution

(2) Add a random Gaussian deviation
to the selected voxel value
(Deviation value ranges from -6 to 6)

(3) Repeat 15 times then calculate the
final averaged value and use it to

% replace the original voxel value

.- H N

i Averaging
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Deviation Value (-6~6)

Figure 1. Processing flow of virtual averaging. (1) For each sampling voxel (the center square in Step 1, with thick black border), one
neighboring voxel out of nine (including the center) on the same z-position was randomly selected according to a 2D Gaussian
distribution. (2) A random Gaussian deviation was added to the selected voxel value. (3) Repeating previous two steps 15 times, and the

new voxel value was calculated by averaging all 15 values replacing

motion corrected raw data) were exported to a
standalone computer for signal normalization and
further processing and analysis.

Virtual Averaging

To bridge the gap between nonframe-averaged and
frame-averaged OCT signal characteristics, we devel-
oped a method called virtual averaging, and applied
this method to nonframe-averaged OCT images.

The eye-tracking Spectralis scanner scans at the
same location multiple times to generate frame-
averaged OCT data. Even with the active eye-tracking
system, scanning location deviates every time when
the scanner tries to scan the same location as
fixational eye movement is faster than tracking
rate.” > We observed that every time the scanner
locates the camera back to the same location, it results
in the acquisition deviation in both scanning location
and signal strength (mostly due to fixational eye
movement). Therefore, in order to mimic both the
acquisition deviation, we first simulated the devia-
tions in the x (transverse) and y (vertical) directions.
For each sampling voxel, one neighboring voxel was
randomly selected from the 3 X 3 neighboring voxels

the original voxel value.

located on the same z-position (including the center
voxel) following a two-dimensional (2D) Gaussian
random distribution, where the closer the voxel was to
the center, the higher its likelihood of being selected
as a candidate (as Fig. 1, Step 1 shows). Then we
simulated the variation of the voxel value by adding a
random Gaussian deviation to the selected voxel
value, where the range of the voxel value deviation
was from —6 to 6 (Fig. 1, Step 2). This process
(deviations in x and y directions and in voxel value,
namely Steps 1 and 2 in Fig. 1) was repeated 15 times
for each voxel, and the average of the outcomes were
used to replace the original value (Fig. 1, Step 3).
All the parameters used in virtual averaging
processing were determined based on our internal
testing (unpublished data), observations, and the goal
of not to generate much blurring artifacts in the
retinal tissues. Considering the coarser sampling
density in both x and y directions of Cirrus device,
we set the kernel size for sampling deviation to 3 X 3 X
1 (x X y X z) so that the resampled A-scans would not
have too much variation, especially near the foveola.
The range of the amplitude deviation (ranged from —6
to 6) was decided based on the observation of pixel
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Figure 2. Plot of SNR and CNR change as the number of
repetition in virtual averaging processing increases. Signal-to-noise
ratio reached a local maximum while CNR reach a plateau when
the number of repetition was at 15.

intensity variation in both Cirrus and Spectralis data
and our preliminary experiments. A wide range of the
deviation value was tested. The sigma of the
amplitude deviation Gaussian distribution was set to
1,2,3,5,7, and 10, which covered a wide range of the
actual intensity deviation in both Cirrus and Spec-
tralis data. When the sigma is too small, like 1 and 2,
the signal in each retinal layer looks granular; on the
other hand, when the sigma is too big, for example, 7
and 10, speckle-noise-like artifacts appear. Taking all
the concerns into account, the results with a sigma of
3 showed clearer and smoother cross-sectional images
compared with other settings. Therefore for ampli-
tude deviation, we chose the sigma to be 3, which led
to the amplitude deviation ranged from —6 to 6.

We have further tested the virtual averaging results
with different repetition times: 9 (the default number
for frame averaging processing in Spectralis), 15, 20,
40, 60, and 100 (the maximum number for frame
averaging in Spectralis). Pemp et al.”® showed that
averaging with more frames improves the image
quality and visualization.”* However, in our results,
the SNR reached a local maximum while contrast-to-
noise ratio (CNR) reached a plateau when the number
of averaging was at 15 and did not show significant
improvements when the number of averaging was
larger than or equal to 20 (Fig. 2). Furthermore, the
running time required to finishing the virtual averag-
ing processing increased linearly with respect to the
repetition times. It took 60.7 seconds for 15-time
averaging, 80.4 seconds for 20-time averaging, 159.6
seconds for 40-time averaging, and 400.9 seconds for
100-time averaging (assessed using a MacBook Pro
with 2.6 GHz dual-core Intel Core i5 processor;

Cupertino, CA). To strike a balance between the
outcome image quality and running time, 15 repeti-
tions of Steps 1 and 2 was used in our virtual
averaging processing.

Virtual Averaging Performance Assessment

Experiment |: Effects of Image Quality Enhancement

This experiment was designed to test the effects of
the proposed virtual averaging method on OCT image
quality enhancement, especially focused on the
visibility and clarity of the borders that delineate
intraretinal layers. To compare and test the image
enhancement ability, nonframe-averaged OCT data
were also processed with a standard Gaussian
smoothing method, a widely known image-smoothing
filter for noise reduction and image content enhance-
ment, however, losing image details, and blurring the
boundaries.” The standard Gaussian smoothing
method used in this comparison has the same kernel
size as the virtual averaging (i.e., 3 X 3 X 1 in the x, y,
and z directions, respectively). The outcomes were
evaluated and compared with frame-averaged OCT
data subjectively and objectively.

Subjective and objective assessments. For subjective
assessment, subjective image quality evaluation based
on the image appearance in terms of tissue contrast,
smoothness of the tissues, and the visibility of
intraretinal layers were assessed independently by
two observers (CLC and HI). For objective assess-
ment, SNR and CNR were calculated to evaluate the
image enhancement effect as follows™*":

M
1 P
SNR = 10log M% (—maX§ )) ,
CTII m

m=1

M 2
i Z( e~ py )

M m=1 v G% + Gg m
In the equation, intermediate SNR and CNR for each
frame were calculated and accumulated, then the final
SNR and CNR values were assessed using the
arithmetic average of the intermediate parameters,
where M stands for the number of frames in one cube
data. In the expression for SNR, [ represents the
logged value from the OCT machine output, and o2
stands for the variance of the background noise
region in the logged value. In the CNR formula, u
and p, indicate the mean value of the selected regions
of interest and of the same background noise region

CNR = 10log (1)
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End of visible nasal RNFL

Spectralis

Figure 3. Distance between the end of visible nasal RNFL and the
foveola. Blue arrow points to the foveola position while orange
arrow points out the end of visible nasal RNFL. The distance
between the end of visible nasal RNFL and the foveola is calculated
as the horizontal distance between the blue and orange arrows.

as in SNR, while o7 and ¢? stand for the variance of
the selected regions of interest and of the same
background noise region as in SNR.?*°

In addition to the conventional image quality
metrics (SNR and CNR), distance between the end of
visible nasal RNFL and the foveola (dNFL) was
measured to further assess effect of virtual averaging
on improving the visibility and clarity of the borders
that delineate intraretinal layers. To measure dNFL
(done by CLC), the foveola location was manually
identified by detecting the largest separation between
the junction of the inner and outer segments of the
photoreceptors and retinal pigment epithelium (RPE)
as appearing on the horizontal and vertical cross-
sectional B-scans. On the same frame where the
foveola located, the end of the visible nasal RNFL
was then manually identified by detecting the largest
drop in signal intensity from the nasal side RNFL
toward the foveola. The distance between the foveola
and the marked A-scan was converted into physical
distance in micrometers, and denoted as dNFL.
Examples of dNFLs in Cirrus and Spectralis images
are presented in Figure 3. Three ANFL measurements
were assessed for each image data to evaluate its
intraobserver repeatability. In addition, two indepen-
dent operators conducted the dNFL measurements in
a masked manner to test its interobserver reproduc-
ibility.
Statistical analysis. Paired t-tests were used to analyze
the image quality metrics (SNR and CNR) improve-
ment between the original and processed images (both

virtual averaged and Gaussian smoothed images) as
well as the differences in dNFL between nonframe-
averaged and frame-averaged data before and after
processing. The intraobserver repeatability and inter-
observer reproducibility of dNFL measurement were
evaluated by calculating the coefficients of variation
(CVszlfor original image data and frame-averaged
data.”

Experiment lI: Effects of Signal Normalization and
Minimizing Tissue Thickness Measurement
Differences

Systematic differences exist in the retinal tissue
measurements among multiple OCT devices. We
hypothesized that the systematic differences are due
to the variation in OCT signal characteristics gener-
ated from different OCT devices. To solve this
problem, in the second experiment, we integrated
the virtual averaging technique into our signal
normalization and expected that the signal character-
istics variation would be minimized after signal
normalization, and therefore, could further reduced
the measurement differences between nonframe-aver-
aged and frame-averaged images. To test our
hypotheses, the ocular tissue thickness measurement
differences between Cirrus and Spectralis were
measured before and after signal normalization with
virtual averaging.

Signal normalization. The signal normalization was
modified from the previously reported method.'®'” In
this experiment, Cirrus OCT data format was chosen
to be used as the normalization data format reference,
and therefore Spectralis OCT data format was
converted to the Cirrus equivalent OCT data format.
The normalization process had two separate stages
for Cirrus and Spectralis data, as presented in Figure
4. Spectralis data were first processed with Z-scaling
and sampling density normalization, while Cirrus
data were processed with virtual averaging as the first
step. Because the averaging of multiple frames during
image acquisition for Spectralis data and virtual
averaging applied on the Cirrus data have the same
effect on reducing the speckle noise, the speckle noise
reduction step in the original signal normalization
method was omitted. After the first step, both Cirrus
and Spectralis data were processed with amplitude
normalization to match the intensity dynamic range.

OCT thickness measurement comparison. The thick-
ness measurement comparison methods were the same
as the one described in a previous signal normaliza-
tion study.'” Briefly, with the assumption that
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Figure 4. Flow chart of signal normalization with virtual averaging. The A-scan profiles after each step are shown for both Cirrus and
Spectralis. Virtual averaging was applied to Cirrus data to mimic frame-averaged signal characteristic, and Z-scaling and sampling density
normalization was applied to Spectralis so that the sampling density in Z-direction can be matched to Cirrus specification. Then the
amplitude normalization was applied to both processed Cirrus and Spectralis data to maximize the data dynamic range by mapping the
meaningful retinal signal to full 8-bit grayscale range. (For display purpose, the original and Z-scale normalized Spectralis A-scan profiles
were linearly rescaled from 16-bit to 8-bit grayscale range by mapping the minimal and maximal value to 0 and 255.)
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Table 1.

Comparison Methods OCT Signal

Definition of Different Methods for Comparison of RNFL Thickness Measurements

Measurement Description

Comparison | Original signal
Comparison |l Original signal
Comparison llI Original signal

Original device outputs
Self-designed segmentation algorithm
Self-designed segmentation algorithm with internal

parameters optimized for Cirrus and Spectralis individually

Comparison IV Normalized signal

Self-designed segmentation algorithm

different segmentation algorithms used for ocular
tissue thickness measurement in Cirrus and Spectralis
devices resulted in the systematic measurement
differences, we tested if using the same segmentation
algorithm could reduce the systematic measurement
differences between OCT devices in addition to the
virtual averaging effects on the measurements. Orig-
inal machine outputs of nine sectoral macular total
retinal thicknesses (following an Early Treatment
Diabetic Retinopathy Study [ETDRS] pattern’') and
global mean cpRNFL thickness on the original Cirrus
and Spectralis data were collected from the commer-
cial devices and used as the baseline measurements
(Comparison I, Table 1). In order to match the
measured region for sectoral macular total retinal
thickness, the foveola position was manually selected
by looking for the largest separation between the
junction of inner and outer segment of the photore-
ceptors and the RPE as appearing on the horizontal
and vertical cross-sectional B-scans. Same set of
measurements (the nine sectoral macular total retinal
thickness and cpRNFL) was automatically measured
for both original Cirrus and Spectralis OCT data by
applying identical segmentation algorithm of our own
design (Comparison II).>’ Then we optimized the
internal parameters of our segmentation algorithm
for Cirrus and Spectralis data individually (but the
core segmentation algorithm was the same) to see if
optimizing internal parameters helps minimize the
systematic measurement differences (Comparison
I11). Finally, OCT data were processed with signal
normalization including the virtual averaging pro-
cessing then segmented using our segmentation
algorithm without individual internal parameter
optimization (Comparison IV).

Image data were excluded if the images demon-
strated one or both of the following: (1) apparent
inaccurate border detection for more than consecutive
15% or additive 20% of the total image, or (2) borders
of the RNFL collapsed, meaning that the RNFL
thickness was recorded as a string of zeros for at least

10 consecutive sampling points (the second criteria
only applied for cpRNFL measurements).

Statistical analysis. To analyze the absolute difference
in nine sectoral total retinal thicknesses in the macular
region and cpRNFL thicknesses between Cirrus and
Spectralis from four comparison methods, we con-
structed a comprehensive measurement error model."”
This measurement error model describes how the true
unknown retinal tissue thickness of each eye is linked
to the measurements from each device and processing
method between Cirrus and Spectralis for different
comparison methods.

Structural equation models (SEMs) were used to
estimate the parameters in the measurement error
model. The R Environment and Language for
Statistics (version 2.13.1)* with Openx (version
1.1.2-1818),* and merror (version 1.0)*° were used
to describe the SEMs. Full information maximum
likelihood (FIML) was used to estimate the measure-
ment error model parameters.

Twenty-one healthy subjects, consisted of 9 men
and 12 women, were enrolled to this study. The mean
age of the cohort was 34.3 = 11.5-years old. The
averaged standard automated perimetery mean devi-
ation (MD) was —0.6 = 1.1 dB.

Experiment I: Effects of Image Quality
Enhancement

Figure 5 presents an example result of the cross-
sectional images in the macular region from the
original nonframe-averaged Cirrus image (Fig. 5A),
Gaussian smoothed Cirrus image (Fig. 5B), virtual
averaged Cirrus image (Fig. 5C), and frame-averaged
Spectralis image (Fig. 5D). Gaussian smoothed
images showed improved image quality compared
with the original nonframe-averaged Cirrus images.
However, comparing with virtual averaged images,
Gaussian smoothed images were blurrier, and showed
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(A) Cirrus original image
690 um

(D) Spectralis original image

474 um

Figure 5. Example results: cross-sectional images of (A) original
Cirrus, (B) Cirrus image after Gaussian smoothing, (C) Cirrus image
after virtual averaging, and (D) original Spectralis image. Gaussian
smoothed image (B) shows improved image quality comparing to
original Cirrus image (A), but with blurrier retinal signals and less
contrasts between retinal layers than Cirrus image after virtual
averaging (C). After virtual averaging, Cirrus image (C) show
notable improvement in signal quality and the visibility of retinal
tissue than (A). The retina cross-sectional image after virtual
averaging looks similar to active tracking frame-averaged
Spectralis image (D). In the averaged Cirrus image, external
limiting membrane (red arrowhead) and the continuous inner
border of inner plexiform layer (blue arrowhead) become clearly
visible.

less signal contrasts between retinal layers. Subjec-
tively, after virtual averaging, all nonframe-averaged
images showed notable improvement in image quality
and bore clear resemblance to active tracking frame-
averaged Spectralis images. As the example shows,
the external limiting membrane (ELM; red arrow-
head) was hard to recognize in Cirrus original image
but became clearly visible and easy to trace after
processing. Moreover, the contrast between retinal
layers became more apparent and the continuous
inner border of inner plexiform layer (IPL; blue

Table 2. Summarization of the Objective Assessment
Results

SNR (dB) CNR (dB)
Original 30.5 (28.6, 32.4) 4.4 (4.2, 4.6)
Virtual averaging 47.6 (45.6,49.5) 6.4 (6.2, 6.7)
Gaussian smoothing 33.0 (31.1, 34.9) 6.7 (6.5, 7.0)

Signal-to-noise ratio (SNR) and CNR among original,
virtual averaged, and Gaussian smoothed nonframe-
averaged Cirrus data were compared. 95% confidence
intervals are presented in the parentheses.

arrowhead) became easily distinguishable after virtual
averaging.

For objective assessment using image quality
metrics, the mean SNR and CNR were statistically
significantly improved after virtual averaging (SNR:
30.5 vs. 47.6 dB, CNR: 4.4 vs. 6.4 dB, original versus
averaged, P < 0.0001 for both comparisons; Table 2).
No statistically significant differences in SNR were
detected between original and Gaussian smoothed
images but Gaussian smoothed images showed
significantly higher CNR compared with the original
images (SNR: 30.5 vs. 33.0dB, P=0.11, CNR: 4.4 vs.
6.7 dB, P < 0.0001, original versus Gaussian
smoothed). Comparing the effects between virtual
averaging and Gaussian smoothing, virtual averaged
images presented statistically significantly higher
SNR but significantly lower CNR comparing with
Gaussian smoothed images (SNR: 33.0 vs. 47.6 dB, P
< 0.0001, CNR: 6.4 vs. 6.7 dB, P =0.0015, averaged
versus Gaussian smoothed).

The distance between the end of visible nasal
RNFL and the foveola (dNFL) was statistically
significantly different between Cirrus and Spectralis
before processing (681.4 vs. 446.5 um, original Cirrus
versus Spectralis, P < 0.0001) but after virtual
averaging, no significant differences in dANFL between
Cirrus and Spectralis was observed (442.9 vs. 446.5
um, averaged Cirrus versus Spectralis, P = 0.76). No
statistically significant difference in dNFL was
observed between original Cirrus and Gaussian
smoothed images (681.4 vs. 685.7 um, original Cirrus
versus Gaussian smoothed, P = 0.78). However,
Gaussian smoothed images showed significantly
longer dNFL comparing with Spectralis and virtual
averaged Cirrus images (685.7 vs. 446.5 and 442.9 pm,
Gaussian smoothed versus Spectralis and averaged
Cirrus, both P < 0.0001). For the intraobserver
repeatability assessment, the CVs of dNFL measure-
ments were 3.6% for original Cirrus, 5.4% for original
Spectralis, and 4.7% for averaged Cirrus data. The
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CVs for the interobserver reproducibility were 9.2%,
13.5%, and 11.9% for original Cirrus, Spectralis, and
averaged Cirrus data, respectively.

Experiment II: Effects of Signal
Normalization and Minimizing Tissue
Thickness Measurement Differences

For sectoral macular total retinal thicknesses,
significant systematic measurement differences were
detected in all sectors between Cirrus and Spectralis
on both device outputs (Comparison I, Table 3, P <
0.0001) and between our self-designed software
measurements before normalization (Comparison II
and III, Table 3, P < 0.0048). After signal normal-
ization, no significant differences were found in any of
the sectors between Cirrus and Spectralis data except
for in the outer temporal, outer nasal, and inner
inferior sectors (Comparison IV, Table 3). Signal
normalization significantly reduced the absolute
differences between the devices in all sectors except
for the center (mean absolute difference 20.3 pm
[devices] to 6.7 um [normalized], P < 0.0001).

For the cpRNFL thickness, statistically significant
differences were found between Cirrus and Spectralis
in the original device outputs and when using our
custom segmentation algorithm before signal normal-
ization (Comparison I, II, and III, Table 4). Although
the differences found in the device outputs were
significant, the detected differences (3.6 pum) were
within the expected device measurement variability
(4-5 pm) and were clinically nonsignificant (Compar-
ison 1).">*%37 Applying the same segmentation
software (i.e., our custom segmentation software)
made the differences larger (Comparison II and III,
Table 4). After signal normalization, no systematic
measurement differences were detected between Cir-
rus and Spectralis (Comparison [V, Table 4). Al-
though the mean absolute difference between Cirrus
and Spectralis was larger than the difference between
device outputs (5.5 vs. 3.6 um, Comparison IV versus
I), the mean absolute differences after signal normal-
ization were still subclinical and within the expected
measurement variability, indicating that the proposed
signal normalization did not add any significant
artifacts.

Discussion

The proposed virtual averaging method signifi-
cantly improved the image quality of nontracking
nonframe-averaged OCT images and made the images

comparable to active eye-tracking frame-averaged
OCT images. By resampling voxel within a 3 X 3
neighborhood, adding a Gaussian deviation in voxel
value multiple times, and then calculating the average,
the proposed method successfully mimicked the way
active eye-tracking frame-averaged devices acquiring
images, and further reduced the measurement differ-
ences between nonframe-averaged and frame-aver-
aged OCT images.

In virtual averaging, we assumed the deviation of
the OCT signal during image acquisition came from
the slight relocation of the camera, eye movement, as
well as the variation in signal intensity from the same
location caused by other factors, such as corneal
dryness (e.g., before and after blinking) and slight
differences in the incident angles; and the deviation of
OCT signal was randomly distributed following
Gaussian distributions. By adding Gaussian devia-
tions in both sampling location and signal intensity,
and repeating the process (Steps 1 and 2 in Fig. 1)
multiple times, the outcome of virtual averaging
showed much less noise, and thus improved the image
quality and intraretinal layer contrasts. Retinal tissues
like ELM and the end of nasal side RNFL, which are
usually difficult to identify with confidence in the
nonframe-averaged images, became clearly visible and
easier to delineate after virtual averaging. By enhanc-
ing visualization of nonframe-averaged OCT images,
the proposed method may help detect the fine
structural changes in those originally obscure tomo-
graphic features and improve interpretation and
assessment of the progression of pathologies; further-
more, it may enable detailed retinal structure studies
on images, which previously fell short because of
image quality, and may also enable more robust and
finer retinal tissue segmentation.

Another potential benefit of the virtual averaging
method is that it allows generating images similar to
the ones with frame averaging with less image
acquisition time. One practical drawback of eye-
tracking system is the prolonged scanning time. The
fast eye movement and blinking during scanning force
the machine to repeat scanning at the same location
until there is no detectable motion or blinking for the
particular frame. The extended scanning duration
makes certain scan patterns impractical especially for
the densely sampled three-dimensional scans. With
the proposed virtual averaging method, frame-aver-
aged-like images can be generated from nonframe-
averaged image data without prolonging the image
acquisition time, which is especially beneficial to
elderly and pathologic eyes.
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Table 3. Sectoral Macular Total Retinal Thickness Measurements and Systematic Measurement Differences
Between Cirrus and Spectralis, Using Four Comparison Methods

Mean Absolute

Cirrus (um) Spectralis (um) Differences (um) P Value
Comparison | (device outputs)
Outer
Temporal 258.3 (253.0, 263.6) 281.7 (276.4, 286.9) 23.3 (20.6, 26.1) <0.00071*
Superior 278.0 (272.3, 283.6) 298.9 (292.7, 305.1) 21.0 (18.7, 23.2) <0.0001*
Nasal 297.8 (290.2, 305.4) 315.9 (308.1, 323.7) 18.1 (15.3, 21.0) <0.0001*
Inferior 266.6 (260.8, 272.4) 287.4 (281.0, 293.8) 20.8 (18.3, 23.3) <0.0001*
Inner
Temporal 308.9 (302.4, 315.3) 332.4 (327.3, 337.5) 23.5 (20.6, 26.5) <0.0001*
Superior 3224 (316.3, 328.5) 345.0 (339.4, 350.7) 22.7 (19.8, 25.5) <0.0001*
Nasal 324.8 (318.9, 330.6) 346.9 (341.5, 352.3) 22.1 (19.1, 25.2) <0.0001*
Inferior 317.9 (311.6, 324.1) 341.6 (336.2, 346.9) 23.7 (21.0, 26.5) <0.0001*
Center 259.0 (252.7, 265.2) 275.0 (269.0, 280.9) 16.0 (13.5, 18.5) <0.0001*
Comparison Il (our custom algorithm with same parameters)
Outer
Temporal 288.4 (282.5, 294.4) 285.7 (280.8, 290.5) 45 (2.9, 6.1) 0.023*
Superior 304.5 (298.6, 310.5) 302.5 (297.6, 307.5) 53 (34,72 0.18
Nasal 321.4 (314.1, 328.7) 314.7 (308.3, 321.0) 7.7 (5.0, 10.3) 0.0002*
Inferior 293.4 (287.3, 299.5) 291.4 (285.1, 297.7) 6.8 (4.0, 9.6) 0.33
Inner
Temporal 324.4 (319.0, 329.9) 322.0 (317.2, 326.8) 6.3 (4.2, 8.4) 0.16
Superior 343.0 (337.6, 348.4) 339.6 (334.5, 344.7) 6.0 (3.9, 8.0) 0.031*
Nasal 342.4 (337.5, 347.2) 337.5 (3324, 342.6) 6.7 (4.7, 8.6) 0.002*
Inferior 338.1 (332.6, 343.6) 331.4 (326.5, 336.3) 7.7 (5.6, 9.8) <0.0001*
Center 250.6 (243.0, 258.2) 261.7 (238.5, 285.0) 31.7 (12.5, 50.8) 0.34
Comparison Il (our custom algorithm with fine tuned parameters)
Outer
Temporal 288.4 (282.5, 294.4) 280.1 (274.7, 285.4) 7 (6.4, 10.8) <0.0001*
Superior 304.5 (298.6, 310.5) 294.3 (288.6, 300.0) 'IO 3(8.2,12.3) <0.0001*
Nasal 321.4 (314.1, 328.7) 306.8 (300.0, 313.6) 15.1 (12.7, 17.5) <0.0001*
Inferior 293.4 (287.3, 299.5) 283.1 (277.6, 288.6) 10.3 (8.0, 12.5) <0.0001*
Inner
Temporal 324.4 (319.0, 329.9) 318.0 (311.4, 324.7) 1(4.6,11.6) 0.0048*
Superior 343.0 (337.6, 348.4) 334.4 (329.1, 339.8) 1 (6.9, 11.3) <0.0001*
Nasal 342.4 (337.5, 347.2) 333.5 (328.1, 339.0) 2(7.2,11.2) <0.0001*
Inferior 338.1 (332.6, 343.6) 326.9 (321.6, 332.2) 11 2 (8.5, 14.0) <0.0001*
Center 250.6 (243.0, 258.2) 236.6 (223.7, 249.6) 18.1 (8.5, 27.6) 0.0015*
Comparison IV (after signal normalization)
Outer
Temporal 291.4 (285.4, 297.3) 294.6 (289.5, 299.8) 5.0 (3.4, 6.7) 0.01*
Superior 307.0 (301.2, 312.9) 305.9 (300.5, 311.3) 3.8 (2.5, 5.1) 0.26
Nasal 3254 (317.9, 332.9) 319.4 (313.1, 325.8) 7.2 (4.7, 9.8) 0.0009*
Inferior 296.7 (290.7, 302.8) 294.8 (289.4, 300.1) 49 (3.5, 6.3) 0.12
Inner
Temporal 328.0 (321.7, 334.3) 328.2 (322.2, 334.2) 6.6 (4.1, 9.1) 0.93
Superior 346.4 (341.1, 351.7) 344.3 (339.2, 349.4) 4.5 (2.9, 6.0) 0.08
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Table 3. Continued.

Mean Absolute

Cirrus (pum) Spectralis (um) Differences (um) P Value
Nasal 345.7 (340.0, 351.3) 344.5 (339.0, 349.9) 4.5 (3.3, 5.6) 0.29
Inferior 341.2 (335.5, 346.9) 337.9 (332.9, 342.9) 47 (24, 7.0) 0.02%
Center 249.7 (240.1, 259.2) 251.1 (238.0, 264.2) 13.1 (8.2, 18.1) 0.71

95% Cl are shown in the parentheses.

* Statistically significant differences were detected between Cirrus and Spectralis.

Although it is assumed that the deviation of the
OCT signals in frame-averaged images was Gaussian
distributed, applying Gaussian smoothing with the
same kernel size to nonframe-averaged images could
not reach the same effects as virtual averaging.
Although the conventional Gaussian smoothing is
very similar to the proposed virtual averaging, it
applies smoothing evenly across the neighboring
points. On the other hand, virtual averaging does
not guarantee the all the neighboring information is
used because of its random nature and the limited
number of processing repetition. Gaussian smoothing
reduced image noise effectively but smeared image
details at the same time. Therefore, Gaussian
smoothed images showed significant improvement in
the CNR (measuring the smoothness of the image) but
not in the SNR compared with the original images.
Moreover, there were still significant differences in
dNFL between Gaussian smoothed and Spectralis
images. Those results imply that simply applying
Gaussian smoothing is insufficient to resolve the
discrepancies between nonframe-averaged and frame-
averaged images. It is further supported by the results
that modeling deviations of sampling location and
amplitude and repeating the process are the keys to
making nonframe-averaged OCT images comparable
to frame-averaged OCT images by virtual averaging.

A potential limitation of the proposed virtual
averaging is that the random resampling in the first
step was in the x (transverse) and y (vertical) direction,

but not in the z (axial) direction. By using the z-
corrected nonframe-averaged Cirrus images, the devi-
ation in the z direction was assumed to be negligible,
and therefore, we randomly selected a voxel in a 2D 3
X 3 neighborhood in x and y directions instead of a
three-dimensional 3 X 3 X 3 neighborhood. Although
no big eye motion in the z direction were observed in
the current dataset and no blurry effects in the retinal
layer boundaries were detected by subjectively evalu-
ating the virtual averaged images, the proposed
method may not be suitable for the image with big z
motion. In that case, aligning adjacent B-scans by
using the ILM or RPE as the reference point would be
needed before the virtual averaging processing. Further
investigation is warranted.

Another potential limitation is that the output of
the virtual averaging differs every time it runs due to
its random resampling. However, we did not detect
any noticeable difference in both qualitative and
quantitative assessments on the multiple results of the
virtual averaging on the same source image. There-
fore, it is safe to assume that the random nature of the
virtual averaging does not have adverse effect the
outcome.

In addition to conventional image quality metrics,
we used a new image quality metric, dNFL, to assess
the OCT image quality before and after virtual
averaging. It was observed that the visibility of the
end of the nasal RNFL in fovea is sensitive to the
image quality, and more specifically to the layer border

Table 4. Global Mean Circumpapillary RNFL Thickness Measurements and Systematic Measurement
Differences Between Cirrus and Spectralis, Using Four Comparison Methods

Methods Cirrus (pm) Spectralis (um) Mean Absolute Differences (um) P Value

Comparison | 96.3 (91.2, 101.3) 99.1 (94.8, 103.4) 3.6 (2.3, 5.0 0.003*

Comparison I 99.4 (94.5, 104.3) 111.3 (107.2, 115.3) 11.9 (9.3, 144) <0.0001*
Comparison llI 99.4 (94.5, 104.3) 106.1 (102.2, 110.1) 7.2 (5.2,9.3) <0.0001*
Comparison IV 101.9 (97.0, 106.7) 100.4 (96.6, 104.2) 553.7,7.2) 0.20

95% Cl are shown in the parentheses.

* Statistically significant differences were detected between Cirrus and Spectralis.
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clarity and contrast. Even though dNFL measure-
ments quantified the image quality from a more
perceptual perspective and its subjective nature may
limit the legitimacy, it showed good intraobserver
repeatability (CVs range 3.6%—5.4%) and interobserver
reproducibility (CVs range 9.2%—13.5%), indicating
that it could be considered as a reliable image quality
metric. Spectralis data had the largest CVs in both
intraobserver repeatability and interobserver reproduc-
ibility, which may be caused by variations in OCT
signal characteristics such as hyperreflection signals.
Despite its subjective nature, ANFL measurements are
practical indicators of the visibility and clarity of
intraretinal layers, especially for the RNFL. Therefore,
dNFL measurements assess more clinical aspect on the
performance of virtual averaging method.

Besides being able to enhance image quality, the
virtual averaging can be used to normalize OCT signal
between nonframe-averaged and frame-averaged im-
ages so that the systematic differences in quantitative
measurements can be minimized. Because different
segmentation algorithms were used to measure the
retinal thicknesses and the foveola was not always
located at the center of the scan window, there was a
speculation that the systematic measurement differ-
ences in retinal thicknesses between OCT devices
could be minimized by applying identical segmenta-
tion algorithm and adjusting the foveola position.
However, our results showed that even using the same
segmentation algorithm and aligning the foveola
position, significant differences were detected in the
sectoral macular total retinal thickness between Cirrus
and Spectralis (Comparison II and III, Table 2).
Although the absolute difference was reduced from
the differences with the original device measurements,
it indicated that the signal normalization process was
still required. After applying signal normalization and
using our self-designed segmentation algorithm, the
systematic measurement differences between non-
frame-averaged and frame-averaged OCT data were
successfully reduced and the clinical measurements of
sectoral macular total retinal thicknesses from them
were made directly comparable.

The cpRNFL thickness showed a significant
difference in the original device outputs between Cirrus
and Spectralis. Though the absolute difference did not
reach clinical significance as reported in the litera-
ture,'**7 there was a consistent and statistically
significant trend of Spectralis measurements being
thicker than the Cirrus measurements. Similar to the
results found between nonframe-averaged OCT devic-

es,'” the systematic measurement differences in

cpRNFL thickness were not reduced by applying the
same segmentation algorithm, but became even larger,
indicating that signal normalization is needed to
minimize the measurement differences. Despite
cpRNFL thickness not needing any post hoc process-
ing to make it clinically comparable between Cirrus
and Spectralis,'' the statistically significant trend
between Cirrus and Spectralis disappeared after signal
normalization, and the mean absolute differences were
still subclinical and within the measurement variability
range, suggesting that the signal normalization process
did not add any significant adverse noise or artifacts.

In conclusion, the novel virtual averaging method
can be a fundamental image processing technique that
enhances image quality without the need of hardware
eye-tracking system, bridges the gap between non-
frame-averaged and frame-averaged images, and makes
both qualitative and quantitative assessments between
nonframe-averaged and frame-averaged OCT images
directly comparable. This method may enable detailed
retinal structure studies on images acquired using a
mixture of nonframe-averaged and frame-averaged
OCT devices without concerning about systematic
differences in both qualitative and quantitative aspects.
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