
Introduction

Hypoxia plays a critical role in physiologically normal development
such as embryogenesis, in which embryo is in a state of partial
hypoxia, which is essential for the control of neovascular and car-
diovascular development. Hypoxia also plays pathophysiological
roles in human diseases such as ischemia, stroke and cancer
[1–3]. For example, tumour cells exhibit molecular adaptation to
oxygen deprivation via initiation of hypoxia-mediated survival
pathways, angiogenesis, erythropoiesis, invasion and metastasis.
Ultimately, prolonged hypoxic stress leads to a more aggressive
tumour phenotype that is less sensitive to both radiation and
chemotherapy [4]. Several lines of independent studies have
shown that hypoxia is an indicator of poor prognosis for patients
with breast [5–7], cervical [8–10] and non-small cell lung cancers
[11], independent of other clinical factors such as tumour size.

Another important feature of tumour growth is the unregulated
receptor tyrosine kinase (RTK) activity through constitutive muta-
tional activation, overexpression or defective termination of RTK-
mediated signalling [12–17]. Although there have been hypoxia-

dependent transcriptional and translational mechanisms described
for the enhancement of certain RTK expression, a general unifying
mechanism governing hypoxia-induced RTK signalling has been
until recently unknown. This review highlights recent discoveries
into the causal role of tumour hypoxia in the regulation of RTK and
non-RTK endocytosis and the contribution of these hypoxia-adap-
tive processes to cancer development.

Hypoxia-inducible factors

The hypoxic response is orchestrated by the hypoxia-inducible
factor (HIF), a heterodimeric transcription factor consisting of a
modular � and a common � subunit, the aryl hydrocarbon recep-
tor nuclear translocator (ARNT) [18–21]. Both � and � subunits
belong to the basic helix-loop-helix-Per/Arnt/Sim (�HLH-PAS)
superfamily of transcription factors. �HLH region is required for
DNA binding while the two N-terminal PAS domains are required
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for dimerization and DNA specificity [18, 22]. The transactivation
domain located in the C-terminus recruits transcriptional co-acti-
vators required for transcription [23].

Although the constitutively expressed ARNT is an absolute
requirement for HIF transcriptional activation [24], the regulation
of HIF occurs primarily through oxygen-dependent ubiquitin-
mediated degradation via the oxygen-dependent degradation
(ODD) domain within HIF-� [25, 26]. Under normal oxygen ten-
sion or normoxia, HIF-� is hydroxylated at two conserved proline
residues in the ODD domain by a family of prolyl hydroxylase
domain-containing proteins (PHD). Prolyl-hydroxylation permits
the binding between HIF-� and von Hippel-Lindau (VHL) protein,
the recognition subunit of an E3 ubiquitin ligase complex called
ECV (Elongins BC/Cul2/VHL), which triggers polyubiquitylation
and subsequent destruction of HIF-� via the 26S proteasome [27,
28]. Under hypoxia, PHD-mediated prolyl-hydroxylation of HIF-�
is impaired and consequently escapes ECV recognition. The stabi-
lized HIF-� dimerizes with ARNT, translocates to the nucleus and
recruits p300/CBP transcriptional co-activator, thus forming the
active HIF complex. HIF binds to the hypoxia-responsive element
in the promoter regions of numerous hypoxia-inducible target
genes, including vascular endothelial growth factor, glucose
transporter 1 and erythropoietin, to promote angiogenesis, anaer-
obic metabolism and erythropoiesis, respectively [28–30].

There are three mammalian HIF-�: HIF-1�, HIF-2� and HIF-3�

[20, 31]. HIF-1� is most ubiquitously expressed whereas the
expression of HIF-2� and HIF-3� is predominantly confined to the
heart, placenta and lung [32, 33]. The three HIF-� genes share
homology in the �HLH and PAS domains but differ significantly in
their C-terminal transactivation domains, which may explain over-
lapping yet distinct transcriptional target genes [20]. HIF-� iso-
forms have highly conserved ODD domains, which account for
their destructive targeting via ECV in an oxygen-dependent man-
ner [34, 35]. Although HIF-1� possesses both oncogenic and
tumour suppressor properties, HIF-2� overexpression has been
invariably implicated in the promotion of transformed phenotype
[22, 36]. HIF-3� expression has been observed in several human
cancer cell lines, such as colon and prostate cancer cells.
However, the significance of the full-length HIF-3� isoform in can-
cer is unclear [22].

von Hippel-Lindau protein and cancer

Inheritance of a faulty VHL gene causes VHL disease that is char-
acterized by the development of tumours in multiple organs,
including the brain, spine, retina and kidney. Functional inactiva-
tion of VHL is also responsible for the vast majority of sporadic
clear-cell renal cell carcinoma, the most common form of kidney
cancer and the sixth leading cause of cancer death [37]. Most VHL
mutations result in the inappropriate accumulation of HIF-� irre-
spective of oxygen tension due to the inability of mutant VHL to
recognize prolyl-hydroxylated HIF-� or to form an active ECV
complex [37, 38]. Several lines of evidence support the notion that

the deregulation of HIF-� plays a causal role in tumorigenesis and
that the negative regulation of HIF-� represents the major tumour
suppressor function of VHL.

Endocytosis

Endocytosis is an essential cellular process in which materials
from the extracellular space are brought inside the cells by mem-
brane invagination. Endocytosis is an essential cellular home-
ostastic process in eukaryotic cells that controls an extraordinary
array of activities such as signal transduction, neuronal synaptic
transmission, nutrient uptake, clearance of apoptotic cells, regula-
tion of intercellular interaction and antigen presentation [39].
Endocytosis can be a constitutive process or triggered by ligand
engagement of receptor. Endocytic pathways are categorized into
three major types – phagocytosis or pinocytosis, clathrin-depend-
ent endocytosis and clathrin-independent endocytosis.

Phagocytosis or pinocytosis

Phagocytosis is a class of endocytosis that involves internalization
of large solid particles (�1.0 �m) such as apoptotic cell debris,
viruses and bacteria. Also referred to as cellular ‘eating’, phagocy-
tosis involves the formation of pseudopods and the generation of
large vesicles, mostly restricted to immune leucocytes such as
macrophages, neutrophils, monocytes and dendritic cells as a
major mechanism for removing pathogens and cell debris [40].
Phagocytosis is an active and highly regulated process that
requires actin reorganization regulated by Rho family GTPases.
Analyses of ovarian cancer, breast cancer and fibrosarcoma cells
suggest that highly metastatic cells also degrade extracellular col-
lagen through a phagocytic pathway [41].

In contrast, pinocytosis is the ingestion of small particles (�0.2
�m) such as extracellular fluid and dissolved molecules [42, 43].
Also referred to as cellular ‘drinking’, pinocytosis is a process that
occurs in all cell types and is mechanistically diverse and highly
regulated. Macropinocytosis is a subset of actin-dependent
pinocytic process regulated by the Rho family GTPase Rac1. Actin
polymerization drives the formation of membrane ruffles and pro-
trusions that collapse back onto and fuse with the plasma mem-
brane, which generates large endocytic vesicles of variable size
called macropinosomes that contain large volumes of fluid.
Although the mechanics behind this highly regulated process are
not well understood, growth factor-induced macropinocytosis may
play a role in directed cell migration and cancer metastasis [44].

Clathrin-mediated endocytosis

Clathrin-mediated endocytosis (CME) is the best-characterized
endocytic pathway. CME is triggered by the binding of ligand to its
cognate receptor and occurs in two stages divided into multiple
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steps [45, 46]: (1) Internalization, which covers the steps from the
targeting of receptors in clathrin-coated pits to the formation of
clathrin-coated vesicles and (2) intracellular receptor trafficking,
which covers the steps from early endosomes to sorting endo-
somes, late endosomes and lysosomes. The major coat protein is
clathrin, composed of three heavy chains and three light chains
that form a three-legged structure called triskelion. The adaptor
protein 2 is required to initiate coated pit assembly on the mem-
brane through binding to the cytoplasmic tails of receptor mole-
cules. Once a clathrin-coated pit has formed, dynamin, a recently
identified GTPase, self-assembles into helical rings and stacks to
form a collar at the neck of a clathrin-coated invagination and
pinches off the vesicle from the plasma membrane [47]. CME is
also a highly selective process and at least two types of internal-
ization signal have been described: the tyrosine-based motif
(YXX�, in which � is a hydrophobic residue) and the dileucine-
based motif (LL) [48–51].

Once a clathrin-coated vesicle is severed from the membrane,
these vesicles lose their clathrin coat, merge with early endo-
somes and sorted, either to be recycled to the plasma membrane
or to be targeted to the lysosome [52]. For example, following its
rapid internalization to the early sorting endosomes, the transfer-
rin receptor, a well-studied clathrin cargo, is returned to the
plasma membrane [53]. Other receptors, such as the epidermal
growth factor receptor (EGFR), are primarily destined for late
endosomes and ultimately lysosomes where the receptors and lig-
ands are degraded in the acidic milieu containing digestive
enzymes (acid hydrolases) [51, 54].

Intracellular trafficking of receptors involves a series of mem-
brane budding and fusion events [55]. These are regulated by spe-
cific cytosolic and membrane-associated protein factors, including
a group of Ras-like small GTPases called Rabs [56]. The current
view is that Rabs are involved in specifying the correctness of
membrane–membrane interactions at either the docking or fusion
level or both [57]. For example, Rab4 and Rab11 control the func-
tion and formation of endosomes involved in recycling while Rab7
regulates membrane transport from the early endosomal stage
through to the late endosomal and lysosomal stages. Rab5 con-
trols membrane trafficking in the early endocytic pathway, thereby
dictating the sorting function in endocytosis [57]. Rabaptin-5 is
one of the most well-characterized Rab5 effectors having two
Rab5 binding sites, which suggests that rabaptin-5 plays a role in
the tethering of early endosomes [58]. Rabaptin-5 also has an N-
terminal Rab4 binding domain, which suggests that it has a role in
endosome recycling [59]. Early endosomal antigen 1 (EEA1) is
another Rab5 effector [60]. EEA1 is also involved in the tether-
ing/docking and fusion of early endosomes and contains two
Rab5 binding sites, as well as a C-terminal FYVE domain that
specifically binds to phosphatidylinositol 3-phosphate (PI3P) [61].

Clathrin-independent endocytosis

Endocytosis of membrane and fluid also occurs through a
clathrin-independent pathway. Clathrin-independent endocytosis

can be distinguished from CME by its slow kinetic characteristics,
as opposed to the rapid internalization that occurs via CME.
Clathrin-independent internalization may be responsible for the
uptake of molecules that do not use coated pits, such as GPI-
anchored proteins, lipids and pathogens. Among the various types
of clathrin-independent endocytosis, caveolin-mediated endocyto-
sis is one of the more extensively studied pathways.

Although caveolae were first identified over 50 years ago [62],
our understanding of the function of these unique organelles is
just beginning to emerge. Caveolae are uncoated, highly abundant,
omega (�) shaped (50–100 nm in diameter) invaginations on the
plasma membrane that are present in most cell types [63]. They
demarcate lipid rafts, or domains in the plasma membrane that are
enriched in cholesterol and sphingolipids [64]. Caveolins, a group
of oligomeric cholesterol-binding proteins that insert into the
membrane as a hairpin loop, are the major structural proteins that
are essential for the formation of caveolae [65–67]. The biological
role for caveolae continues to be debated. Caveolae have been
implicated in the regulation of signal transduction, endocytosis
and the maintenance of cholesterol homeostasis [63, 68].
Caveolin phosphorylation, dynamin and Rab5 activity and actin
polymerization are required for caveolin-mediated endocytosis.
The caveolar cargoes are diverse, ranging from lipids, proteins
and lipid-anchored proteins to pathogens. Caveolin-mediated
endocytosis is a major pathway of entry for some viral pathogens,
such as SV40 and some adenoviruses [69, 70].

In addition to caveolin-mediated endocytosis, caveolin-
independent pathways represent a rapidly evolving field of study.
The molecular details of how vesicles are formed and how these
pathways are regulated are not well understood [71]. Advances in
our understanding of these pathways come primarily from the
identification of cargo molecules internalized through non-clathrin
pathways and the identification of possible regulators [72]. Using
regulators as a basis for categorization, clathrin- and caveolin-
independent pathways can be grouped into RhoA-dependent [73],
Cdc42-dependent [74] and Arf6-dependent types [75]. However,
this approach has not been entirely satisfactory. There is still 
disagreement about how many of these clathrin-independent
pathways exist and confusion about how they may overlap mech-
anistically and functionally. Adding to the confusion or complexity
is the fact that many cargos can be internalized through multiple
pathways. This is perhaps best illustrated by differences in 
the endocytosis of EGFR. Although EGFR is internalized through
CME at low physiological concentrations of EGF, EGFR may be
internalized by caveolin-mediated endocytosis at higher ligand
concentrations [76, 77].

Hypoxia-mediated regulation of RTKs

Both tumour hypoxia and dysfunction of RTKs can contribute to
cancer development and resistance to conventional cancer ther-
apy. These two factors are intertwined, and previous work has
shown that tumour hypoxia can up-regulate signalling through
EGFR and other RTKs. EGFR is one of the most studied RTKs. It is
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overexpressed or highly activated in more than 80% of all solid
tumours and is associated with increased metastasis, therapeutic
resistance and poor prognosis [78]. Franovic et al. provided evi-
dence that EGFR expression can be induced by the hypoxic
microenvironment, while the activation of HIF-2� in the core of
solid tumours results in increased EGFR mRNA translation [79].
Moreover, short hairpin RNA mediated inhibition of EGFR is suffi-
cient to abolish HIF-dependent tumorigenesis in multiple VHL–/–

RCC cell lines [80]. EGFR regulates HIF-� expression through the
PI3K-Akt signalling axis in non-small cell lung cancer [81–83].
The crosstalk between EGFR and HIF signalling pathways has
been reported to increase resistance to apoptosis under normoxic
conditions in human breast cancer cells [84].

Other studies have shown that tumour hypoxia can up-regulate
signalling via the hepatocyte growth factor (HGF)/c-Met pathway
as well [85]. HGF normally stimulates growth, migration and
epithelial-to-mesenchymal transition in a range of cell types,
including epithelial, blood, neural and skin cells as well as hepato-
cytes [86]. Pennacchietti et al. revealed that under hypoxic cell
culture conditions, c-Met, the receptor for HGF, is increased at
both the transcription and protein levels, thus making it more
available for ligation with HGF [87]. Under hypoxia, increased 
c-Met expression and HGF sensitization promote tumour cell inva-
siveness [87, 88]. Moreover, hypoxia has also been shown to
induce tyrosine phosphorylation of the platelet-derived growth
factor receptor, activate PI3K/Akt cascade that leads to glycogen
synthase kinase-3 inactivation, and enhance vascular endothelial
growth factor receptor expression [89].

Hypoxia-mediated RTK endocytosis

Hsu et al. provided evidence that VHL–/– RCC cells exhibit
increased surface abundance of fibroblast growth factor receptor
1 upon ligand stimulation and downstream target activation, such
as ERK1/2, compared to VHL-reconstituted RCC counterpart [90].
VHL was shown to interact with the metastasis suppressor Nm23,
a protein known to regulate dynamin-dependent endocytosis at
the level of internalization, suggesting that VHL promotes internal-
ization process of fibroblast growth factor receptor 1 [90].

Whether hypoxia influenced RTK turnover upon ligand engage-
ment was, until recently, unknown. Yi et al. asked whether the com-
mon observation of tumour hypoxia and RTK overexpression in
solid tumours were causally linked, and revealed that hypoxia or
loss of VHL prolonged EGFR half-life through HIF-mediated delay of
endosome formation and the eventual degradation of EGFR cargo in
lysosomes [91]. The activation of signalling components down-
stream of EGFR was correspondingly prolonged, resulting in
enhanced cell proliferation and survival. The deceleration in endocy-
tosis was due to the attenuation of Rab5-mediated early endosome
fusion via HIF-dependent down-regulation of rabaptin-5, a critical
Rab5 effector, at the transcriptional level. Primary kidney and breast
tumours with strong hypoxic signatures consequently exhibited sig-
nificantly lower expression of rabaptin-5 mRNA and protein [91].
These findings suggest an unprecedented role for the general oxy-

gen-sensing pathway in classical endocytosis that explains, at least
in part, why and how RTK signalling is accentuated under hypoxia,
and provide an oncogenic model in which tumour hypoxia or hyper-
activation of HIF prolongs RTK-mediated signalling by delaying
endocytosis-mediated deactivation of receptors.

Hypoxia and Rab11-mediated recycling of integrin

Integrins belong to a family of transmembrane receptor proteins
composed of heterodimeric complexes of � and � chains.
Integrins are involved in mediating cell–cell and cell–extracellular
matrix (ECM) adhesion, and transduce signals from the ECM to
the cell interior or ‘outside-in’ signalling, as well as coordinate sig-
nals to the extracellular space from inside the cell or ‘inside-out’
signalling [92]. Integrin dysfunction is a common event in cancer
development, especially in metastasis and cancer invasion.
Integrins are internalized through both CME and clathrin-inde-
pendent endocytosis [93].

Yoon et al. recently demonstrated that hypoxia stimulates
Rab11-mediated recycling of integrin �6�4-containing vesicles to
the plasma membrane [94]. This function is thought to be important
in cell invasion since overexpression of a dominant-negative form of
Rab11 blocks hypoxia-induced invasion [94]. Hypoxia-stimulated
Rab11c (also called Rab25) was shown to directly associate with
integrin �5�1, which enables a pool of the recycling integrins to be
retained at the cell front, promoting invasion into fibroblast-derived
ECM [95]. Clinically relevant is that Rab11c has been found to be
overexpressed in more than 50% of ovarian and breast cancers and
is associated with shorter survival [96]. These findings suggest that
hypoxia-mediated recycling of integrins by Rab11 plays an impor-
tant agonistic role in tumour progression and invasion.

Hypoxia-mediated Na,K-ATPase endocytosis

Down-regulation of Na,K-ATPase, an ATP-dependent ion pumping
system, via endocytosis is associated with the metastatic behav-
iour of several cancers [97]. In alveolar epithelial cells, acute
hypoxia promotes Na,K-ATPase endocytosis, resulting in the inhi-
bition of Na,K-ATPase activity [98–100]. Prolonged hypoxia leads
to RhoA-dependent degradation of plasma membrane Na,K-
ATPase [99] and intriguingly, occurs only in the presence of VHL
[100]. The overexpression of Na,K-ATPase has been associated
with the development of prostate cancer [101] and colorectal can-
cer [102]. These findings support the notion that hypoxia-medi-
ated Na,K-ATPase endocytosis is involved in cancer development.

p38 MAPK in hypoxia-mediated endocytosis

p38 MAPK is well known stress-activated MAPK and an important
regulator of cancer progression [103]. Several lines of evidence
suggest a role of p38 MAPK in endocytosis. For example, p38
MAPK controls the endocytic trafficking of various growth-related
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cell surface receptors and transporters through its ability to phos-
phorylate EEA1 at Thr1392, thus blocking EEA1-mediated homo-
typic fusion and subsequent accumulation of early endosomes
[104, 105]. p38 MAPK is also required for phagolysosome bio-
genesis and the endocytosis of the �-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid receptor [104, 106]. p38 MAPK phos-
phorylates and activates the Rab GDP dissociation inhibitor
(RabGDI), which enhances its inhibitory activity toward Rab5,
attenuating or terminating the endocytic process [104]. Given that
p38 MAPK responds to a wide range of stimuli, including hypoxia
[107], it is reasonable to predict that p38 MAPK modulates
hypoxia-mediated endocytosis.

Concluding remarks

The cellular sorting machinery, which displays many genetic and
post-translational alterations in tumours, is regulated by oxygen
tension. The current and aforementioned view of hypoxia-regu-
lated endocytosis is summarized in Fig. 1. Although it is becom-
ing increasingly clear that oxygen influences the activity of several
proteins along the endocytic pathway, perhaps most remarkable
to-date is rabaptin-5, which regulates both early endosome fusion
and endosome recycling. A loss or attenuated expression of
rabaptin-5 may contribute to oncogenesis by prolonging the
retention and activity of RTKs, such as EGFR and platelet-derived
growth factor receptor, as well as potentially non-RTKs in early

endosomes. Rab11, which regulates cargo recycling, has been
shown to be overexpressed in ovarian and breast cancers, and to
increase integrin recycling in response to hypoxia. Increased
membrane localization of integrins is an important and common
process in tumour invasion and metastasis. In addition, p38
MAPK inhibits Rab5-dependent endosome tethering and fusion by
blocking EEA1 and activating RabGDI by phosphorylation.
Moreover, Rho family small GTPases, such as RhoA, Rac1 and
Cdc42, which are involved in both CME and clathrin-independent
endocytosis [108], have been shown to be regulated by hypoxia
[109–111]. The precise molecular mechanism(s) by which oxygen
affects the role of Rho GTPase in endocytosis remains to be an
outstanding question. The observation that hypoxia-mediated
endocytosis and degradation of Na,K-ATPase is RhoA dependent
[99] offers a promising avenue for deciphering the role of hypoxia
in Rho GTPase-mediated endocytosis. Another question of inter-
est is whether HIF modulates other proteins than those involved
in CME. One such candidate is caveolin, which is deregulated in
several cancers [68]. In addition, caveolin-deficient mice show
that caveolae and caveolins play a prominent role in various
pathological conditions, especially cancer [68]. Interestingly,
caveolin-1 has both tumour suppressor and oncogenic properties
[112]. However, the role of hypoxia in caveolin-mediated endocy-
tosis is unclear.

Current studies indicate that hypoxia regulates endocytosis in
several ways and that this regulation is important for tumorigene-
sis. The lessons that emerge from these and continuing studies
examining the links between hypoxia and endocytosis will
undoubtedly provide better insight into the fundamental role of

Fig. 1 Hypoxia-mediated endocytosis in can-
cer development. See text for details.
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hypoxia-mediated endocytosis in cancer development and opti-
mistically provide a novel foundation for alternative cancer treat-
ments. There are and will be many more important answers to be
solved in this new area of oxygen-mediated endocytosis research,
but perhaps the most interesting answer will be to the question
that has yet to be realized.
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