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Abstract
Digitalization with integrated devices, digital and physical assistants, automa-
tion, and simulation is setting a new direction for laboratory work. Even with
complex research workflows, high staff turnover, and a limited budget some
laboratories have already shown that digitalization is indeed possible. How-
ever, academic bioprocess laboratories often struggle to follow the trend of
digitalization. Due to their diverse research circumstances, high variety of team
composition, goals, and limitations the concepts are substantially different.Here,
we will provide an overview on different aspects of digitalization and describe
how academic laboratories successfully digitalized their working environment.
The key aspect is the collaboration and communication between IT-experts
and scientific staff. The developed digital infrastructure is only useful if it
supports the laboratory worker and does not complicate their work. Thereby,
laboratory researchers have to collaborate closely with IT-experts in order for a
well-developed and maintainable digitalization concept that fits their individ-
ual needs and level of complexity. This review may serve as a starting point or a
collection of ideas for the transformation toward a digitalized laboratory.
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1 INTRODUCTION

In contrast to industry, academic research laboratories
requiremore flexibility than production lines. Besides flex-
ibility, loss of knowledge due to high staff turnover in

Abbreviations: AI, artificial intelligence; AR, augmented reality; CLI,
command line interface; DoE, design of experiments; ELN, electronic
laboratory notebook; FAIR, findable, accessible, interoperable, reusable;
GUI, graphical user interface; IoT, Internet of Things; LADS, Laboratory
and Analytical Device Standard; LIMS, Laboratory Information
Management System; ML, machine learning; NUI, natural user
interface; OPC UA, open platform communications unified architecture;
SiLA2, Standardization in Lab Automation 2; VR, virtual reality; VUI,
voice user interface.
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universities is another challenge that makes full labo-
ratory digitalization hard to achieve [1–4]. Digitalization
refers to an entire process, workflow, or laboratory infras-
tructure while digitization refers only to the procedure
of converting something analog to a digital format (e.g.,
digitizing a standard operating procedure from a piece of
paper to a digital file) [5, 6]. Working in digital labora-
tories has the potential of error reduction, prevention of
data loss, improved data integrity, fasterworkflowdevelop-
ment times, possible reduction of chemicals and materials
and higher sample throughput leading to modern, trans-
parent and reproducible research and biomanufacturing
[7–14]. Developing a digitalization strategy for an aca-
demic bioprocess laboratory is an interdisciplinary task.

Eng Life Sci. 2024;24:2300238. www.els-journal.com 1 of 15
https://doi.org/10.1002/elsc.202300238

https://orcid.org/0009-0004-4210-0912
https://orcid.org/0000-0002-0983-9748
mailto:beutel@iftc.uni-hannover.de
http://creativecommons.org/licenses/by-nc/4.0/
http://www.els-journal.com
https://doi.org/10.1002/elsc.202300238


2 of 15 HABICH and BEUTEL

Laboratoryworkers have towork closelywith IT-experts in
order to achieve a digital infrastructure that can be main-
tained and is supporting their laboratory work rather than
hindering it [5, 7, 9, 15, 16]. This kind of collaboration is
rarely found in academic bioprocess laboratories so even
the smallest digitalization task can be a major challenge.
Hardware vendors selling their devices with proprietary
software and restrictive access and information about their
interfaces is making digitalization evenmore difficult [1, 7,
17]. Therefore, academic researchersworking in the field of
digitalization are developing concepts that are fitting their
individual needs at the time. This iswhy there aremanifold
digitalization concepts throughout academic laboratories.
This review will present different digitalization concepts
throughout academic bioprocess development laborato-
ries. Before looking at different individual concepts in
more detail, general aspects like FAIR data, standard com-
munication protocols, digital twins and interaction with
laboratory devices will be addressed.

2 BASIC CONCEPTS OF
DIGITALIZATION

2.1 Fair data

With the progressing digitalization of laboratories, the gen-
erated amount of data is steadily increasing. Therefore,
good data management systems will become inevitable
in bioprocess development laboratories. The first step
towards good data management is storing the data and
metadata according to the FAIR (Findable, Accessible,
Interoperable, Reusable) data principles [18]. Both humans
and machines should be able to find the data with meta-
data and a clear unique identifier. The data should be
digitally accessible for the user with the appropriate tool.
It should be noted that accessible in this context does
not mean that the data are ’open’ or ’free’ but that trans-
parency around the used data concerning its availability
is given [19, 20]. Interoperable data means data are pre-
sented using vocabulary and data encoding that follows
the FAIR data principles and can be read by machines. In
order for data to be reusable they need to be rich in meta-
data and descriptive documentation on the circumstances
in which the data were generated. Rich metadata should
ideally describe the data in ameaningful way including the
setup and context of the experiment, technical setting, and
information about the provenance [8, 18, 21–23].
Most research data are currently stored locally and not

organized in a standardized way. Storing data according to
FAIR data principles allows them to be read by machines
and not just the human laboratory worker who generated
them. Other advantages of following the FAIR data princi-

ples and also publish research data is that this datawill stay
available over time. Available or even openly online shared
data includingmetadata can help to determine if the publi-
cation is of high quality. It can be reproduced, reanalyzed,
used for new analyses, or even compared to or combined
with other data promoting a deeper understanding of the
topic or perhaps generating new knowledge [12, 21, 24].
Before computers were used on a large scale in labora-

tories, results of experiments were handwritten into paper
notebooks. This is still happening in many cases in today’s
bioprocess development laboratories although the use of
electronic laboratory notebooks is emerging fast [25]. Most
devices are equipped with a USB, RS232, or RS485 port
thus providing network connectivity. But the absence of
a physical network necessitates the usage of, for example,
flash drives for data transport. This increases the danger
of manipulation or loss of data [9]. Writing down data
manually and then digitizing it later on a computer used
for data storage and analysis is also not a good solution.
The analog handwritten data is prone to error, not good
to search through, only accessible from the analog labora-
tory notebook, and limited reusable: not following FAIR
data principles [9, 26]. After it has been digitized with-
out human errors it has all the advantages of digital data.
In order to make data gathering faster, simpler, and more
accurate a complete transition to automated data capture
has to be made [26]. This includes data flow from a whole
bioprocess including sampling, sample preparation, mea-
surement, and data analysis [8]. When transitioning from
analog to digital data it is important to take the laboratory
users needs into consideration. While aiming to automati-
cally store data following FAIR data principles the end user
who is analyzing it still needs to be able to access and work
with it.

2.2 Standard communication protocols

While a lot of laboratory device vendors still offer their own
proprietary software for device control [17, 27], researchers
are agreeing that the future of digitalization in the lab-
oratory lies in the common use of standardized device
communication protocols [7, 9, 17, 26, 28–34]. To con-
nect all laboratory devices to one digital infrastructure
it is aspirational for all devices to use the same stan-
dard communication protocol to achieve a plug-and-play
environment in bioprocess laboratories [26]. Device inte-
gration is faster, easier, and better tomaintainwhen vendor
independent communication protocols are more common
[35].
While offering device control with standard commu-

nication protocols might be costly for vendors in the
beginning due to initial software development, it offers
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advantages as well. Using a communication standard as
an instrument vendor will reduce the complexity of their
software documentation since the basics have already been
well documented. Thus, a detailed documentation of man-
ufacturer specific proprietary device drivers will become
redundant. This simplification of software development
can then reduce costs for device vendors. When using
standard protocols for device communication, instrument
vendors are contributing to FAIR-data principles while
they can focus on new innovations and features in their
devices. Customers can then choose devices based upon
those innovations instead of technical practicalities. Addi-
tionally, more companies and laboratories have the ability
to integrate devices with standard communication proto-
cols into their digital infrastructures because they are not
limited by interface or platform incompatibilities. This will
then lead to an increased purchase of consumables for
those devices [36–40]. Agreeing on physical standards like
the microtiter plate was an advantage for everyone in the
end [30]. Using standardized tools and parts in the pro-
duction process is decreasing costs and complexity due to
purchasing larger quantities of the same part rather than
needing multiple specific parts. The earlier standards are
getting adopted and implemented in the working process
the more cost efficient it will be. Manufacturers are also
challenged to differentiate their product from other manu-
facturers in other areas than compatibility. This leads to
a better competition and an overall increase in develop-
ing new technologies rather than sticking to proprietary
solutions [30, 41]. For consumers on the other hand stan-
dardization will help to easily maintain devices even if
the manufacturer no longer exists. Standards need to be
flexible enough to go beyond their intended purpose or
otherwise it will limit its use.
Before implementing a communication standard a

holistic plan needs to be made from scientists in coop-
eration with IT experts. Laboratory work needs to be
simplified and the scientist needs to be supported through
standard device connectivity. Users need to have a clear
benefit from using a standard otherwise digitalization
efforts will not be rewarded by regular use. As long as
the use of proprietary device control software is more con-
venient the use of standard communication protocols is
ineffective. These benefits can exemplary be achieved by
automating parts of the workflow that would otherwise
result in tedious manual work like data acquisition and
central data storage following FAIR data principles. Other
means to support the user in the laboratory are semi-
automated standard operating procedures where device
parameters are already preset after digitally selecting the
required workflow. Using a standard protocol for device
communication can realize these aspects when all devices
are connected by a central device control server such as

in [35, 42]. After successfully choosing and implement-
ing standard communication it is important to keep the
infrastructure open to new device additions and upgrades
without being a burden on laboratory workers. Two stan-
dard communication protocols are currently coexisting in
bioprocess development laboratories: Standardization in
Lab Automation 2 (SiLA2) and Laboratory and Analytical
Device Standard (LADS) based onOpen PlatformCommu-
nicationsUnifiedArchitecture (OPCUA) [17, 36, 38, 40, 43,
44].

2.2.1 SiLA2

“SiLA’s mission is to establish international standards
which create open connectivity in lab automation, to
enable lab digitalization” [38]. This open-source commu-
nication standard is based on a server-client infrastructure
where every laboratory device is a SiLA2 server that offers
a set of features. SiLA2 servers advertise themselves on
the network and are discovered by SiLA2 clients like Lab-
oratory Information Management Systems (LIMS) or the
SiLA2Manager developed by Bromig et al. [36, 40, 42]. The
clients recognize the offered features by the servers and
can use or call them. Real-time observation of parameters
is possible through the subscription to observable proper-
ties. For integration of legacy devices Porr et al. developed
a gateway module to enable SiLA communication [45]. On
the software side, the gateway module has the advantage
of clearly separating the tasks while still using a stan-
dard protocol. This plays a major role in scalability and
maintainability. SiLA2 has been implemented in different
frameworks using Java, C#, Python, or C++ for fast and
easy integration of laboratory devices [42, 45, 46].

2.2.2 LADS based on OPC UA

OPC UA is a standard in multiple industries for data
exchange between devices independent from the device
vendor [44]. Just as SiLA2, OPC UA has a server-client
infrastructure. OPC clients can be connected to any OPC
server that is able to collect and further process provided
data from the client. The previous version OPC Classic
was limited to the operating system Microsoft Windows
but OPC UA is platform independent. OPC was used as an
established standard in industry even before the need for
a standard communication protocol for laboratory equip-
ment manifested itself [44]. The problem of transferring
this digital communication standard from industry to bio-
process development research laboratories is the added
flexibility and heterogeneity of devices that make those
laboratories a lot more complex than industrial production
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F IGURE 1 Portrayal of differences in the data flow of digital
models, shadows and twins. Figure based on [7, 54, 55].

processes when looking at the digitalization part [43]. This
is why a working group from the industrial association
Spectaris developed the communication protocol LADS
based on OPC UA [17, 47]. “The goal of LADS is to create
a manufacturer-independent, open standard for analytical
and laboratory equipment” [48]. OPC UA provides a way
to integrate legacy devices into the digital infrastructure
by providing wrappers for existing software [49]. Imple-
menting OPC UA is possible in different programming
languages such as Java, Python, C++, or C# [49]. OPC UA
is not just enabling digital connectivity inside the labora-
tory but also connecting research laboratories to industrial
infrastructures due to OPC UA already being established
in industrial environments [17].

2.3 Digital twins

Through the development of Industry 4.0 and progressing
Internet of Things (IoT) connectivity the number of digital
twins is increasing also in the environment of bioprocess
engineering laboratories. IoT in this context describes the
idea to connect physical objects like laboratory devices to
a network or the internet to ensure status and information
processing as well as the ability to communicate and send
and receive data [28, 50–53]. This omnipresent keyword
Digital Twin is described by Fuller et al. as the “effortless
integration of data between a physical and virtual machine
in either direction” [54]. This concept is an invaluable
advancement in bioprocess development whereas a dif-
ferentiation between digital models, digital shadows, and
digital twin is important. The difference between these, as
depicted in Figure 1, are the manual and automated data
flows between the physical and digital object. All three
concepts have a physical and digital object that are con-
nected by data flow. Within the digital model the data
in transported manually between the physical and digital
object. The digital shadow has automated data flow from

the physical to the digital object butmanual data flow from
the digital to the physical object. A digital twin, however,
has automated data flow in both directions. Thus, only
when using a digital twin, changes in the physical object
will result in changes in the digital object and vice versa [7,
54, 55].
Major challenges in the process of implementing digi-

tal twins in the bioprocess laboratory are data security and
privacy concerns, device connectivity, trust issues regard-
ing the use of technology, and development of a laboratory
wide digital infrastructure including data storage space.
Difficult to predict and complex processes especially in the
biological laboratory complicate the development of digi-
tal twins as well. The predominant benefits on the other
hand include automated data (and metadata) generation,
processing, and analyzing of those as well as data trace-
ability. All this is contributing to the aforementioned FAIR
data principles. Laboratories that use digital tracking of
consumables in their digital twins are able to automate
their ordering system making manual inventory obsolete.
Therefore, digital twins are the key technology to a new
and transformed laboratory work with the potential to
automated knowledge generation [7, 55].

2.4 Interaction with laboratory devices

Besides using standardized device communication pro-
tocols, full digitalization cannot be achieved without
considering the end user. Digital solutions assisting the
laboratory worker but also interacting with devices should
therefore be straightforward and convenient to use. The
device interactions with laboratory equipment in biopro-
cess development laboratories has changed over the last
years making it more efficient and intuitive with every
additional solution providing more interaction possibili-
ties [53].
The use of laboratory devices itself is supposed to not

interfere with the experiment, slow it down, or complicate
it. Consequently, device operation should be as intuitive
as possible. There are three different interactions levels
for device control. Starting at the lowest level, the abstract
interaction, using command line interfaces (CLI), followed
by the next level, the indirect interaction, using graphical
user interfaces (GUI). The last and most intuitive level of
device interaction is the direct interaction using natural
user interfaces (NUI).
CLIs have the advantage of keyboard input from the

user and are easy to integrate or combine with other
tools like scripts. However, using CLIs as the interac-
tion medium with laboratory environment requires basic
knowledge of command line logic and scripting. This skill
cannot be expected from everyone working in the labora-
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tory due to their different educational backgrounds. One
approach to accelerate the transformation towards digital-
ized laboratories is the addition of basic IT classes (e.g., for
basic scripting knowledge) to biotechnological education.
CLIs as the only device interface are not a suitable solu-
tion for general and intuitive device interaction. However,
additional CLI device interaction may prove useful for
administrative purposes or for integrating supplementary
software [56].
The next level of interaction with laboratory devices is

the indirect interaction usingGUIs. This has the advantage
that no programming or scripting knowledge is needed
for device interaction. Thus, all people in the laboratory
are able to operate devices equipped with a GUI. Addi-
tionally, more information can be displayed for the user
on the screen while mouse as well as keyboard input
is enabled. A lot of devices have a vendor specific and
often proprietary control software. This often runs on
a desktop PC positioned next to the device inside the
laboratory. Modern devices, however, do not only have
the possibility of local interaction but also offer remote
interaction via network connection. Those GUIs are then
deployed as touch-based network-like webinterfaces also
allowing the usage of handheld devices as the end device.
These handheld devices like smartphones, tablets, or touch
beamers have the advantage that people are used to oper-
ating touch displays from their personal life making device
interaction even more intuitive. Additionally, the use of
mobile applications on smartphones and tablets is enabled
[57–59].
The use of touch-based interaction media is introducing

the next level of device interaction: NUI. Besides touch-
based interaction media, NUIs also include voice user
interfaces (VUI) and interaction via gestures and motions.
Artificial input like keyboard and mouse input becomes
obsolete. This direct interaction with laboratory devices
is leading to a simplified and even more intuitive way of
working in the digitalized laboratory environment. Even
though NUIs have a lot of advantages (Figure 2) they are
not undisputed due to security concerns or voice recogni-
tion issues [60, 61]. Austerjost et al. showed in their work
that VUIs can enable hands free device control which can
be particularly advantageous in microbiology laboratories
regarding contamination risks [34]. The topic of human-
device interaction is described in further detail in the work
of Söldner et al. [53].

3 DIGITALIZATION STRATEGIES

The way how digitalization in laboratories looks can be
very different everywhere. Bioprocess development is still
relying on experienced workers doing experiments in the

laboratory and analyzing data afterwards. Digitalization
with integrating devices, digital and physical assistants,
automation, and simulation is setting a new direction for
laboratory work [2, 62]. One digitalization strategy alone
will not be able tomeet all needs of the various laboratories
that exists in the academic bioprocess development field
[30]. In the following subsections, different approaches
of digitalization with their respective applications are
presented and discussed.

3.1 Digital integration of laboratory
devices

The first step to digitalize any laboratory is to connect
devices to a digital infrastructure. This connection can look
different for each laboratory, depending on their individ-
ual needs. Due to high topic variance in some academic
research laboratories the devices are usually waiting to be
used by a researcher in their required manual way [62].
Devices in these laboratories are described by Porr et al. as
a “craftsman’s toolbox” [45]. Integrating them into a highly
automated workflow might hinder research and flexibility
which is why there are different approaches to hardware
integration in academic research laboratories. Laboratory
devices can be divided into three categories with different
levels of technical prerequisites. In order to connect or con-
trol any device with a digital infrastructure a central device
control server needs to be developed first. The SiLA2 man-
ager developed by Bromig et al. [42] or the DeviceLayer
from Porr et al. [35] are examples for this. The connection
to different laboratory devices will then look different due
to their category. While legacy laboratory devices do not
have internet access but a USB or other serial connection
ports (like RS232) they first need to be connected to a phys-
ical device that bridges the connection to the network as
well as to the central control server and enables standard
communication. This can be achieved using a gateway
module. Laboratory devices with network access (WLAN
or Ethernet) do not need a physical device in order to be
connected using a standard device communication proto-
col. A simple digital component like a device controller is
sufficient to integrate that device into the digital infras-
tructure. Laboratory devices that come with a standard
driver like SiLA2 or OPC UA can be controlled directly
from the central control server [35]. Figure 3 shows this
concept with SiLA2 as the example for the standard device
communication protocol.
For the integration of legacy laboratory devices Porr

et al. developed a gateway module to enable SiLA-based
communication. This gateway module is based on an
embedded computer that runs a Linux image. The legacy
device is connected to this module via USB or RS232 and
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F IGURE 2 Evolution of user interfaces from CLI to GUI to NUI with their respective advantages and challenges.

F IGURE 3 Laboratory devices can be divided into three categories with different technical prerequisites. For legacy devices a physical
gateway module is needed to enable network access and standard device communication. Devices without native standard device
communication but ethernet port need a digital component to enable for example SiLA2 communication. The third category are devices with
integrated standard device communication. A central device control server is managing standard connectivity between all different kinds of
laboratory devices.

a SiLA2 server on the other side that can control the
device hosted on the gateway module. Thus, communica-
tion using the SiLA communication protocol is enabled.
In their work, they showed how to use this connection
device to integrate amagnetic stirrer into the digital infras-
tructure [45]. Bromig et al. also connected their laboratory
devices using the SiLA2 communication protocol in their
work. They developed a SiLA2 Manager that is able to dis-
cover, connect to and control SiLA2 drivers generated with
SiLA2 Python. Using this software framework, they con-
nected various laboratory devices needed for their use case
cultivation workflow with intermittent glucose feeding
[42].
Schmid et al. used the iLAB software framework (mean-

while known as zenLAB from infoteam [63]) as a basis to

develop their own software framework called iLAB-Bio.
The iLAB software framework is able to communicatewith
SiLA and OPC interface protocols generating their own
generic driver for each device. The communication with
both emerging standard protocols on the market (SiLA
and OPC) is making it a good middleware framework
for a digitalized laboratory. Using this framework, they
were able to integrate a liquid handling platform using
SiLA as the device communication protocol. On top of
that, they used SiLA based communication to integrate a
bioreactor system with 48 10 mL reaction vessels for par-
allelization and miniaturization. They also integrated the
design of experiment (DoE) software MODDE into their
digital infrastructure. For this, they used a combination
of SiLA-based communication and manually matching
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process data to MODDE responses. While this method
includes proprietary data formats, it still improves the data
exchange with the software decreasing the possibilities of
data loss or damage [9].
Seidel et al. as well as Poongothai et al. used various

communication protocols (like SiLA2, OPC UA, gRPC,
MQTT, or REST) to integrate laboratory devices into their
comprehensive IT platform in an IoT fashion. Integrat-
ing devices using different interface options increases the
maintenance cost and time as well as the complexity but
also allows the infrastructure to stay as flexible as possible.
Automatically storing all available data in one place saves
time, ensures data transparency, and reduces human error
[28].
Austerjost et al. also used the concept of IoT while using

proprietary commands for laboratory device control [34].
They generated a digital device shadow for each device
which was synchronized with the real laboratory device
using the cloud-based IoT broker AWS IoT. The modu-
lar device integration was realized using the programming
tool Node-RED [64] deployed on a Windows PC with both
devices serially connected to the PC. The serial commu-
nication was possible with proprietary port commands
that were provided by the vendor. The modular setup
allows more device integration in the future but using
proprietary elements in the digitalization process will not
lead to a universal solution for digitalized laboratories
[26, 34, 43].
In 2021 Porr et al. developed a digital infrastructure

where device integration was achieved using SiLA-based
communication [35]. The underlying concept of this solu-
tion was already published by Porr et al. in 2019 [33].
Ethernet, USB, and RS232 is used to connect the (legacy)
devices [45] with a wire making digital communication
more stable than wireless communication due to less sig-
nal interfering possibilities. The infrastructure is based
on a server-client-logic. It includes a process control sys-
tem as their central process intelligence. Here, workflows,
the sequence of steps required to complete the bioprocess,
are planned and controlled. The process control system
is connected to the aforementioned DeviceLayer which
communicates with the laboratory devices. After creat-
ing a workflow with the process control system using an
intuitive GUI the user can be guided through the labo-
ratory work with the help of smartglasses as a NUI. The
smartglasses show for example the next step of a complex
assay that was incorporated into the workflow. Here it is
important that these additional information are helping
rather than distracting the user [33]. The use of smart-
glasses is just one example of using assistive devices in
the laboratory which will be further examined in the next
subsection.

3.2 Laboratory assistants

Next to digitalizing laboratory devices and thus enabling
digital communication there are also other means for dig-
ital assistance in the laboratory. They can be distinguished
into digital and physical assistants (Figure 4) but for both
groups, their main goal is to help and support the per-
sonworking the laboratory.Whenworkingwith laboratory
assistants it is unavoidable to address issues like privacy
and confidentiality beforehand. Encrypted connections
are an important factor for secure file transport. Other
security methods like authentification, usage of (voice-
)fingerprints, logging of system activities, message signing,
or version control are becoming equally relevant when
working with digital and physical assistants in digitalized
laboratories [28, 34, 36, 43, 50, 52, 57, 65].

3.2.1 Digital assistants

Digital assistants include everything that might help the
person working in laboratory in their digital work such
as workflow scheduling, data gathering, or documenting
experiments. The first digital assistant gaining impor-
tance in academic laboratories is the electronic laboratory
notebook (ELN). Requirements for the ELN are becom-
ing more and more sophisticated and complex. It is not
just about digital documentation of experiments but also
about automated data gathering, connectivity to laboratory
devices, sharing progress in team projects, and improving
user-friendliness as well as data security and improving
research quality [25, 66]. With the ongoing digitalization
of academic laboratories, most data are already digitally
available and can be linked, copied, or integrated into
the ELN. The increasing availability of ELNs with differ-
ent sizes and scopes the need for ELNs evident and it
is only a matter of time until all laboratories (including
academia) will use an ELN instead of an analog laboratory
notebook [67, 68]. When switching an entire laboratory or
institute to ELN IT support needs to be considered: data
might get stored on servers that need to be maintained,
mobile devices, computers, and WIFI need to be available
and upgrade and backup-support might be needed as well.
After switching to ELNmost users are preferring it over the
paper-based version [67]. When going through the trans-
formation towards a digitalized laboratory it is important
to take concerns raised by future users serious to increase
acceptance of new tools and this new way of working in
the laboratory.
The next level of digital assistance in bioprocess devel-

opment laboratories is using a LIMS. The LIMS is where
all data are collected, processed, managed, represented,



8 of 15 HABICH and BEUTEL

F IGURE 4 Overview of digital and physical laboratory assistants. Partly created with content from icon-icons.com.

and stored. The ELN is, in most cases, integrated into this
management system. Using LIMS will give the laboratory
user the advantage to digitally combine various parts of
the laboratory such as data gathering, inventory manage-
ment, workflow scheduling, sample tracking, datamining,
device controlling, report creation, information overview,
and metadata analysis [28, 53, 67]. Just as ELNs, there are
various LIMS that differ in their scope and capabilities
[65]. LIMS is also the basis of starting to enable model-
based control of bioprocesses and automating workflows
[7]. Another mean of digital assistance in the lab is the use
of smart assistants like Amazon’s Alexa. Laboratory work-
ers can ask simple questions likemelting points,molecular
weight, isoelectric points, or answers to simple calcu-
lations during a workflow without having to physically
interrupt their experiment [69, 70].

3.2.2 Physical assistants

Liquid handling stations, autosamplers, and real time
imaging devices are physically helping researchers with
laboratory work. In recent years, however, stationary and
mobile robots as well as cobots are starting to appear spo-
radically in academic laboratories supportingworkerswith
various physical tasks [71]. Stationary robots are usually
fixed to a place in the laboratory, cannot change their
location by themselves thus being mainly used to execute
clear and repetitive workflows.Mounting it on rails gives it
added spatial flexibility increasing their potential applica-
tion possibilities [8]. Mobile robots are taking on the task
of transporting objects or samples inside the laboratory
using their sensors, actuators, and information processing
for navigation [8, 62]. These mobile robots might even be
drones in the future that use the air space in laboratories
as transportation routes [8]. They are independent from

human cooperation, mostly needing input or commands
to start but then work on their own. The development
of sensors and also the setup of the whole laboratory or
building needs to be considered when usingmobile robots.
When they transport an object to a different floor there
needs to be some kind of elevator, automatic doors, and no
unplanned obstacles in the way [31].
Cobots on the other hand are collaborative robots that

can be used in cooperation with humans and due to their
light weight design and improvement of safety features
they can also be used close to humans [8, 72]. Robots
in general are not common in academic laboratories yet
but researchers are starting to see the advantages that
robots (stationary and mobile) and cobots offer. They
rule out human volatility errors, do not mislabel sam-
ples, always transfer the right liquid or the right sample
to the intended place and will always log the right param-
eters [12]. Long development times, high maintenance
needs, high monetary investments and even reconstruc-
tion of whole laboratory areas are hindering the progress
of increasing the amount of physical help in form of
robots in academic laboratories. Additionally, in order for
robots to be implemented into the academic laboratory,
a digital infrastructure with a suited LIMS needs to be
implemented first [62]. However, using robotics in the lab-
oratory is helping to automate workflows or even whole
processes which will be further discussed in the following
subsection.

3.3 Automated laboratories

For few laboratories in the academic bioprocess devel-
opment a high level of automation is possible. However,
automation and high-throughput is not possible for most
experimental settings in research laboratories due to the
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need of high flexibility and high variety of process work-
flows [8]. The complexity of academic laboratories is also
justified in the high diversity of laboratory staff compo-
sition. It is not rare that personnel from more than one
research project are sharing laboratories and or devices
resulting in a different use of those. More challenges on
the way to automating workflows are organizing the setup
and ordering system [73], integrating standalone devices
that are already automated by themselves [9], matching
software requirements like legacy technology, proprietary
interfaces, and new standard communication protocols
(SiLA2, OPC UA) [9].
To collect as much data as possible for optimization of

a bioprocess Schmid et al. automated a setup for a DoE
for cultivation experiments [9]. Using iLAB as the software
framework they integrated a liquid handling station and
the DoE softwareMODDE into their digital infrastructure.
The process parameters of cultivation experiments per-
formed by two different bioreactor systems (96-well plate
and 10 mL scale) were gathered and analyzed automati-
cally in order to optimize the bioprocess. The integration
of the liquid handling station and the standalone soft-
ware MODDE, which was used to plan the experiments,
was realized using SiLA2 and an iLAB plugin. This—very
specific automated workflow—made it possible to com-
pare data and results from variously scaled experiments
due to the focus on data integrity throughout the entire
automated process [9].
In the laboratory group of Buzz Baum at the Univer-

sity College London, Jennifer Rohn set up an automated
microscopy for high-throughput screening of genes. Using
an automated liquid handling system, short interfering
RNA (siRNA) and automatedmicroscopy for imaging they
are now able to screen genome-wide for genes that play a
role in different morphological properties of human cells.
After they overcame struggles to setup the workflow in
the beginning considering basic needs like freezer space or
inventory control they also found it challenging to find a
good algorithm for analyzing the cell morphology. Using
the automated setup saved their group a lot of time and
made it possible to exploit a lot more of the available
technology [73].
Seidel et al. developed a comprehensive IT infras-

tructure for data handling and device integration [28].
Thus, they were able to automate a bioprocess workflow
from online selection of enzymes through ordering gene
sequences, cloning, transformation, cultivation, and pre-
production to the final scale up to production scale. They
focused on using a software that is comprehensive and
easy to understand. Human error and workload of labo-
ratory personnel as well as bioprocess developing times
are reduced. Even though data storage and sharing is
improved using their IT infrastructure maintenance costs

for databases, devices, and interfaces have increased. The
whole digital infrastructure is only user friendly as long as
it helps the laboratory personnel in their tasks rather than
making it more complicated [28].
The potential of fully automatedworkflows or even fully

automated laboratories in academic bioprocess develop-
ment laboratories is yet to be discovered and will also
not be possible everywhere due to the need of high
flexibility and complexity. Dividing whole processes into
sub-processes, developing a digital twin (Subsection 2.3),
using a modular setup, and staying flexible throughout
the planning will help to automate a whole workflow
ultimately [7, 8, 28, 74, 75].

3.4 Artificial intelligence and machine
learning

Artificial intelligence (AI) is a general term for the idea of
code or algorithms to understand data in a way a human
would, or carry out complex tasks based on data. Using
AI tools like machine learning (ML) to analyze collected
data can help to generate predictions or knowledge from
big data sets efficiently. Besides analyzing simulated exper-
iment data—as described in Subsection 3.5—AI and ML
can also be used to solve challenges in everyday laboratory
work. Especially when it comes to classification of data
sets, protein structure predictions, or image recognition
these rising techniques can prove useful [76, 77].
In 2021 Jumper et al. published their AI-based program

AlphaFold that uses ML to predict the three-dimensional
structure of proteins based on their amino acid sequence
with a high accuracy [78]. AI-ML applications can help to
make process control decisions that will impact the quality
of the target product as Nikita et al. showed in their work
on continuous manufacturing of monoclonal antibodies
[77]. While ML methods helped Volpato et al. to predict
the enzymatic class of a protein based solely on the full
amino acid sequence other works showed the power ofML
for classification problems as well. Austerjost et al. devel-
oped a mobile application for an image-based counting
algorithm forEscherichia coli colonies on agar plates. Their
idea was to use ML in order to have a more efficient sam-
ple throughput with high accuracy [57]. Biermann et al.
used an algorithm-based image processing for the at-line
determination of endospores from microscopic pictures
[79]. Here, too, the aim was to achieve a faster result using
ML. Thus, the presented applications are reducing the
time to determine a certain number (E. coli colonies and
endospores respectively)making everyday laboratorywork
faster and more efficient.
Further and deeper information of ML in the field

of bioprocess engineering can be read in the work of
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Duong-Trung et al. [80]. As shown in these examples AI
or ML canmake laboratory work faster andmore efficient.
To achieve these results large amount of data needed to
be generated or harvested from online databases first. This
data then needs to be explored, preprocessed and or anno-
tated manually. Here education on how to handle big sets
of data is beneficial for scientific staff. After data prepa-
ration models, neural networks or algorithms need to be
developed, trained, and optimized before they can pro-
vide the support the laboratory worker is anticipating [76].
Therefore, to unlock the whole potential of AI orML in the
laboratory digitalization for automated secure data capture
is needed as the first step.

3.5 Simulation of experiments using
process models

Digital twins as shown in Subsection 2.3 have, among
other things, potential to gather great amount of data due
to their real-time data monitoring. With advancing digi-
talization in bioprocess laboratories, the amount of data
from experiments is therefore also increasing. Based upon
this obtained data process models can be designed that
represent the biotechnological process as a whole to run
simulations with the aim to extract new valuable data [11,
81, 82]. Modeling experiments and simulating their respec-
tive outcomes using parameter adjusting is unlocking new
potential to get information without having to do all the
actual work inside the laboratory [76]. After a process
model has been developed it is important to verify its accu-
racy either through experimental validation experiments
or through expert knowledge [7].
Zobel-Roos et al. used the data of only a small amount of

experiments for a process model to evaluate the outcome
of different continuous chromatography setups. These
small experiments were done to estimate the parameters
for the process model. The results determined by the
model were then experimentally verified in the laboratory.
Simulation and tracer experiments showed a deviation
as small as 0.8% [83]. Ladd Effio et al. showed successful
process modeling approaches for the downstream part of
a bioprocess optimizing anion-exchange chromatography.
After experimentally determining adsorption isotherms
andmass transfer parameters they were subsequently able
to use their simulation-based model to identify optimal
elution conditions [84]. Boi et al. were able to develop a
model of affinity membrane chromatography to help with
the prediction of membrane performance in bioprocess
design [85].
Cell type, physiology, metabolism, and more factors are

substantially increasing the complexity of bioprocesses
when whole cells are involved. While representing a reli-

able mathematical model of a whole cell is still seemingly
impossible, model-based methods are able to make pre-
dictions. These predictions cannot be fully trusted and
have to be verified with experiments in the laboratory.
However, designing bioprocesses by analyzing data with
ML methods and simulations can help to optimize experi-
mental setups that can subsequently be transferred to the
laboratory [2, 7].

3.6 Virtual laboratories

Besides digitalizing the physical laboratory, there is
another approach that is particularly practical for edu-
cational purposes: Virtual laboratories. The concept of
these laboratories is that results of experiments are being
photographed or otherwise documented and stored with
their respective settings. These pictures and information is
then uploaded to the virtual laboratory (online database).
As depicted in Figure 5, users can then access this virtual
laboratory through, for example, a graphical web-service
alternating the settings of the virtual experimental setup
and receiving the associated picture or outcome [86].
This tool proves to be useful for a deeper understand-
ing of complex device equipment. A study found that
students who completed an online device training in a
virtual laboratory before conducting the experiment in
the physical lab needed less guidance and were able to
spend more time for the actual experiment rather than
getting familiar with the complex equipment. Having
learned the basic equipment knowledge online, these
students were better prepared and more confident than
those who did not use the virtual laboratory beforehand
[87, 88]. When students use virtual instead of traditional
laboratories for educational purposes there is no difference
in the effectiveness of content knowledge [89]. The easy
and automated generation of virtual laboratories is well
described in the work of De La Torre et al. [86]. Even if
this digitalization strategy has no impact for academic
laboratories to generate new research data this can well
be used for training or educational purposes [90].
The use of virtual reality (VR) is another way to interpret

the term virtual laboratories. For better understanding,
the terms VR and augmented reality (AR) are shortly
explained after Nakhle et al. [91]:

(i) Virtual reality: “Immerses users into interactive and
explorative virtual environments based on 3D repre-
sentation and simulation of the real world and objects
within it”. Requirements: VR headset, PC [91].

(ii) Augmented reality: “Superimposes valuable visual
content and information over a live view of the real
world to provide users an enriched version of reality,
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F IGURE 5 Schematic illustration of virtual laboratories with an overview of the (dis)advantages. First the experiment or device training
data set (consisting of/including pictures with each setting) gets uploaded to the database. Then users (students, new workers) can digitally
access these experiments and vary the parameters within the given boundaries. The user then gets to see the respective experiment outcome
as a picture. Partly created with content from bioicons.com.

allowing them to interact with digital objects in real-
time”. Requirements: Smartphone& tablet, AR glasses
[91].

Harfouche et al. showed that bioethics when study-
ing biotechnology can be taught via VR making a virtual
classroom experience possible for students [92]. Another
example for education via VR is the Arizona State Uni-
versity that is offering a biology degree solely based on
VR laboratory work [88, 93]. Advantages of these VR
classrooms or laboratories include the student’s local inde-
pendence, no exposure to toxic chemicals, no spatial
limitations, the possibility to slow down very fast reactions
for visualization, and no safety concerns when learning
about, for example, explosives or toxins. Thus, the learning
experience using VR will be enhanced in a cost and time
effective manner. Additionally, students will interactively
be taught with reduced human bias regarding gender, age,
ethnicity, and race [88, 91, 92].
VR can be a helpful tool for scientists to visualize 3D

images to grasp cell’s morphological features with confo-
cal microscopy. ConfocalVR is a VR application that can

be installed on consumer-grade VR systems to visualize
microscopic image stacks into 3D images in the virtual
world. The user can then interact with the digital object
and examine its properties in a way that would not be
possible with 2D imaging on a computer screen [94].
Device training and or maintenance can be improved by

using AR. Device experts do not have to travel to labora-
tories but can guide the scientists through maintenance
procedures with instructions while being able to see what
the scientists who wears AR glasses sees. Instructions
and information can be displayed in the user’s view for
guidance. This way requesting assistance from local inde-
pendent experts, teachers, or colleagues is not more than a
call away linking more knowledge together [95–97].

4 CONCLUDING REMARKS

Digitalizing academic bioprocess development laborato-
ries can lead to a new transformed era of research.
When supported by digital assistants, using connected
devices, more intuitive user interfaces, and data gathering
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according to FAIR data principles, academic research will
become less time consuming, more effective, and accurate
as well as less prone to (human) error. This will also lead
to a better reproducibility of experiments due to improved
data integrity and availability. Integrating devices into
digital infrastructures is becoming easier because of the
increased use of standard communication protocols like
SiLA2 and LADS. New students can be prepared for these
new kinds of digital laboratories with proper education
including learning basic IT-skills, like scripting knowledge
or the ability to handle big data sets. Digital or physical
assistants can be a good way to help personnel working in
the laboratory but their implementation and maintenance
is complex. Collaborating with IT-experts will help to over-
come this issue as well as the task of seamless integration
and communication of laboratory devices. When working
in automated laboratories IT-experts working closely with
laboratory workers are crucial for creating and executing
automated research workflows. Communication between
scientific researchers and IT-experts will become essential
because even the most sophisticated (from the IT per-
spective) digitalization concept will be useless when it
complicates the laboratory work. This communication is
only possible if both sides have a basic vocabulary and
understanding of the other topic. Simulating experiments
using process models have potential to decrease labora-
tory work while shifting the work to IT-experts that also
have to understand the basic science behind the exper-
iment. Besides IT-experts with experimental knowledge
laboratory staff with IT-knowledge will advance the highly
interdisciplinary process of digitalization as well. Virtual
laboratories are good for training or educational purposes
but will not produce any new scientifically relevant data.
Integrating VR or AR in laboratory work or laboratory
education programs is a cost-effective way of protecting
scientific staff and or students. Besides, the possibility
of new points of view on experiments, cells, or other
small particles or fast processes can add new value to
research.
Finally, there is not a single digitalization strategy that

fits all. The needs and requirements as well as the level of
flexibility and complexity is very broad in the field of aca-
demic bioprocess development. Thus, a good collaboration
and communication between IT-experts and laboratory
staff, consideration of standard device communication
protocols, followingFAIRdata principles, andmaking sure
that the solution supports the laboratory worker rather
than disturb them, will lead to a maintainable digital
infrastructure fitting their individual needs. Additions to
the education of new scientist and interdisciplinary net-
working is also a key aspect to drive this transformation
towards digitalized laboratories in the academic bioprocess
development.
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