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Abstract

Gene tree topologies have proven a powerful data source for various tasks, including species tree inference and species
delimitation. Consequently, methods for computing probabilities of gene trees within species trees have been developed
and widely used in probabilistic inference frameworks. All these methods assume an underlying multispecies coalescent
model. However, when reticulate evolutionary events such as hybridization occur, these methods are inadequate, as they
do not account for such events. Methods that account for both hybridization and deep coalescence in computing the
probability of a gene tree topology currently exist for very limited cases. However, no such methods exist for general cases,
owing primarily to the fact that it is currently unknown how to compute the probability of a gene tree topology within the
branches of a phylogenetic network. Here we present a novel method for computing the probability of gene tree
topologies on phylogenetic networks and demonstrate its application to the inference of hybridization in the presence of
incomplete lineage sorting. We reanalyze a Saccharomyces species data set for which multiple analyses had converged on a
species tree candidate. Using our method, though, we show that an evolutionary hypothesis involving hybridization in this
group has better support than one of strict divergence. A similar reanalysis on a group of three Drosophila species shows
that the data is consistent with hybridization. Further, using extensive simulation studies, we demonstrate the power of
gene tree topologies at obtaining accurate estimates of branch lengths and hybridization probabilities of a given
phylogenetic network. Finally, we discuss identifiability issues with detecting hybridization, particularly in cases that involve
extinction or incomplete sampling of taxa.
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Introduction

A molecular systematics paradigm that views molecular

sequences as the characters of gene trees, and gene trees as

characters of the species tree [1] is being increasingly adopted in

the post-genomic era [2,3]. Several models of evolution for the

former type of characters have been devised [4], while the

coalescent has been the main model of the latter type of characters

[5,6]. However, hybridization, a process that is believed to play an

important role in the speciation and evolutionary innovations of

several groups of plant and animal species [7,8], results in

reticulate (species) evolutionary histories that are best modeled

using a phylogenetic network [9,10]. Further, as hybridization may

occur between closely related species, incongruence among gene

trees may also be partly due to deep coalescence, and

distinguishing between the two factors is hard under these

conditions [11]. Therefore, to enable a more general application

of the new paradigm, a phylogenetic network model that allows

simultaneously for deep coalescence events as well as hybridization

is needed [12]. This model can be devised by extending the

coalescent model to allow for computing gene tree probabilities in

the presence of hybridization. In this paper we focus on gene tree

topologies and analyze the signal they contain for detecting

hybridization in the presence of deep coalescence.

Applications of probabilities of gene tree topologies given

species trees include determining statistical consistency (or

inconsistency) of topology-based methods for inferring species

trees [13–15], testing the multispecies coalescent model [13,16],

determining identifiability of species trees using linear invariants of

functions of gene tree topology probabilities [17,18], delimiting

species [19], designing simulation studies for species tree inference

methods [20–22], and inferring species trees [23,24]. We expect

that similar applications may be useful for probabilities of gene

tree topologies given species networks. In particular, it will be

useful to be able to evaluate the performance of methods that infer

species trees in the presence of hybridization as well as the

performance of methods for inferring species networks. Knowing

the distribution of gene tree topologies could also be useful for
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estimating the probability that two gene trees have the same

topology, a quantity that is used in constructing the prior which

models gene tree discordance in BUCKy [25], a program that is

often used to estimate species trees or concordance trees.

A method for computing the probability mass function of gene

tree topologies in the absence of hybridization (i.e., under the

multispecies coalescent model is assumed) is given by Degnan and

Salter [26]. However, to handle hybridization and deep

coalescence simultaneously, this method has to be extended to

allow for reticulate species evolutionary histories.

Indeed, attempts have been made recently for this very task

[27–30], all of which have focused on very limited special cases

where the phylogenetic network topology is known and contains

one or two hybridization events, and a single allele sampled per

species. However, a general formula for the probability of a gene

tree topology given a general (any number of taxa, hybridizations,

gene trees, and/or alleles) phylogenetic network has remained

elusive.

A binary phylogenetic network topology W contains two types

of nodes: tree nodes, each of which has exactly one parent (except for

the root, which has zero parents), and reticulation nodes, each of

which has exactly two parents. The edge incident into a tree node

is called tree edge, and the edges incident into a reticulation node are

called reticulation edges. In our context, we associate with a

phylogenetic network W a vector of branch lengths l (in units

of 2N generations, where N is the effective population size in that

branch) and a vector of hybridization probabilities c (which

indicates for each allele in a hybrid population its probability of

inheritance from each of the two parent populations); see Text S1

for formal definition. The gene tree topology G can be viewed as a

random variable with probability mass function PW ,l,c(G~g). In

this paper, we solve the aforementioned open problem by

reporting on a novel method for computing the probability of a

gene tree topology given a phylogenetic network, PW ,l,c(G~g).

We illustrate the use of gene tree topology probabilities to

estimate the values of species network parameters using the

likelihood of the gene tree topologies. This application allows for

disentangling hybridization and deep coalescence when analyzing

a set of incongruent gene trees, as both events can give rise to

similar incongruence patterns. Given a collection G of gene tree

topologies, one per locus, in a set of sampled loci, the likelihood

function is given by

L(W ,l,cDG)~ P
g[G

PW ,l,c(G~g): ð1Þ

This formulation provides a framework for estimating the

parameters l and c of an evolutionary history hypothesis W ,

given a collection of gene trees G. Estimates of 0 or 1 for the entries

in the c vector reflect the absence of evidence for hybridization

based on the gene tree topology distribution.

As gene tree topologies are estimated from sequence data, there

is often uncertainty about them. In our method, we account for

that in two ways: (1) by considering a set of gene tree topology

candidates, along with their associated probabilities (produced, for

example, by a Bayesian analysis), and (2) by considering for each

locus the strict consensus of all optimal tree topologies computed

for that locus (produced, for example, by a maximum parsimony

analysis).

Finally, to account for model complexity, we employ a simple

technique based on three information criteria, AIC [31], AICc

[32] and BIC [33]. While these criteria have their shortcomings

for model selection, the question of how to account for

phylogenetic network complexity is still wide open and no

methods exist for addressing it systematically [10].

We have implemented our method in the publicly available

software package PhyloNet [34] and demonstrated its broad

utilities in three domains. First, we reanalyze a Saccharomyces data

set and a Drosophila data set, and find support for hybridization in

both data sets. Second, we show the identifiability of the parameter

values of certain reticulate evolutionary histories. Third, we

highlight and discuss the lack of identifiability of the parameters in

other scenarios that involve extinctions.

Materials and Methods

We begin by reviewing Degnan and Salter’s method for

computing the probability gene tree topologies on species trees,

and then describe our novel extension to the case of species

networks.

The probability of a gene tree topology within a species
tree

Degnan and Salter [26] gave the mass probability function of a

gene tree topology g for a given species tree with topology y and

vector of branch lengths l as

Py,l(G~g)~
X

h[Hy(g)

v(h)

d(h)
P

n{2

b~1

vb(h)

db(h)
pub(h)vb(h)(lb), ð2Þ

which is taken over coalescent histories h from the set of all

coalescent histories Hy(g). The product is taken over all internal

branches b of the species tree. The term pub(h)vb(h)(lb) is the

probability that ub(h) lineages coalesce into vb(h) lineages on branch

b whose length is lb. And the terms vb(h)=db(h) and v(h)=d(h)
represents the probability that the coalescent events agree with the

gene tree topology. In particular, vb(h) is the number of ways that

coalescent events can occur consistently with the gene tree and db(h)
is the number of sequences of coalescences that give the number of

coalescent events specified by h. However, this equation assumes

that y is a tree and as such is inapplicable to reticulate evolutionary

Author Summary

Species trees depict how species split and diverge. Within
the branches of a species tree, gene trees, which depict
the evolutionary histories of different genomic regions in
the species, grow. Evolutionary analyses of the genomes of
closely related organisms have highlighted the phenom-
enon that gene trees may disagree with each other as well
as with the species tree that contains them due to deep
coalescence. Furthermore, for several groups of organisms,
hybridization plays an important role in their evolution and
diversification. This evolutionary event also results in gene
tree incongruence and gives rise to a species phylogeny
that is a network. Thus, inferring the evolutionary histories
of groups of organisms where hybridization is known, or
suspected, to play an evolutionary role requires dealing
simultaneously with hybridization and other sources of
gene tree incongruence. Currently, no methods exist for
doing this with general scenarios of hybridization. In this
paper, we propose the first method for this task and
demonstrate its performance. We revisit the analysis of a
set of yeast species and another of Drosophila species, and
show that evolutionary histories involving hybridization
have higher support than the strictly diverging evolution-
ary histories estimated when not incorporating hybridiza-
tion in the analysis.

Gene Tree Probabilities on Phylogenetic Networks
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histories. Recently, this equation was adapted to very special cases of

species phylogenies with hybridization [28–30]. However, none of

these adaptations is general enough to allow for multiple

hybridizations, multiple alleles per species, or arbitrary divergence

patterns following hybridization. We present a novel approach for

generalizing this equation to handle hybridization. Our approach is

general enough in that it allows for computing gene tree

probabilities on any binary phylogenetic network topology, thus

overcoming limitations of recent works.

The probability of a gene tree topology within a species
network

Our approach for computing the probability of a gene tree g
given a species network W has three steps. First, W is converted

into a multilabeled (MUL) tree T (a tree whose leaves are not

uniquely labeled by a set of taxa; see Text S1); second, the alleles

at the tips of g are mapped in every valid way to the tips of T ; and,

finally, the probability of g is computed as the sum, over all valid

allele mappings, of probabilities of g given T (see Figure 1).

Step 1: Converting the phylogenetic network W to MUL

tree T. Let W be a phylogenetic network on set X of species,

and with branch lengths vector l and hybridization probabilities

vector c. The conversion of W into a MUL tree is done as follows.

Traversing the network W from the leaves towards the root, every

time a reticulation node u is encountered, the two reticulation

edges incident into it are removed, an additional copy of the

subtree rooted at u’s child is created, one copy is attached as child

of one of u’s original parents, and the other is attached as a child of

u’s other original parent. For example, in Figure 1, traversing the

phylogenetic network from the leaves towards the root, the

reticulation node u is encountered, two copies of the subtree

rooted at its child (i.e., the most recent common ancestor of B and

C) are created, and one is attached as a child of u’s parent x, and

the other is attached as a child of u’s parent y, resulting in the

MUL tree shown in the figure. In order to keep track of which

branches in the MUL tree originated from the same branch in the

phylogenetic network, we build during the conversion a mapping

w from the set of the MUL tree branches to the set of the

phylogenetic network branches, such that w(e)~e’ if branch e in

the MUL tree corresponds to branch e’ in the phylogenetic

network. We make use of w in two ways. The first is in transferring

the branch lengths and hybridization probabilities from N to the

resulting MUL tree T , as illustrated briefly in Figure 1 and in more

details in Text S1, and the second use is for computing the

probabilities of gene trees, as becomes clearer below. Upon

completion of this step of converting the phylogenetic network W ,

its branch lengths l and hybridization probabilities c, the result is

a MUL tree T along with its branch lengths l’, hybridization

probabilities c’, and the branch mapping w. The full description of

the procedure NetworkToMULTree for achieving this conversion

is given in Text S1.

Step 2: Mapping the alleles to the leaves of the MUL

tree. In computing the probability of a gene tree given a species

phylogeny (tree or network), all the alleles sampled from species x
are mapped to the single leaf labeled x in the species phylogeny.

However, unless the species phylogeny W does not have any

reticulation nodes, the resulting MUL tree T contains leaf sets that

are labeled by the same species x. For example, in Figure 1, the

MUL tree has two leaves labeled B and two leaves labeled C. In

this case, it is important to map the alleles systematically to the

leaves of the MUL tree so as to cover exactly all the coalescence

patterns that would arise had the alleles been mapped to the

phylogenetic network.

We denote by cx the set of leaf nodes in T that are labeled by

species x. For example, cB for the MUL tree in Figure 1 is the set

of the two leaves labeled by B. Now, consider a locus ‘. We denote

by Ax (for x[X ) the set of alleles sampled from species x for locus

‘, and by ax the size of this set (i.e., ax~DAxD). In the example of

Figure 1, two alleles were sampled from species B; hence,

AB~fb1,b2g and aB~2. A valid allele mapping is a function

f : (|x[XAx)?(|x[Xcx) such that if f (a)~d , and d[cx, then

a[Ax. In other words, f maps an allele from species x to a leaf in

the MUL tree labeled by x. Let F denote the set of all such valid

allele mappings f ; in Figure 1, F~ff1,f2, . . . ,f8g.
Step 3: Computing the probability of a gene tree on the

MUL tree. Once the phylogenetic network W is converted into

MUL tree T and the set of all valid allele mappings is produced (a

straightforward computational task, yet results in a number of

valid allele mappings that is exponential in a combination of the

number of alleles sampled and the number of reticulation nodes),

the probability of observing gene tree topology g is found by

summing the probability of g given the MUL tree over all possible

allele mappings. Then, the probability of observing gene tree

topology g is found by summing over all possible allele mappings:

PW ,l,c(G~g)~
X

f [F
PT ,l’,c’,f (G~g): ð3Þ

In this equation, the PT ,l’,c’,f term accounts for all coalescent

histories of a given mapping, which, when combined with the

Figure 1. Phylogenetic networks, MUL trees, and valid allele mappings. In this example, single alleles a, c, and d were sampled from each of
the three species A, C, and D, respectively, whereas two alleles (b1 and b2) were sampled from species B. See text and Text S1 for details.
doi:10.1371/journal.pgen.1002660.g001
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summation over all valid allele mappings, accounts for all

coalescent histories within the branches of a phylogenetic

network. Finally, the likelihood for a collection of gene trees is

the product of the individual gene tree probabilities. This

formulation naturally gives rise to a likelihood setup for

estimating the parameters of a reticulate evolutionary history

from a collection of gene trees described by their topologies.

To complete our framework, we now provide a formula for

PT ,l’,c’,f (G~g), which is the probability of a gene tree given a

MUL tree and a valid allele mapping. Special attention needs to

be paid to sets of branches in the MUL tree that correspond to

single branches in the phylogenetic network, since coalescence

events within these branches are not independent. Let us illustrate

this issue using valid allele mapping f3 and the MUL tree T in

Figure 1. Under this mapping, each of the two alleles sampled

from species B is mapped to a different B leaf in T . Tracing these

two alleles independently from the two B leaves implicitly indicates

that tracing the evolution of these two alleles in the phylogenetic

network, no coalescence event should occur within time t1 on the

branch incident into leaf B in the network. Additionally, each

branch in the MUL tree may have a hybridization probability

associated with it that is neither 0 nor 1, and must be accounted

for in computing the probabilities. Accounting for these two cases

gives rise to

PT ,l’,c’,f (G~g)~
X

h[HT ,f (g)

v(h)

d(h)
P

n{2

b~1
c’b

vb(h)P’b(h), ð4Þ

where the P’b(h) terms are symbolic quantities, that do not

individually evaluate to any value. Instead, they play a role in

simultaneously computing the probability along pairs of branches

in the MUL tree that share a single source branch in the

phylogenetic network. More formally, let b’~(u,v) be a branch in

W such that u is a reticulation node. Given the mapping w from

the branches of T to the branches of W , the pre-image (or, inverse

image) w{1(b’) is the set of all branches in T that map to b’ under

w. That is, w{1(b’)~fe[E(T) : w(e)~b’g, where E(T) is the set of

T ’s branches. Then, we define

ub’(h)~
X

b[w{1(b’)

ub(h) and vb’(h)~
X

b[w{1(b’)

vb(h): ð5Þ

This equation states that the number of lineages ub’(h) that enters

(working backward in time) branch b’ in the phylogenetic network

equals the sum of the numbers of lineages that enter all branches

of the MUL tree that map to branch b’. The number of lineages

vb’(h) that exists branch b’ is defined similarly. In Figure 1, the

number of lineages that enters branch b’~(u,v) in the phyloge-

netic network equals the sum of the number of lineages that enter

branch b1~(x,v’) and the number of lineages that enter branch

b2~(y,v’’) in the MUL tree.

Then, we use the following equation to evaluate the probability

in Equation (4):

P
b[w{1(b’)

P’b(h)~
1

db’(h)
pub’(h)vb’(h)(lb’)(ub’(h){vb’(h))!

P
b[w{1(b’)

vb(h)

(ub(h){vb(h))!
,

ð6Þ

where db’(h) is computed using the formula in [26], with ub’(h) and

vb’(h) as parameters. In the example of branches b’, b1 and b2 that

we just illustrated, Equation (6) states that P’b1
(h)P’b2

(h) evaluates

to

1

db’(h)
pub’(h)vb’(h)(lb’)(ub’(h){vb’(h))!

vb1
(h)

(ub1
(h){vb1

(h))!

vb2
(h)

(ub2
(h){vb2

(h))!
:

The term pub’(h)vb’(h)(lb’) gives the probability that ub’(h) lineages

coalesce into vb’(h) lineages within time l(b’). The term

½(ub’(h){vb’(h))! P
b[w{1(b’)

(vb(h)=(ub(h){vb(h))!)�

corresponds to the quantity vb’(h) in [26]. Finally, the term

P
b[w{1(b’)

(vb(h)=(ub(h){vb(h))!)

is the number of restrictions for the ordering of coalescent events

within branch b’.

Accounting for uncertainty in gene tree topologies
Thus far, we have assumed that we have an accurate, fully

resolved gene tree for each locus. However, in practice, gene tree

topologies are inferred from sequence data and, as such, there is

uncertainty about them. In Bayesian inference, this uncertainty is

reflected by a posterior distribution of gene tree topologies. In a

parsimony analysis, several equally optimal trees are computed.

We propose here a way for incorporating this uncertainty into the

framework above. Assume we have k loci under analysis, and for

each locus i, a Bayesian analysis of the sequence alignment

returns a set of gene trees gi
1, . . . ,gi

q, along with their associated

posterior probabilities pi
1, . . . ,pi

q (pi
1z � � �zpi

q~1). Now, let G be

the set of all distinct tree topologies computed on all k loci, and

for each g[G let pg be the sum of posterior probabilities

associated with all gene trees computed over all loci whose

topology is g. Thus, pg~
Pk

i~1 pi
g and

P
g[G pg~k. Then, we

replace Eq. (1) by

L(W ,l,cDG)~ P
g[G

PW ,l,c(G~g)
� �pg : ð7Þ

We note that if pi
j~1 or 0 for each i and j, then Eq. (7) is

equivalent to Eq. (1), and both are multinomial likelihoods.

This multinomial approach has also been used elsewhere for

both species networks under simple hybridization scenarios

[28] and species trees [24]. We additionally allow the pi
j terms

to be between 0 and 1 (and therefore pg to be non-integer

values) in order to reflect uncertainty in the estimated gene

trees.

In the case where a maximum parsimony analysis is conducted

to infer gene trees on the individual loci, a different treatment is

necessary, since for each locus, all inferred trees are equally

optimal. For locus i, let g be the strict consensus of all optimal gene

tree topologies found. Then, Eq. (1) becomes

L(W ,l,cDG)~ P
g[G

max
g’[b(g)

fPW ,l,c(G~g’)g, ð8Þ

where b(g) is the set of all binary refinements of gene tree topology

g.

Gene Tree Probabilities on Phylogenetic Networks
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Results

Support for hybridization in yeast
Using our method to compute the likelihood function given by

Eq. (1), we reanalyzed the yeast data set of [35], which consists of

106 loci, each with a single allele sampled from seven

Saccharomyces species S. cerevisiae (Scer), S. paradoxus (Spar), S.

mikatae (Smik), S. kudriavzevii (Skud), S. bayanus (Sbay), S. castellii (Scas),

S. kluyveri (Sklu), and the outgroup fungus Candida albicans (Calb).

Given that there is no indication of coalescences deeper than the

MRCA of Scer, Spar, Smik, Skud, and Sbay [36], we focused only on

the evolutionary history of these five species (see Text S1). We

inferred gene trees using Bayesian inference in MrBayes [37] and

using maximum parsimony in PAUP* [38] (see Text S1 for

settings).

The species tree that has been reported for these five species,

based on the 106 loci, is shown in Figure 2A [35]. Further,

additional studies inferred the tree in Figure 2B as a very close

candidate for giving rise to the 106 gene trees, under the

coalescent model [36,39]. Notice that the difference between the

two trees is the placement of Skud, which flags hybridization as a

possibility. Indeed, the phylogenetic network topologies in

Figure 2C and 2D have been proposed as an alternative

evolutionary history, under the stochastic framework of [40], as

well as the parsimony framework of [30].

Using the 106 gene trees, we estimated the times t1, t2, t3, t4

and c for the six phylogenies in Figure 2 that maximize the

likelihood function (we used a grid search of values between 0.05

and 4, with step length of 0.05 for branch lengths, and values

between 0 and 1 with step length of 0.01 for c). Table 1 lists the

values of the parameters computed using Eq. (7) on the gene trees

inferred by MrBayes and Table 2 lists the values of the parameters

computed using Eq. (8) on the gene trees inferred by PAUP*, as

well as the values of three information criteria, AIC [31], AICc

[32] and BIC [33], in order to account for the number of

parameters and allow for model selection.

Out of the 106 gene trees (using either of the two inference

methods), roughly 100 trees placed Scer and Spar as sister taxa,

which potentially reflects the lack of deep coalescence involving

this clade (and is reflected by the relatively large t3 values

estimated). Roughly 25% of the gene trees did not show

monophyly of the group Scer, Spar, and Smik, thus indicating a

mild level of deep coalescence involving these three species (and

reflected by the relatively small t2 values estimated). However, a

large proportion of the 106 gene trees indicated incongruence

involving Skud; see Text S1. This pattern is reflected by the very

low estimates of the time t1 on the two phylogenetic trees in

Figure 2. On the other hand, analysis under the phylogenetic

network models of Figure 2C and 2D indicates a larger divergence

time, with substantial extent of hybridization. These latter

hypotheses naturally result in a better likelihood score. When

accounting for model complexity, all three information criteria

indicated that these two phylogenetic network models with

extensive hybridization and larger divergence time between Sbay

and the ( Smik,( Scer,Spar)) clade provide better fit for the data.

Further, while both networks produced identical hybridization

probabilities, the network in Figure 2D had much lower values of

the information criteria than those of the network in Figure 2E.

The networks in Figure 2E and 2F have lower support (under all

measures) than the other four phylogenies. In summary, our

analysis gives higher support for the hypothesis of extensive

hybridization, a low degree of deep coalescence, and long branch

lengths than to the hypothesis of a species tree with short branches

and extensive deep coalescence. It is worth mentioning that while

the three networks in Figure 2C–2E were reported as equally

optimal under a parsimonious reconciliation [36], our new

framework can distinguish among the three, and identifies the

network in Figure 2D as best, followed by the one in Figure 2C

(the network of Figure 2E is found to be a worse fit than either of

the two species tree candidates).

Support for hybridization in Drosophila
We reanalyzed the three-species Drosophila data set of [41],

which includes D. melanogaster ( Dmel), D. yakuba ( Dyak), and D. erecta

( Dere).

The data set consisted of 9,315 loci supporting the three possible

gene tree topologies as follows:

Figure 2. Various hypotheses for the evolutionary history of a yeast data set. (A) The species tree for the five species Sbay, Skud, Smik, Scer,
and Spar, as proposed in [35], and inferred using a Bayesian approach [39] and a parsimony approach [36]. (B) A slightly suboptimal tree for the five
species, as identified in [36,39]. (C–E) The three phylogenetic networks that reconcile both trees in (A) and (B), and which we reported as equally
optimal evolutionary histories under a parsimony criterion in [30]. (F) A phylogenetic network that postulates Smik and Skud as two sister taxa whose
divergence followed a hybridization event.
doi:10.1371/journal.pgen.1002660.g002
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N gene tree (Dmel,(Dere,Dyak)) is supported by 5,381 (57:8%)

loci;

N gene tree ((Dmel,Dere),Dyak) is supported by 2,188 (23:5%)

loci; and,

N gene tree ((Dmel,Dyak),Dere) is supported by 1,746 (18:7%)

loci.

For a species tree with three species and one individual sampled

per species, the multispecies coalescent predicts that the two gene

trees with topologies different from that of the species tree each

occur with probability (1=3) exp ({t), where t is the length of the

one internal branch in coalescent units [42]. Two important

predictions under the coalescent are therefore that the two

nonmatching gene trees are expected to be tied in frequency and

that both occur less than 1=3 of the time, with the matching gene

tree topology occurring more than 1=3 of the time. This tie in the

expected frequency of nonmatching gene trees is observed in some

three-taxon data sets, but not in others, including the Drosophila

data set.

Although this deviation from symmetry can be explained by a

model of population subdivision, where the subdivision must occur

in the internal branch as well as the population ancestral to all

three species [43], the asymmetry can also be explained by the

simplest hybridization network on three species with just one

hybridization parameter (Figure 3).

We considered six candidates for the species phylogeny: three

with no hybridization, and three with hybridizations involving

different pairs of species (see Figure 3). For the three phylogenetic

trees, we estimated the time t that maximizes the probability of

observing all 9,315 gene trees, and for the three phylogenetic

networks, we additionally estimated the hybridization probability

c.

The results in Table 3 show that of the three phylogenetic trees,

the one in Figure 3A provides the best fit of the data, which is in

agreement with the analysis in [41]. In fact, the value of t we

estimated on the other two trees was the lowest value we used in

the estimation procedure. Clearly, this value can be arbitrarily

small for these two trees, since the unresolved phylogeny ( Dmel,

Dere, Dyak) fits the data better.

Among the three network candidates, the one in Figure 3D has

the best fit of the data. This network, with a value of c~0:11,

indicates that 89% of the alleles sampled from Dere shared a

common ancestor first with alleles from Dyak (reflecting the tree in

Figure 3A), while 11% of the alleles from Dere shared a common

ancestor first with alleles from Dmel (reflecting the tree in

Figure 3B). Indeed, this network is the smallest network (in terms

of the number of reticulation nodes) that reconciles both trees.

Further, the change in AIC for this network is

18143{18095~48, indicating a much better fit than the best

tree (Figure 3A). As noted previously [43], a x-square test will also

strongly reject the hypothesis that the species relationships are

tree-like with random mating.

This three-taxon example can be analyzed analytically. Fitting a

hybridization parameter allows a perfect fit to any observed

frequencies of gene tree topologies for three species for one of the

three networks in Figure 3. We let p1, p2, and p3 represent the

probabilities of topologies (Dmel,( Dere, Dyak)), ((Dmel, Dere), Dyak),

and ((Dmel, Dyak), Dere) under the network in Figure 3D. Then

p1~(1{c) 1{e{tð Þze{t=3

p2~c 1{e{tð Þze{t=3

Table 1. Analysis results for the six phylogenies in Figure 2 using gene tree topologies inferred by a Bayesian analysis (using
MrBayes).

Species phylogeny t1 t2 t3 t4 ª {lnL AIC AICc BIC

Figure 2A 0.05 0.85 2.05 N/A N/A 284 575 576 583

Figure 2B 0.2 0.85 2.05 N/A N/A 276 559 560 567

Figure 2C 0.4 0.65 2.05 N/A 0.59 274 556 556 567

Figure 2D 2.95 0.7 2.1 0.85 0.5 247 504 504 517

Figure 2E 0.6 0.05 2.05 0.2 0.0 276 563 564 577

Figure 2F 0.9 0.05 2.15 N/A 0.27 325 659 659 669

doi:10.1371/journal.pgen.1002660.t001

Table 2. Analysis results for the six phylogenies in Figure 2 using gene tree topologies inferred by maximum parsimony (using
PAUP*).

Species phylogeny t1 t2 t3 t4 ª {lnL AIC AICc BIC

Figure 2A 0.3 1.25 3.6 N/A N/A 205 416 417 424

Figure 2B 0.2 1.35 3.6 N/A N/A 208 423 423 431

Figure 2C 1.1 1.05 3.6 N/A 0.34 188 384 385 395

Figure 2D 3.45 1.15 3.6 3.05 0.34 157 325 326 338

Figure 2E 0.3 1.25 3.6 N/A 1.0 205 420 421 434

Figure 2F 1.55 0.05 3.7 N/A 0.18 252 512 512 523

doi:10.1371/journal.pgen.1002660.t002

Gene Tree Probabilities on Phylogenetic Networks

PLoS Genetics | www.plosgenetics.org 6 April 2012 | Volume 8 | Issue 4 | e1002660



p3~e{t=3

This system has the unique solution

t~{ log (3p3), c~
p2{p3

1{3p3
ð9Þ

for p3v1=3 and 0vp3vp2,p1 (either at least one of the gene tree

probabilities is less than 1=3 if since they sum to 1.0; or if they are

all exactly 1/3, then a star tree with t3~0 and any a exactly fits

the data). Thus we can estimate t and c using the observed p̂p2 and

p̂p3 in equation (9), and this also maximizes the likelihood.

Identifiability of hybridization using gene tree
topologies: A simulation study

For the simulated data, we evolved gene trees within the

branches of phylogenetic networks, while varying branch lengths

and hybridization probabilities, and investigated two questions: (1)

how much data (gene trees) is needed to obtain accurate inference

of the parameters (branch lengths and/or hybridization probabil-

ities)? (2) are the parameters always identifiable? To answer these

two questions, we investigated six different phylogenetic network

topologies that involved single reticulation scenario, two reticula-

tion scenarios (dependent and independent), and cases with

extinctions involving the species that hybridize (see Text S1).

Our results show that both hybridization probabilities and

branch lengths can be estimated with very high accuracy provided

that no extinction events were involved in the parents of hybrid

populations (see Text S1). Further, this accuracy can be achieved

even when using the smallest number of gene trees we used in our

study, which is 10. Under these settings, estimates using our

framework seemed to converge quickly to the true values.

We also investigated the performance of the method, as well as

identifiability issues when phylogenetic signal from at least one of

the species involved in the hybridization is completely lost. Figure 4

shows the results for one such scenario (see Text S1 for another

scenario that involves the loss of phylogenetic signal from both

species involved in the hybridization).

Figure 3. Six hypotheses for the evolutionary history of a Drosophila data set. (A–C) The three possible species tree topologies. (D–E) The
three possible single-hybridization species network topologies (excluding extinction events).
doi:10.1371/journal.pgen.1002660.g003

Table 3. Estimates of time t and hybridization probability c (when applicable) on the six candidate species phylogenies shown in
Figure 3 for the three Drosophila species Dmel, Dere, and Dyak.

Species phylogeny {ln L t ª AIC AICc BIC

Figure 3A 9070 0.46 N/A 18143 18143 18150

Figure 3B 10233 1E{10 N/A 20469 20469 20476

Figure 3C 10233 1E{10 N/A 20469 20469 20476

Figure 3D 9045 0.58 0.11 18095 18095 18109

Figure 3E 9070 0.46 0.0 18145 18145 18159

Figure 3F 10233 1E{10 0.0 20471 20471 20485

doi:10.1371/journal.pgen.1002660.t003
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Panels Figure 4B–4D show that when the true values of t2 and

t3 are assumed to be known in the estimation procedure (the value

of t1 is irrelevant in the case when a single allele is sampled per

species), the estimates of the hybridization probabilities converge

to the true values. However, unlike the cases that did not involved

extinctions, a larger number of gene trees is now required to

obtain an accurate estimate (while there are only three possible

gene tree topologies, a large number of gene trees need be sampled

in order for the three topologies’ frequencies to be informative).

The time intervals of t2~t3~1:0 coalescent units amount to a

large extent of deep coalescence events, which blurs the

phylogenetic signal, and results in slight over- or under-estimation

of the hybridization probabilities (Text S1 shows the results for the

time interval with t2~t3~2:0).

If the topology of the network in Figure 4A is assumed to be

known, but both the branch lengths and hybridization probabil-

ities are to be estimated, then these parameters are unidentifiable;

that is, two different pairs of vectors of branch lengths and

hybridization probabilities can be found to explain the observed

data with exactly the same probability (see Text S1). If at least two

alleles are sampled from species B, then the parameter values

become identifiable; however, an extremely large, and potentially

infeasible, number of gene trees need to be sampled to uniquely

identify the parameter values in practice (see Text S1).

Furthermore, in the special case where a~0:0, a phylogenetic

tree, with appropriate branch lengths can be found, to fit the data

exactly with the same probability that the phylogenetic network

would. Let l be the branch lengths vector with l1:t1, l2:t2, and

l3:t3, and let c be the hybridization probabilities vector with

c1:b. Now, consider the phylogenetic tree T in Figure 4E. Then,

if we set t as a function of b, t2, and t3, using

t(b,t2,t3)~{ ln (bet2z1{b)zt2zt3, then, PW ,l,c(g)~PT ,t(g)
for any gene tree g. The values of t(b,t2,t3) are shown in

Figure 4F–4H. These results show that as t2 increases, the value of

t becomes unaffected by t2, and that increasing t proportionally to

the increase in t3 always maintains identical probabilities of gene

trees under both species phylogenies (see Text S1).

Our method for computing the probability of gene trees under

hybridization and deep coalescence allows for analyzing data sets

with arbitrary complexity of evolutionary histories in terms of the

hybridization scenarios. When parameters are identifiable, our

method estimates their values with high accuracy from a relatively

small number of loci. Further, our method can be used to show

lack of identifiability of model parameters for other cases. Our

method supports a hypothesis of larger divergence time coupled

with hybridization over short divergence times (with extensive

deep coalescence) in a yeast data set. Finally, for a large Drosophila

data set, our method indicated no hybridization based on the

sampled loci.

Discussion

Using coalescence times versus topologies to infer
species networks

We have focused on calculating probabilities of gene tree

topologies and using these probabilities to infer species networks.

In addition, the joint density of the coalescence times and topology

in the gene trees could be used to infer species networks. Indeed, this

approach has been used for networks where reticulation nodes have

one descendant which is an extant species [29], using the density for

coalescence times derived by Rannala and Yang [44]. This

approach is computationally faster than computing gene tree

topology probabilities because it is not necessary to sum over a large

number of coalescent histories. To compute this joint density, each

gene sampled can potentially have to trace through up to Pn
i~1 2mi

possible paths through the network, where mi is the number of

hybridization events ancestral to the sampled gene from species i,
and the density will take the form of a sum over possible paths

through the network. (In contrast, computing the probability of a

topology will require Pn
i~1 2mi mappings of alleles to the MUL-tree,

and each gene topology calculation will require summing over

coalescent histories.) This joint density for the gene trees with

coalescence times could then be used in either maximum likelihood

or Bayesian frameworks to infer the species network.

Figure 4. Identifiability in detecting hybridization. (A) A phylogenetic network with two hybridization probabilities, where the second
hybridization involves the first hybrid population, and extinction is involved. (B–D) Estimates of a and b, as a function of the number of gene trees
used, when the true values of t1~t2~t3~1:0 are assumed in the inference, and for true (a,b) values of (0:0,0:5), (0:3,0:3), and (0:5,1:0), respectively
(insets zoom in on the left parts of the figure). (E) A phylogenetic tree with three taxa, and with divergence time t between the two speciation events.
(F–H) The value of t for the tree in (E) that yields the same probability of the data under the scenario depicted in (A) when a~0:0, as a function of t2

and t3 , and for b value of 0:1, 0:5, and 0:9, respectively. Since a single allele was sampled per species, the data is uninformative for estimating the
value of t1 here.
doi:10.1371/journal.pgen.1002660.g004
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An important advantage of using coalescence times is that

certain networks might be identifiable using coalescence times

when probabilities of topologies might not identify the network. In

the example of Figure 3A, although the gene tree topology

probabilities can be obtained by a tree, the distribution of the

coalescence times between lineages sampled from B and C is a

mixture of three shifted exponential distributions if aw0, but a

mixture of two shifted exponential distributions if aw0. For

example, if t1,t2, and t3 are known but a and b are unkown, then

the likelihood of observing a coalescence between a B and C

lineage for times slightly greater t1zt2 will be very low if a~0,

and much higher for aw0, thus making it possible to test whether

a~0 when coalescence times are used.

Another identifiability issue is that both population subdivision

and hybridization can lead to the asymmetry in gene tree topology

probabilities in the 3-taxon case such as observed in the Drosophila

example discussed earlier, where the two least frequently observed

topologies are not tied in frequency. Either population subdivision,

with a parameter describing the probability that the two most

closely related species fail to coalesce in the ancestral population

due to population structure, or hybridization can fit the data for

the gene tree topologies. However, the two models could imply

different distributions on coalescence times, which might therefore

be useful in distinguishing the models. We note that identifiability

in the case of three species with one individual per species might

be especially limited due to the small number of gene tree topology

probabilities that can be used to estimate parameters. In the case

of identifying rooted species trees from unrooted gene trees with

one lineage per species, for example, identifiability is achieved only

with 5 or more species [17].

We consider it desirable to develop many methods for inferring

species trees and species networks so that their properties and

performances can be compared. In the case of species tree

inference, there are advantages and disadvantages to using

topology-based methods versus methods that include branch

lengths, and in using likelihood versus Bayesian methods. We

expect that many of these strengths and weaknesses may carry

over to the case of inferring networks. For moderately sized data

sets, Bayesian methods that model branch lengths and uncertainty

in the gene trees such as BEST [45] and *BEAST [46] often have

the best performance [47]. However, these methods require

estimating the joint posterior distribution of the species tree and

gene trees and therefore are difficult to implement for large

numbers of loci. Maximizing the likelihood of the gene trees and

their coalescent times (but without accounting for uncertainty in

the gene trees), as in STEM [48], is fast and has very good

performance on known gene trees but seems to be very sensitive to

the assumption that branch lengths are estimated correctly

[24,49]. Maximizing the likelihood of the species tree using only

gene tree topologies using the program STELLS, even while not

accounting for uncertainty in the gene trees, tended to have better

performance than STEM for a large simulated data set (w100 loci

on 8 taxa) and worse performance on fewer loci [24]. Which

method is optimal for inferring species trees or networks might

depend on many factors such as the number of loci, the number of

lineages sampled per species, the accuracy with which branch

lengths can be estimated, the extent to which there are model

violations, and the speciation history [49].

Recombination and population size assumptions
Two common assumptions in multispecies coalescent models

are that there is no recombination within loci (and free

recombination between loci) and that ancestral population sizes

are constant.

Recombination can lead to different portions of a gene

alignment effectively having distinct gene tree topologies. Ideally,

alignments should be chosen so that recombination within genes is

unlikely. This can be achieved by testing alignments beforehand

for recombination using many available methods [50–52], or for

whole genome data, choosing the cutoffs for loci such that they are

unlikely to occur at recombination breakpoints [53]. In addition,

recombination may lead to greater violations of the coalescent

model for branch lengths than for topologies [53], so that

topology-based methods might be less sensitive to the assumption

that there is no recombination within loci. In addition, a recent

simulation study found that recombination within loci did not

have much impact on species tree inference methods for a wide

range of recombination rates [54].

Coalescent models often assume that ancestral populations

have constant size for the duration of the population (i.e., a

constant size for a given branch of the species tree, but not

necessarily the same on different branches). The program

*BEAST [46] allows for ancestral population sizes to change

linearly with time. Nonconstant population sizes will tend to

result in branch lengths that make topologies more (or less) star-

like for populations that are increasing (or decreasing) in size [55].

One approach to modelling a changing population size would be

to break up a branch into intervals that are relatively constant in

size. Suppose, for instance that a branch consists of an interval of

t1 generations with population size N1, and t2 generations with

size N2. The total time of the branch in coalescent units is

t~t1=N1zt2=N2. Although unequal values of Ni can affect the

distribution of coalescence times (for example, if t1~t2 but

N1wN2, then coalescence events might be more likely to occur in

the interval with size N2), the probabilities of topologies arising in

this branch are not affected and can be calculated just using the

total time t. In particular, for the functions pu,v(t), which are the

terms that depend on time in the calculations for gene tree

topology probabilities, we have

pu,v(t)~pu,v(t1=N1zt2=N2)~
Xu

k~v

pu,k(t1=N1)pk,v(t2=N2),

which is an instance of the Chapman-Kolmogorov equations

because the number of lineages is a continuous time Markov

chain (a death chain) [56].

We expect that topology-based methods may show more

robustness to recombination and changing population sizes than

approaches which explicitly model coalescence times. However,

for estimating species trees and networks from gene trees, as in

other areas of statistical inference, there is likely to be a tradeoff

between power and robustness for methods that do and do not

model branch lengths of the gene trees.

Searching for networks
A current limitation to the procedure we have outlined for

estimating hybridization is that we require a set of candidate

networks on which to perform model selection. In some cases, such

a set of candidate networks can be obtained by considering specific

hypotheses related to biogeographical information. Candidate

networks can also be generated using supernetworks from gene

trees [57] or other network methods [9]. Often these methods will

generate very complicated networks if there are many conflicts in

the data, so it might be useful to choose different random subsets

of well-supported (or frequently occurring) gene tree topologies to

generate candidate species networks. In the future it will be

desirable to develop algorithms that directly search the space of

Gene Tree Probabilities on Phylogenetic Networks
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species networks in order to automate searching for optimal

species networks.

Supporting Information

Text S1 Supporting information file that contains formal

definitions and additional results on synthetic data.

(PDF)
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25. Ané C, Larget B, Baum DA, Smith SD, Rokas A (2007) Bayesian estimation of

concordance factors. Mol Biol Evol 24: 412–426.

26. Degnan JH, Salter LA (2005) Gene tree distributions under the coalescent

process. Evolution 59: 24–37.

27. Than C, Ruths D, Innan H, Nakhleh L (2007) Confounding factors in HGT

detection: Statistical error, coalescent effects, and multiple solutions. J Comput
Biol 14: 517–535.

28. Meng C, Kubatko LS (2009) Detecting hybrid speciation in the presence of
incomplete lineage sorting using gene tree incongruence: A model. Theor Popul

Biol 75: 35–45.

29. Kubatko LS (2009) Identifying hybridization events in the presence of
coalescence via model selection. Syst Biol 58: 478–488.

30. Yu Y, Than C, Degnan JH, Nakhleh L (2011) Coalescent histories on
phylogenetic networks and detection of hybridization despite incomplete lineage

sorting. Syst Biol 60: 138–149.
31. Akaike H (1974) A new look at the statistical model identification. IEEE Trans

Automat Contr 19: 716–723.

32. Burnham K, Anderson D (2002) Model selection and multi-model inference: a
practical-theoretic approach. New York: Springer Verlag, 2nd edition.

33. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6: 461–464.
34. Than C, Ruths D, Nakhleh L (2008) PhyloNet: a software package for analyzing

and reconstructing reticulate evolutionary relationships. BMC Bioinformatics 9:
322.

35. Rokas A, Williams BL, King N, Carroll SB (2003) Genome-scale approaches to

resolving incongruence in molecular phylogenies. Nature 425: 798–804.
36. Than C, Nakhleh L (2009) Species tree inference by minimizing deep

coalescences. PLoS Comput Biol 5: e1000501. doi:10.1371/journal.-
pcbi.1000501.

37. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of

phylogenetic trees. Bioinformatics 17: 754–755.
38. Swofford DL (1996) PAUP*: Phylogenetic analysis using parsimony (and other

methods). Sinauer Associates, Underland, Massachusetts, Version 4.0.
39. Edwards SV, Liu L, Pearl DK (2007) High-resolution species trees without

concatenation. Proc Natl Acad Sci U S A 104: 5936–5941.
40. Bloomquist EW, Suchard MA (2010) Unifying vertical and nonvertical

evolution: A stochastic ARG-based framework. Syst Biol 59: 27–41.

41. Pollard DA, Iyer VN, Moses AM, Eisen MB (2006) Widespread discordance of
gene trees with species tree in Drosophila: evidence for incomplete lineage

sorting. PLoS Genet 2: e173. doi:10.1371/journal.pgen.0020173.
42. Nei M (1987) Molecular Evolutionary Genetics. New York: Columbia

University Press.

43. Slatkin M (2008) Linkage disequilibrium — understanding the evolutionary past
and mapping the medical future. Nature Rev Genet 9: 477–485.

44. Rannala B, Yang Z (2003) Bayes estimation of species divergence times and
ancestral population sizes using DNA sequences from multiple loci. Genetics

164: 1645–1656.

45. Liu L, Pearl DK (2007) Species trees from gene trees: Reconstructing Bayesian
posterior distributions of a species phylogeny using estimated gene tree

distributions. Syst Biol 56: 504–514.
46. Heled J, Drummond AJ (2010) Bayesian inference of species trees from

multilocus data. Mol Biol Evol 27: 570–580.
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