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Abstract: The Vehicle Routing Problem (VRP) and its variants are found in many fields, especially
logistics. In this study, we introduced an adaptive method to a complex VRP. It combines multi-
objective optimization and several forms of VRPs with practical requirements for an urban shipment
system. The optimizer needs to consider terrain and traffic conditions. The proposed model also
considers customers’ expectations and shipper considerations as goals, and a common goal such as
transportation cost. We offered compromise programming to approach the multi-objective problem
by decomposing the original multi-objective problem into a minimized distance-based problem.
We designed a hybrid version of the genetic algorithm with the local search algorithm to solve the
proposed problem. We evaluated the effectiveness of the proposed algorithm with the Tabu Search
algorithm and the original genetic algorithm on the tested dataset. The results show that our method
is an effective decision-making tool for the multi-objective VRP and an effective solver for the new
variation of VRP.

Keywords: multi objective optimization; VRP; compromise programming; genetic algorithm; local
search; Tabu search; metaheuristics; combinatorial optimization

1. Introduction
1.1. Vehicle Routing Problem and Variants

In a logistics system, transportation plays an essential role in moving materials from
suppliers to manufacturers, from processing plants to the next step in the production
process, or transporting finished products to customers. This scheduling and planning
process needs to be calculated before the actual operation. However, this is not an easy
task because many resources, such as machines and vehicles, need to be arranged. The
problem is called VRP [1]. A capable fleet of vehicles must serve a geographically dispersed
group of customers at a minimal cost. We can express the VRP with visitations of the
vehicles to customers through a graph as G = (V, E) where V = {v0, v1, . . . , vn} is the set
of nodes. v1, . . . , vn represents the customers to be visited from the depot v0. E is an edge
set interlinking two locations where E = {(i, j)| (i, j) = 0, 1, . . . , n, i 6= j}. Fundamental
decisions are made in the VRP regarding customer assignment to vehicles and the sequence
of customers assigned to each vehicle [2]. Many studies on VRP have been conducted, and
accordingly, many variants of VRP have also been identified. Some of the more widely
known variants include:

• Capacitated Vehicle Routing Problem (C-VRP): refers to the limitation of vehicle
capacity for classical VRPs. The system uses multiple vehicles and the total demand of
each route does not exceed the vehicle capacity [3,4]. An extension of C-VRP is when
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the vehicles are heterogeneous (CH-VRP), where each vehicle may have a different
capacity [5,6]. The package of products with different types can be considered as the
multi product-VRP (MP-VRP) [7].

• Multi-Depot Vehicle Routing Problem (MD-VRP): For the classic VRP problem, the
path of all vehicles can only start from a warehouse. In MD-VRP, the vehicles depart
from multiple warehouses [7]. Torres et al. reviewed several variants of the MD-
VRP, where it can combine several constraints, such as time windows, batch delivery,
heterogeneous fleets, and scheduled delivery [8].

• Vehicle Routing Problem with Time Window (VRP-TW): is often encountered in many
industrial applications. The time window is divided into soft time windows (delivery
not within the period can be penalized) and hard time windows (delivery within the
period is mandatory). VRP-TW has received much attention from researchers in recent
years [9,10].

• Multi-trip Vehicle Routing Problem (MT-VRP): in MT-VRP, each vehicle is explicitly
allowed to perform multiple trips during its service time in such a manner that the
total demand of customers served in each route does not exceed the vehicle’s capacity
within a given deadline [9,11,12].

VRP is a complex problem that has challenged many researchers. Different variants or
business conditions may require the solution search space to be significantly expanded. This
paper introduces a method to solve a new VRP that combines multi-objective optimization
(MOP) and different forms of VRPs. The proposed solver automatically generates the
routings for shippers to deliver packages to urban customers. The urban delivery systems
have several characteristics that differ from many ideal environments, in terms of terrain,
traffic, and order-warehouse conditions. The scheduler allows consideration of the concern
of the business, customer satisfaction, and the employees in the decision-making process.
We refer to the problem using the abbreviation MOP-VRP.

1.2. Related Works

The VRP problem has many variations. Each business model can potentially become
a new variant of the problem, with countless goals and constraints based on the success
factors of the business. Table 1 presents some recent studies in this field. In building the
optimization model, we can see in these studies that the authors are often only interested
in optimizing transportation costs (distance, fuel consumption, transportation cost). The
objective functions are usually linear. However, many factors affect this calculation, espe-
cially for the case study of transportation in an inner city, such as traffic conditions over
time (peak hours) and road conditions (one-/two-way roads). In a previous survey [13],
the author noted that the path optimization problem increased the number of real-time
path optimization problems considering time-varying factors, such as real-time terrain and
real-time traffic conditions involved in MOP-VRP. Therefore, it is a challenge for a simple
representation, as used in previous studies, to cover many real-life situations. Several
studies related to time windows have made customer satisfaction one of the essential goals.
However, in addition to benefiting businesses through cost optimization or satisfying
customers, a collaborative economic model requires sharing among stakeholders. Urban
transport models often use part-time shippers. If insufficient attention is paid to their
needs, the job will become less attractive, and it will not be easy to create a long-term
working environment. The lack of committed employees in a volatile business such as
logistics results in more difficult constraints to optimize costs and improve service quality.
Therefore, these factors need to be considered in the modeling process, and become the
objectives to be achieved in the scheduler.
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Table 1. Research and corresponding objective functions.

Research Objective
Functions VRP Types Highlights Drawbacks

Zhen et al., 2020 [9]
Minimize traveling

time of all the
vehicles.

MD-VRP,
MT-VRP,
VRP-TW

The proposed mixed integer linear
programming can clearly describe

the business.
The proposed metaheuristics can

provide optimal solutions on a large
scale.

The model is not based on a realistic
problem where the data is also

randomly selected from the
benchmark.

The model does not involve several
factors such as traffic conditions.

Babaee Tirkolaee
et al., 2019 [10]

Minimize the sum
of vehicle cost,
traveling cost,

penalty cost of soft
time window.

MT-VRP,
VRP-TW

A case study is investigated to
evaluate the applicability of the

proposed model in the real world.
Many business conditions have been

considered.

The business rules assume that the
time and cost of a route is the same for

all vehicles. This may not be
guaranteed in other real-life

applications.
The designed solver can solve the

problem in small and medium sizes
that only offers near-optimal solutions

compared to the CPLEX solver.

Alemany et al.,
2018 [7]

Minimizing
distribution cost

and distance-based
cost.

C-VRP,
MP-VRP,
MD-VRP

The model was developed from a
realistic case study from an oil

provider company.

Experiments are conducted on a
small-scale dataset. Evaluations of the

proposed method did not show its
performance with different techniques.

Pan et al., 2021 [14] Minimizing the
traveling cost.

MT-VRP,
VRP-TW

The routing solver was designed for
a vending cafe company to replenish

stocks for their geographically
dispersed outlets. The proposed
method can work on large-scale

instances.

Authors simulate the experimented
data by randomly creating data based

on an existing dataset.

Ma et al., 2017 [15] Minimizing
traveling cost.

MD-VRP,
VRP-TW

An improved ACO algorithm with
some ideal to improve the search
speed was introduced to solve the

proposed problem.

The system considers only a single
depot, which is not guaranteed in

several applications.
The research did not show the

evaluations of the proposed algorithm
using the existing methods.

Zhang et al.,
2020 [16]

Minimize carbon
emission. MD-VRP

The research develops a new
extension model of MD-VRP. The

proposed algorithms can deal with
large-scale datasets.

The proposed mathematical model and
the heuristic algorithm provide better

quality than the heuristic but with
more computational cost.

Nucamendi-Guillén
et al., 2021 [17]

Minimize the cost of
transport and

contracts.

CH-VRP,
MD-VRP

The proposed model was obtained
from a real-world business.

Business rules are simple.
The designed metaheuristic was only

tested with a small-scale dataset.

Li et al., 2020 [12]
Minimize

completion time of
vehicles.

MT-VRP,
VRP-TW

The solver can be applied to some
real-life problem instances. The

proposed heuristic algorithm shows
a better result than that of the CPLEX

solver.

The model is simple and cannot be
adapted to other businesses. The

designer did not consider the concerns
of different stakeholders in the system.

Shelbourne et al.,
2017 [18]

Minimize the sum
of total distance cost
and total weighted

tardiness.

VRP-TW
Proposed solvers based on heuristics

were used to evaluate the
performance on several datasets.

The optimization model was based on
several assumptions that may not be

applied to other situations

In the decision-making process, decision makers may not be individuals but a group.
Therefore, their considerations are critical to any strategies. In real-world business envi-
ronments, the optimizer needs to pay more attention to multiple decision criteria to meet
customers’ requirements. No single solution exists that simultaneously optimizes all objec-
tives of the non-trivial multi-objective scheduling problems. MOP-VRP is not an exception.
Several approaches are available to MOP [19] (including MOP-VRP [20,21]). Generally,
they are classified into the following: (1) The preference approach, where decision makers
have the higher information needed to select the final solution from among several options.
(2) The non-preference approach, which assumes that no decision maker is available, or the
decision maker does not have the higher information needed to indicate the preferences for
the objectives. A user needs only one solution from a practical standpoint, regardless of the
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optimization problem. In the case of MOP, this creates a dilemma for the user. The ideal
MOP procedure requires identifying the trade-off between solutions with a wide range of
values for objectives, and then choosing one of the obtained solutions using higher-level
information. Significantly, the objective space is higher-dimensional, and it is not easy to
visualize the solutions for the users [22]. In this situation, providing an adaptive approach
to MOP is a challenge for researchers. The result of solving a real-world problem is usually
an approximation set A of the objective vectors (any element of A does not dominate or is
not equal to any other accurate vector in A) and not the Pareto optimal front. Okabe et al.
reviewed several metrics for accessing the performance of MOP algorithms [23], including
cardinality metrics, accuracy metrics, and diversity metrics. Regardless of the approach
being used, assessing the quality of the solution is one of the issues that needs to be carefully
considered.

Researchers usually model VRPs using binary decision variables to represent relation-
ships between vehicles and destinations, vehicles and depots, etc. These links are expanded
exponentially to the number of inputs and may not exist in a solver with a deterministic
polynomial time. Therefore, the VRPs are classified into NP-hard and combinatorial opti-
mization. The state-of-the-art approaches presented in the literature comprise two main
streams of resolution techniques, namely, exact methods and approximate solution methods
(heuristic and meta-heuristic). Exact algorithms provide optimal solutions, and include
branch-and-X (bound, cut) [24], dynamic programming [25], and Lagrangian relaxation-
based methods [26]. (Meta)heuristics include simulated annealing and population-based
methods, such as the evolutionary algorithm [27], and generally yield near-optimal solu-
tions. The exact methods are more suitable for problems that having a small size. However,
logistic systems are increasingly used at larger scales, and a greater number of orders,
customers, and vehicles, etc. Hence, (meta)heuristics is a better choice due to its flexible
search capabilities and easy integration for exploiting the good properties of different
methods.

Many researchers have designed heuristic and metaheuristic algorithms, and com-
binations of VRP and its variants. Samuel Nucamendi-Guillén (2021) [16] developed a
metaheuristic procedure to find a solution by improving the initial solution using local
search algorithms. Zhiwei Liu (2017) [28] proposed a method that combines Tabu with
mem-brane computing to find the solution for VRPTW. Babaee Tirkolaee E (2019) [10] devel-
oped simulated annealing (SA), a local search algorithm that can escape the local optimum
for MT-VRPTW in urban waste collection. To solve the MT time-dependent VRPTW. Binbin
Pan [13] designed a hybrid metaheuristic algorithm using variable neighborhood descent
(VND) for intensive exploitation and adaptive extensive neighborhood search (ALNS) to
direct the inquiry when VND is stuck in a local optimum.

Among several branches of metaheuristics, evolutionary algorithms (EAs) have at-
tracted the attention of many researchers. For instance, Hari Kurnia (2018) [29], Cortes
(2018) [30], and R Fitriana (2019) [31] designed a classical genetic algorithm for VRP, CVRP,
and MDVRP, respectively. Regarding VRP with more features and attributes that reflect
the complexity of the real problem, a hybrid genetic algorithm that improves the solution
by implementing a local search heuristic in the initial phase of the genetic algorithm was
proposed by Rabbouch (2019) [32]. Jalel Euchi (2021) [33] solved another complex VRP
involving drones using a modified hybrid genetic algorithm combined with a nearest neigh-
bor heuristic, and modifying the saving heuristic in the initial phase. Although the nearest
neighbor heuristic helps improve the initial solutions, the saving heuristic prevented the
genetic algorithm from falling into an early local optimum. Yanfang Ma (2017) [14] pro-
posed an improved ant colony optimization (ACO) combined with the nearest neighbor
search method for the MD VRPTW. Wei-heng Zhang (2020) [15] designed a two-stage ACO
for MDGVRP, assigning customers to the depot to generate routes. EAs and their hybrid
versions have been proven to be effective for single objective VRPs. They can obtain a
set of solutions present in a solution process, provide the ability to be easily determined
with different types of variables, and do not require any assumptions that make convexity
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and separability distinctions between the objectives and related constraints. In general,
these algorithms provide a design direction. The suggested search operations are based on
different designer arguments. In general, many factors determine the extent this problem.
However, in our opinion, building a suitable data structure plays a vital role. A good
data structure can support stochastic operations and help improve population diversity,
while ensuring the algorithm’s convergence. Multi-Objective EA (MOEA) extends EAs to
deal with multi-objective optimization problems. They can be classified based on different
features. A widely accepted classification for MOEA considers Pareto-dominance-based,
decomposition-based, and indicator-based algorithms [34]. MOEAs have been applied
in several applications [35,36] that can search for a set of optimal solutions on the Pareto
front. However, this involves much higher-level information, which is often non-technical,
qualitative, and experience-driven, to indicate the final solution, with a prohibitive compu-
tational cost. This cost is not suitable in many experimental conditions. Deriving an efficient
approach for MOP-VRP that does not require pre-determination of the trade-off between
objectives, and can be integrated with the algorithm design to maintain the solution quality
with a reasonable cost, has always been a challenge in this field [37].

1.3. Contributions

This study presents an adaptive method for a variant of MOP-VRP as a scheduler in
an urban delivery system. The model is built around the real-life requirement of the urban
delivery system. The optimizer needs to provide the solution to satisfy multiple business
conditions that comply with essential factors, such as terrain and traffic conditions, in
addition to other constraints for VRP. We use compromise programming to approach the
proposed MOP. This allows decision makers to obtain an optimal solution without defining
preferences on each objective function in advance. However, if they do, alternative decision
strategies are still used generally through the definition of weights to assign the effect of
objective functions via the distance function. We designed and compared Tabu search (TA),
the genetic algorithm (GA), and a combination of GA and the local search algorithm (HGA)
to solve the proposed model on the tested dataset. Our study suggests a new variant of VRP.
This can benefit researchers and engineers to develop a better optimizer for variants of VRP.
This research also contributes to the developed methodology for multi-objective scheduling
and planning problems [38]. The remainder of this paper is organized as follows. The
proposed model and algorithm are respectively described in Sections 2 and 3. To evaluate
the proposed approach, we present the experiments and discussion in Section 4. Finally,
Section 5 offers a conclusion.

2. Proposed Model

In this study, we built a multi-objective optimization solver for the urban shipment
problem. This section describes the mathematical optimization model and the approach
used in the proposed multi-objective optimization problem. The goals to be achieved by
the developed scheduler were thoroughly discussed with logistic managers as the decision
makers. Some important business rules were defined as follows:

• The system is set up with many delivery points corresponding to the customers.
• Packages that need to be delivered have different weights and delivery periods.
• Packages are shipped from various warehouses.
• Each package needs to be collected from the allocated warehouse.
• The delivery time between any two locations is time- and terrain-dependent. It is

estimated based on statistical data from previous shipments.
• Shippers also use vehicles with different payloads and transportation costs.
• To deliver the order, the shipper may need to take several trips.
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2.1. Mathematical Formulation

The decision variables represent the whole detailed plan to shippers. In addition,
several dependent variables that are computed from the decision variables were also
introduced in the model, as follows:

• C represents the set of delivery points/customers.
• K denotes the set of shippers.
• D represents the set of warehouses.
• N = D ∪ C denotes the set of locations, where the first |D| elements are the locations

of the depots, and the last |C| elements represent the locations of customers.
• B ∈ R|K| is the vector that represents the capacity of shippers, where Bk ∈ N∗ is the

capacity of shipper kth.
• P ∈ R|K| is the vector that represent the freight rates of the shippers, where Pk ∈ R∗

is the freight rate of shipper kth.
• W ∈ R|C| is the vector used to illustrate the weight of the orders by customers, where

Wc ∈ N∗ is the weight needed to deliver to delivery point cth.
• L ∈ R|C| is the vector used to illustrate the load time of the orders by customers,

where Lc ∈ N∗ is the time needed to load the package of customer cth.
• A=

{
Ac
∣∣Ac ∈ R2, c ∈ C

}
is the vector that represents the appointment time of the

customer, where [Ac
soon, Ac

late ] respectively describes the appointment time and the
time window that customer cth demands for his/her order.

• M =
{

Mk
∣∣∣Mk ∈ R|N|×|N|, k ∈ K

}
, Mk =

{
Mk

i,j

∣∣∣Mk
i,j ∈ N∗, i, j = 1 . . . |N|

}
where Mk

i,j
is the distance if shipper k goes from location ith to location jth.

• T =
{

Tk
∣∣∣Tk ∈ R|N|×|N|, k ∈ K

}
, Tk =

{
Tk

i,j

∣∣∣Tk
i,j ∈ N∗, i, j = 1 . . . |N|

}
denotes the

time consumption of transportations between locations for shipper k, where Tk
i,j rep-

resents the time that shipper kth takes to travel from location ith to location jth. Tk
i,j

is computed based on time(i, j, k, t), which is the function to query the traveling time
of shipper kth from location ith to location jth, where t represents the start time. The
return value is depended on the traffic condition at time t.

• U ∈ R|C|×|D| is a matrix to represent the links of the warehouse that stores the
orders and the delivery points. Uc,d = 1 means the order of customer cth is kept by
warehouse dth.

• V = {Vk|Vk ∈ N∗, k ∈ K} is the vector that represents the number of tours each
shipper takes, where Vk is the number of tours of shipper kth.

• The decision variable O =
{

Ok
∣∣∣Ok ∈ RVk×|N|, k ∈ K

}
represents the planned paths

for shippers, where Vk ∈ N denotes the number of tours made by the shipper kth to
deliver all of his/her assigned orders. Figure 1 illustrates an example of a planned path.
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• Z =
{

Zk,v,i,j

∣∣∣Zk,v,i,j = equal
({

min(Ok
v,j, 1)−min(Ok

v,i, 1) , 1
})

, ∀ k = 1 . . . |K|, i = 1

. . . |N|, j = 1 . . . |N|, v = 1 . . . Vk ∧ Zk,v,Sk
v ,0 = 1

}
represents the sequence of visited

nodes of the shippers. Shipper kth goes to node ith immediately after node jth in trip
vth if Zk,v,i,j = 1. 0 otherwise.

• S = {Sc|Sc ∈ R∗, c ∈ C}where Sc is the estimated time to deliver to the customer c. If
Sc< Ac

soon then Sc = Ac
soon, and the duration Ac

soon− Sc is considered to be waiting time.
• Y = {Yk|Yk ∈ R∗, k = 1 . . . K } where Yk = ∑Vk

v=1 ∑
|N|
i=1 ∑

|N|
j=1 Zk,v,i,j ∗ Tk

i,j represents the
total traveling time of the shipper kth.

To meet business requirements, the solver must satisfy the following objectives:



Entropy 2022, 24, 388 7 of 23

• Minimize of the transportation cost of all shippers based on types of vehicles. Traveling
on long routes increases costs:

min

(
f1(O) =

|K|

∑
k=1

Vk

∑
v=1

|N|

∑
i=1

|N|

∑
j=1

Zk,v,i,j ∗ Pk ∗Mk
j,i

)

• The urban delivery requires punctuality, although this is not a hard constraint on
the model. However, the less late the delivery, the more satisfied the customer. The
optimizer needs to minimize late delivery to the customers:

min

(
f2(O) =

|C|

∑
c=1

late(Sc)

)

where: late(Sc) =

{
0 i f Ac

late ≥ Sc
Sc − Ac

late i f Sc > Ac
late

• Serving customers is beneficial for businesses. However, it can be traded off by the
convenience of the delivery staff. The workforce is usually part-time. Thus, a route
that saves shippers waiting time provides a competitive environment. It is necessary
to minimize the waiting time of the shippers:

min

(
f3(O) =

|C|

∑
c=1

wait(Sc)

)

where: wait(Sc) =

{
0 i f Ac

soon ≤ Sc
Ac

soon − Sc i f Sc < Ac
soon

• Minimize differences in traveling time of the shippers. The shipper’s working time is
only counted as travel time. This does not include waiting time. Therefore, this time
allocation helps to balance the workload of the shippers:

min

(
f4(O) =

|K|

∑
k=1

(∣∣∣∣∣Yk −
1
|K|

|K|

∑
i=1

Yi

∣∣∣∣∣
))

Subject to:

• All orders must be delivered:

|K|

∑
k=1

|N|

∑
i=|D|+1

Vk

∑
v=1

min
(

Ok
v,i, 1

)
= |C|

• Each delivery point is assigned to only one shipper:

|K|

∑
k=1

Vk

∑
v=1

min
(

Ok
v,i, 1

)
= 1 ∀i = |D|+ 1 . . . |N|

• The capacity of the shipper on every trip is respected:

|C|

∑
c=1

min
(

Ok
v,c, 1

)
∗Wc ≤ Bk ∀k = 1 . . . K, v = 1 . . . Vk

• The shipper must load the customer’s package before delivery to the customer in the
same trip:
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Ok
v,c −Ok

v,d ≥ Uc,d ∀k = 1 . . . |K|, v = 1 . . . Vk, c = |D|+ 1 . . . |N|, d = 1 . . . |D|

• The shipper cannot visit more than one location at the same time:

Ok
v,i 6= Ok

v,j ∀k = 1 . . . K, v = 1 . . . Vk, i = 1 . . . |N|, j = 1 . . . |N|, i 6= j, Ok
v,i 6= 0 , Ok

v,j 6= 0

2.2. Compromise Programming for MOP-VRP

Compromise programming (CP) [39] is based on the idea of not using any preference
information or relying on assumptions about the importance of objectives. The method
does not try to find multiple Pareto optimal solutions. Instead, the distance between some
reference point and the feasible objective region is minimized to find a single optimal
solution, as shown in Figure 2. For this purpose, the weighted Lp metrics measure the
distance of any solution from the reference point. The ideal objective vector is often used as
the reference point:

min

(
N

∑
i=1

wi| fi(x)− z∗i |
p

)1/p

s.t. x ∈ X

where x is the decision variable and X is the feasible set, z∗i = min
x∈X

fi(x), p can take any value be-

tween 1 and ∞ (in practice normally p = 2), the weight vector w = {wi|wi ∈ R+ i = 1 . . . N},
and N is the number of objective functions. The literature suggests normalizing the di-
mensional values in the range [0, 1] of the distance function. We can rewrite the objective

function in the form of norm 2 as: min

(
∑N

i=1 wi

∣∣∣∣ Fi−z∗i
zworst

i −z∗i

∣∣∣∣2
)1/2

, where zworst
i = max

x∈X
fi(x).

Entropy 2022, 24, x FOR PEER REVIEW 8 of 23 
 

 

∑ 𝑚𝑖𝑛(𝑂𝑣,𝑐
𝑘 , 1) ∗ 𝑊𝑐

|𝐶|

𝑐=1

≤ 𝐵𝑘  ∀𝑘 = 1 … 𝐾, 𝑣 = 1 … 𝑉𝑘  

• The shipper must load the customer’s package before delivery to the customer in the 

same trip: 

𝑂𝑣,𝑐
𝑘 − 𝑂𝑣,𝑑

𝑘 ≥ 𝑈𝑐,𝑑 ∀𝑘 = 1 … |𝐾|, 𝑣 = 1 … 𝑉𝑘, 𝑐 = |𝐷| + 1 … |𝑁|, 𝑑 = 1 … |𝐷|  

• The shipper cannot visit more than one location at the same time: 

𝑂𝑣,𝑖
𝑘 ≠ 𝑂𝑣,𝑗

𝑘  ∀𝑘 = 1 … 𝐾, 𝑣 = 1 … 𝑉𝑘 , 𝑖 = 1 … |𝑁|, 𝑗 = 1 … |𝑁|, 𝑖 ≠ 𝑗, 𝑂𝑣,𝑖
𝑘 ≠ 0 , 𝑂𝑣,𝑗

𝑘  ≠ 0  

2.2. Compromise Programming for MOP-VRP 

Compromise programming (CP) [39] is based on the idea of not using any preference 

information or relying on assumptions about the importance of objectives. The method 

does not try to find multiple Pareto optimal solutions. Instead, the distance between some 

reference point and the feasible objective region is minimized to find a single optimal 

solution, as shown in Figure 2. For this purpose, the weighted 𝐿𝑝 metrics measure the 

distance of any solution from the reference point. The ideal objective vector is often used 

as the reference point: 

𝑚𝑖𝑛 (∑ 𝑤𝑖

𝑁

𝑖=1

|𝑓𝑖(𝑥) −  𝑧𝑖
∗|𝑝)

1/𝑝

 𝑠. 𝑡. 𝑥 ∈ 𝑋  

where x is the decision variable and X is the feasible set, 𝑧𝑖
∗ =  min

𝑥∈𝑋
𝑓𝑖(𝑥), 𝑝 can take any 

value between 1 and ∞ (in practice normally 𝑝 = 2), the weight vector 𝑤 = {𝑤𝑖|𝑤𝑖  ∈

 ℝ+ 𝑖 = 1 … 𝑁} , and 𝑁  is the number of objective functions. The literature suggests 

normalizing the dimensional values in the range [0,1] of the distance function. We can 

rewrite the objective function in the form of norm 2 as: 𝑚𝑖𝑛 (∑ 𝑤𝑖
𝑁
𝑖=1 |

𝐹𝑖− 𝑧𝑖
∗

 𝑧𝑖
𝑤𝑜𝑟𝑠𝑡− 𝑧𝑖

∗ |2)
1/2

, 

where  𝑧𝑖
𝑤𝑜𝑟𝑠𝑡 = max

𝑥∈𝑋
𝑓𝑖(𝑥). 

 

Figure 2. Scanned area of the search process in the CP-based approach. 

Many studies have used CP to approach the MOP problem, such as for university 

timetabling [40–42], team selection [43], in a knowledge-based recommender [44], and 

project task assignment [45]. However, this t may require pre-defined minimal and 

maximal values of the objective functions. Although some of these values are predictable 

1st
 O

b
je

ct
iv

e

2nd Objective

Ideal point

Solution on Pareto frontier

Estimated Pareto frontier

Scanned Area

Figure 2. Scanned area of the search process in the CP-based approach.

Many studies have used CP to approach the MOP problem, such as for university
timetabling [40–42], team selection [43], in a knowledge-based recommender [44], and
project task assignment [45]. However, this t may require pre-defined minimal and maximal
values of the objective functions. Although some of these values are predictable [43], most
other cases require the problem to be solved as a single objective function multiple times,
which may be costly. Other studies [44,46] show that the referential point may be selected
from business estimations, which can provide better performance for the agents in the
searching process. However, in this study, the normalization method using both of z∗ and
zworst resulted in a solution having better quality.
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3. Proposed Algorithms

In this section, we introduce the proposed algorithms. The main algorithm is HGA,
which combines GA and local search. The first part of this section describes GA. We use
the same principle for the search agent’s stochastic process and data structure for proposed
algorithms. The algorithms described after GA share several common strategies. The
second part describes how we implement HGA. Another algorithm, TA, which does not
belong to the class of evolutionary algorithm, is also proposed to evaluate the approach’s
effectiveness.

3.1. Genetic Algorithm

GA is one of the most well-known metaheuristic algorithms used to solve NP-hard
problems and belongs to the family of evolution algorithms [47]. The process of natural
evolution is the inspiration for the idea of GA. The algorithm begins with a random
population, in which each individual represents a solution to the problem. The final
solution is obtained through the evolution of the population. The designed scheme of GA
is shown in Figure 3. The fundamental difference between our design and the traditional
flow is that we introduce a repair step to fix instances that violate the constraints during
the random process. To initialize the first population, we randomly create the route for
each solution of the initial population. With an initial route, we obtain the list of assigned
customers for each solution, and then sort them by their demand time in ascending order.
After modifying the route, the trip is created using the idea that shippers only need to
return to the depot if their job is finished or the trip’s capacity is overloaded. They then
need to return to the depot.
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1. Initialize the population: The structure of the individual is equivalent to decision
variable O, as described in the proposed optimization model. We generate the popula-
tion P as the set of π individuals. For programming convenience, the chromosome
is represented by two arrays having the size of (C + K− 1), denoted by routes and
trips. routes represents the paths of the shippers by storing the identifications of
C customers and (K− 1) shippers, and arranging them in random order. Positive
integers are used to represent the customer ids and negative integers are used to
represent the shipper ids. trips is used to identify the trips of the shippers. Figure 4
shows the chromosome representation for an example of 12 customers with ids from
1 to 12, three shippers with ids 1 to 3, and two warehouses A and B. In the figure,
the first three elements of routes are 12, 2, and 5. This means the shipper with id 1
is assigned to deliver to these customers. The corresponding elements in trips are
binary only. A value of 0 means the shipper can directly continue to travel, whereas 1
means the shipper has to return to the related warehouse to load the package before
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delivering to the next customer. trips stores only K− 1 values; in this case, it is not
necessary that shipper id 1 is stored in routes, thus increasing the convenience of the
random process.
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2. Fitness function: we used the compromise Euclidean distance-based function for the
individual as:

p. f itness =

 4

∑
i=1

wi

∣∣∣∣∣ Fi − z∗i
zworst

i − z∗i

∣∣∣∣∣
2
1/2

∀ p ∈ P

All proposed algorithms give optimal results for single-objective optimization prob-
lems. z∗i and zworst

i can be considered as pre-computed in this procedure.
3. Selection: we chose ϕ elite individuals and bypassed them from the crossover and

mutation phase to keep them in the next generation.
4. Crossover: creates a new solution that retains the good properties of its parent. We

selected a crossover rate µ. There are five steps to implement the crossover for the
remaining individuals of the next generation (see Figure 5), as follows:
Step 1: Randomly select two individuals as the parents denoted by p1, p2 Step 2:
Randomly select a substring from a parent for both routes and trips. Step 3: Create a
proto-child by phasing the substring into its corresponding position. Step 4: Delete all
the elements that are already in the proto-child of the remaining parents. This creates
an array that contains the elements needed by the proto-child. Step 5:

� For routes: Place the elements of the resulting array into the unfix position of the
proto-child from left to right.

� For trips: Place the elements of the resulting array into the unfix position of the
proto-child in the corresponding position.

5. Mutation: Modify a solution to create a new solution to expand the search space of
the algorithm. We selected a mutation rate ω. There are two steps to implement the
mutation for the remaining individuals of the next generation, as follows: Step 1:
Randomly select a substring from the individual. Step 2:

� For routes: shuffle the element in the substring to create a new route.
� For trips: flip each element in the substring to create a new trip.
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6. Repair: In this phase we fix the solutions that violate the defined constraints. There
are some principal rules to guide the repair process:

� The trips array controls the trips of the shippers that are related to the capacity.
If the customers’ weight is already surpassed for the corresponding shipper in a
journey, the trips array must be fixed for that shipper to return for supply after
the current customer.

� We maintain the principal to minimize the number of trips; therefore, we check
trips to determine if any trips[i] = 1 can be removed without violating the
capacity constraint, and remove these if possible.

� At the end of each trip, the corresponding element value in the trips array must
be 1.

� trips[i] = 1 ∀ i = 1 . . . (C + K− 1) ∧routes[i] < 0

3.2. Hybrid Genetic Algorithm
3.2.1. Local Search

Local search [48] is an algorithm using a single search path (searching in the neighbor-
hood) to improve the initial solution and thus achieve a better solution. The solution point
is structured in the same manner as for the chromosome representation of GA, as described
in Section 3.1. The process of the local search algorithm can be described in two steps as
follows:

1. Denote s as the starting solution.
2. Find S = searchNeighborhood(s, k), which is the set of neighboring solutions of s.

where: k is the size of S.
searchNeighborhood(s, k) is a function to return the k neighbor’s solutions.

3. Repair every solution s′ in S that violates the defined constraints.
4. Return s* = argmax

s′∈S
(s′. f itness).

3.2.2. Combination of GA and Local Search

One risk associated with GA is that individuals can become trapped in local optima,
often caused by designs that fail to maintain population diversity or an insufficient number
of search agents. In this study, we take advantage of the better neighborhood search feature
of local search to give individuals a better chance of overcoming the problem of being stuck
in a local optima. We run the local search algorithm several times, corresponding to the elite
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individuals obtained by GA as starting points to retrieve better solutions. These solutions
in the next generation then replace the inputs. The process is illustrated in Figure 6.
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3.3. Tabu Search

Tabu search is an improved version of local search used for mathematical optimiza-
tion [49]. Local search methods tend to become stuck in suboptimal regions. TA enhances
the performance of these techniques by banning accessed solutions or other solutions
through user-supplied rules. We implement the principal mechanism of TA and reuse
the data structure and algorithms described in the previous sections. The flow of TA is
illustrated in Figure 7.
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4. Experimental Results
4.1. Experimental Design

To evaluate the effectiveness of the proposed method, we used a collected dataset for a
single business day received from a shipment company in Hanoi, Vietnam. This consisted
of 200 orders, distributed from five warehouses, and delivered by ten shippers. Customer
locations were collected via GPS. To avoid detailed measurements in the scheduling process,
the company transformed the customer’s precise coordinates to the center of the street.
The travel time and the average speed of shippers at a given time were measured based
on estimation of the check-in data of the shippers. Figure 8 illustrates the overview of the
experimental design.
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Figure 8. Overview of the experimental design.

We conducted experiments and analyzed the results of the three proposed algorithms,
namely, TA, GA, and HGA, in terms of convergence, processing speed, and solution
quality. Then, the best-performing algorithm was selected for testing with different decision
scenarios. The experiments were implemented in a computer having the configuration
shown in Table 2.

Table 2. System configuration for experiments.

Item Info

CPU Intel(R) Core (TM) i5-8350U CPU @ 1.70 GHz
1.90 GHz

RAM Corsair Vengeance LPX 8 GB
Programming Platform Java 8

Operating System Windows 10

Metaheuristic algorithms are governed by parameters. We tested several different
parameter values. Each of these can affect both the computational cost and the quality of
the solution. For example, the more search agents that are used, the greater the chance of
finding the global optima. However, the search time of each agent is also increased, which
significantly increases the computation time. The experiments were performed with the
appropriate settings to highlight the performance of each designed algorithm, as shown in
Table 3.

Table 3. Parameters used to conduct the experiments.

Parameter GA HGA TA

Population size 1000 100 1
Crossover rate 0.9 0.9 None
Mutation rate 0.3 0.3 None
Selection rate 0.1 0.1 None

Stop condition 100 100 100
Neighborhood structure None Replace Replace

Scanned Neighbors None 1000 -
Tabu tenure None None 3

4.2. Results

As mentioned in Section 2.2, the original objective functions were transformed to a
distance function using compromise programming. We solved the problem as separate
single-objective problems. The worst point was identified in the same manner as the ideal
point, but with the use of the max function for the objective function. The ideal point and
worst point are shown in Table 4. The three designed algorithms gave the same result when
solving these single-objective problems.
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Table 4. Results obtained by solving the problem as separate single-objective problems.

i z*
i zworst

i

1 699.32 5045.18
2 0 701,979.5
3 0 12,137.6
4 1.35 9582.21

The detailed solution of each single-objective problem is described in Figure 9. In the
first case, we aimed to achieve the lowest transport costs. The system only needs to use
seven of 10 shippers, as shown in Figure 9A. However, the late delivery time is considerable
(181,801.5), and the time the shippers wait and the difference in workload are 2705.85 and
2274.8 time-units, respectively. All shippers are mobilized to deliver on time (Figure 9B).
However, the transport cost also increased to 2438.09. To avoid late delivery, shippers must
arrive earlier than the scheduled time for several orders, then wait until the right time to
deliver. The total waiting time is 6894.85. The difference in workload is also relatively
significant when the shipper with the highest workload has to work 257,875 time-units
more than the average. Figure 9C,D show the results when the scheduler optimizes the
objectives f3 and f4 as, respectively, ( f1 = 2676.491; f2 = 152,876.1; f3 = 0; f4 = 2649.96)
and ( f1 = 2734.456018; f2 = 99,640.8; f3 = 6635.5; f4 = 1.35).
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To compare the algorithms, we set the weight parameters to be the same, although, the-
oretically, multi-objective optimization may not yield the best solution. When a solution did
not entirely dominate other solutions, we ranked the solutions based on the obtained values
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of the distance function (objective values). The metaheuristics operations are stochastic.
Therefore, to evaluate the stability of the proposed algorithms, we executed them 15 times;
the obtained results are shown in Table 5. The numbers show that GA-based algorithms can
receive quality results with a much smaller cost than TA. Using multiple search agents in
TA, each of which continues to search for quality neighbors, is a computationally expensive
process. To achieve a similar solution quality as that of HGA, the average processing time
of TA is 2.06 times greater on the tested dataset. We normalized the objective values in
the range [0, 1] based on the obtained values in Table 4. We only used a single core to
execute the algorithms. The time used for execution can be reduced by using the parallel
mechanism for search agents proposed by Ngo et al. [44].

Table 5. Best results obtained by the proposed algorithms.

Algorithm

Solution Quality
Average

Time (min)Average
Fitness

Best Solution Worst
FitnessFitness f1 f2 f3 f4

TA 0.052 0.048 0.076 0.079 0.021 0.027 0.055 25.4
GA 0.073 0.068 0.041 0.096 0.013 0.057 0.076 5.35

HGA 0.050 0.045 0.047 0.068 0.016 0.034 0.053 12.6

Both GA and HGA algorithms use a similar search mechanism. The only difference is
that HGA continues to use local search to find neighbors with better fitness values before
creating a new generation. Theoretically, this ensures that the HGA has a better chance
of avoiding the local optima than the original version. This was also confirmed in our
experiments. However, because many individuals must perform local search operations
after genetic operations, the total time required to search for each solution increases signifi-
cantly. Nonetheless, HGA can provide high-quality solutions when the obtained solution
completely dominates the solutions of the original GA, and was slightly better than TA on
the tested dataset of 200 customers.

The change in fitness values can be used to visualize the convergence of the algorithms
through each generation/iteration, as shown in Figure 10. For convenience, the figure
shows a comparison of all algorithms running up to 3000 iterations. However, these
algorithms still respected their stop conditions. The result mentioned in the previous
section is the time taken to reach the final solution. The change in fitness values shows that
TA obtained better results in the first few iterations than the GA-based algorithms. However,
up to the 297th iteration, the fitness value of 0.048 is a local solution that TA cannot pass.
By comparison, the GA and HGA algorithms show that they maintained the population
diversity because the next generations continue to improve the quality of the solution. HGA
provided solutions that were continuously improved over the generations, until finding the
final solution (0.046) at the 1849th generation. This continuous improvement is significant
in practice. The algorithmic stopping is a minor condition that can be determined by the
number of generations with the same result to avoid an increase in the computational cost.
The different objective functions may increase in some generations, but they decrease in
general because the algorithm consistently reduces the fitness values.
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algorithms over generations/iterations.

The stochastic mechanism for generating solutions generates a series of solutions that
violate constraints. In some cases [45], these solutions can be eliminated by the searching
process. A mechanism must be used to correct the error solutions in this problem. This
process reduces the time taken by the algorithm through the acquisition of valid answers.
The number of invalid solutions decreases after newly generated solutions. For example,
for the GA-based algorithms, parent solution genes that do not violate the constraints are
selected and crossed. However, the mutation process produces a certain number of invalid
solutions. Figure 11 displays the number of violated constraints with the corresponding
iterations of the search process of HGA. The data distribution affects the reduction in the
values in the distance-based fitness function. For example, the value of objective function
f4, the workload of the shipper, seems to have played a more significant role than the
dense distribution of the values in the objective function f1, as observed from the solution
generated by HGA in Table 6. However, the search operations can be directed by calibrating
the weight parameters.
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Table 6. Traveling paths of 10 shippers to deliver 200 packages from 5 warehouses, as generated by HGA.

k Ok f1 f2 f3 f4

1 3-28-4-3-2-1-102-124-148-154-110-146-123-132-94-137-115-204-205-
203-114-158 107.9532 8350.7 4.4 0.255

2 1-2-4-3-5-60-184-188-198-51-52-162-141-75-40-93-143-92-128-160-67-
199-200-29-108-18-66-96-113-171-25-138-44-35-71-179-2-3-152-32 125.272 5687.2 57.3 141.555

3 5-4-2-202-126-151-147-107-142-156-190-193-127-100-30-145-112-165 96.75424 6272.4 1.9 −6.895
4 5-4-1-3-43-173-125-78-22-6-56-176-81-169-76 78.75142 973.15 0 −37.845

5 5-2-3-4-1-170-13-79-55-20-185-19-129-15-195-197-24-182-109-136-164-
150-133-65-27-201-33-180-99-80-50 110.138 4980.6 0 −0.395

6 3-9-4-1-175-7-38-59 24.40988 149 0 −118.295

7 2-4-3-1-5-117-57-134-103-11-14-192-42-41-161-186-166-62-72-23-177-
16-194-31-183-10-46-74-58-68 101.6263 7904.1 0 0.055

8 5-1-4-3-2-36-187-105-89-39-90-88-116-206-106-159-86-172-168-155-
163-12-97 89.68427 3929.95 28.3 −0.845

9 5-4-3-2-1-178-101-149-181-130-84-82-48-8-191-49-157-189-21-34-77-
120-153-91-174-53-131-63-69-37-85-118 87.14513 4240.15 92.3 22.205

10 5-1-2-4-3-87-47-83-73-111-26-119-70-121-64-17-122-167-61-140-104-
98-45-54-139-144-196 84.42806 5860.5 14.4 0.205

To evaluate the adaptability of the algorithms to different scales of the system, we
divided the test dataset into smaller datasets having 50, 100, 150, and 200 customers,
respectively, to conduct the experiments, as shown in Figure 12. The processing speed of
TA slows in proportion to the system scale. The quality of HGA is slightly better than that
of TA and significantly better compared to that of the original GA. The processing time of
HGA increased more quickly than that of GA but was better than that of TA. HGA and TA
both use neighbor searching, but genetic operations seem to be more effective at identifying
initial points before searching for neighboring points than TA’s hill-climbing mechanism.
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Approaches to the MOP problem based on the decomposition of multi-objective
functions to single-objective functions have many advantages. Compromise programming
is a suitable solution when the decision maker cannot assign preferences for each specific
goal. However, its disadvantage is that is very difficult to illustrate the Pareto frontier.
Nonetheless, using weight parameters, decision makers can experiment with different
decision criteria. We compared the solutions generated by the proposed algorithms. These
solutions do not fully dominate (all objective values are better) each other. Therefore, to
evaluate which algorithm performs better in different decision-making situations, in this
experiment, we selected the sub-dataset of 100 customers then obtained ten solution points
corresponding to different values of weight parameters for each algorithm, as shown in
Figure 13. We then calculated the hypervolume HVC [50] for the solutions obtained by the
algorithm as follows:

HVC =
volume

(
∪s∈S

(
s, zworst))

volume(cube(z∗, zworst))

where:

• s is the solution in the Pareto solution set S that is generated by the algorithm.
• cube(a, b) denotes the oriented axes hypercube that is formulated by points a and b in

the objective space.
• volume(c) denotes the volume of the hypercube c in the objective space.
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The results listed in Table 7 show that the HGA’s hypervolume is similar to that of
TA and better than that of the GA. The larger the HVC value, the closer the algorithm can
discover solutions close to the actual Pareto frontier. Through TA’s nearest neighbor search,
the hill-climbing mechanism allows it to overcome the local optimal better than the original
GA. However, GA can be effectively integrated with other methods to improve quality
without incurring significant computational costs. The hybrid version of EA shows its
effectiveness in different decision-making scenarios.

Table 7. Best results obtained by the proposed algorithms.

Algorithm HVC

TA 0.938
GA 0.885

HGA 0.941

To evaluate the capabilities of the proposed CP-based method, we used genetic opera-
tions designed to implement a version of the NSGA-2 algorithm [51]. The parameters to
execute the algorithm and the obtained results on a dataset of 200 customers are shown in
Table 8. This setup was aimed to allow NGSA-2 to find the best values of each objective
function f1, f2, f3, and f4. NGSA-2 showed the capability of searching for a Pareto front
with more than 8000 solutions after more than 6 h of execution. NGSA-2 achieved solu-
tions with the best values of f2 = 0 and f3 = 0, which are similar to those of the proposed
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algorithms; however, the proposed method was found it to be superior when looking for
solutions for f1 and f4. The normalized distance of the closest solution to z∗ (fitness value)
obtained by NGSA-2 was 0.122, which is inferior to that generated by the CP-based GA
when using the similar searching mechanism. Although our results are not sufficient to
conclude that the CP-based method is better than MOEA-2, the obtained Pareto front may
contain lower quality solutions than those of the proposed method. During the search for
the Pareto frontier, the search agents do not focus on achieving their goal as single objective
optimization problem. The approach requires a significant computational overhead, and
is thus difficult to adapt in a real-world environment. In addition, the user has no other
choice, even if they only need to use one solution in reality, and other factors in the decision
problem, such as user experience, do not contribute to this centralized search effort.

Table 8. Results obtained on the tested dataset using NGSA-2.

Parameter/Criteria Applied/Obtained by
NGSA-2

Applied/Obtained by
CP-Based GA

Population 10,000 1000
Stop Condition 1000 100
Crossover rate 0.8 0.9
Mutation rate 0.3 0.3

Average Execution Time (min) ~372 ~5
Number of Solutions ~8837 1

Best found f1 1422 699.32
Best found f2 0 0
Best found f3 0 0
Best found f4 42 1.35

Best fitness value 0.122 0.0689

5. Conclusions

This study presents an adaptive method, MOP-VRP, to solve the urban shipment
problem, based on CP and metaheuristics. The proposed model is a new variant of the
VRP problem that combines different types of VRP and MOP, in which terrain and traffic
conditions over time are integrated. We also designed three algorithms, GA, HGA, and
TA, to solve the proposed model and compared their performance on a test dataset. Com-
bining compromise programming and metaheuristics is a suitable approach to the MOP
problem. However, once this approach is chosen, the decision-making process must respect
compromise solutions instead of finding the Pareto frontier and assigning a solution based
on higher-level information, unlike in other approaches, such as Pareto-dominance-based
MOEA. In return, this approach allows a flexible design for many business scenarios.
Traditional metaheuristics methods or hybrid versions can be smoothly applied with the
CP-based system, although this system introduces weight parameters to the objective
function. In practice, the selection of these values depends heavily on the decision maker’s
experience and the business context for the use of the model, because re-executing the algo-
rithm with large datasets multiple times involves a prohibitive computation cost. Therefore,
it is recommended as an option when the decision maker does not have sources to indicate
the preferences that happen more often in practice. The test results show that the combina-
tion of GA and local search in HGA is superior in improving the quality of the solution.
The original version of GA may use trivial sampling points, but the nearest neighbor search
can provide better genes to the next generation. This combination produces a high-quality
solution without requiring an excessive computational cost, unlike the nearest neighbor
search with a memory mechanism in TA. In our upcoming work, we will integrate the
VRP model with integral logistics problems. The priority will be the improvement in the
algorithm using recent advances in metaheuristics.
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