Published online 7 July 2020

Nucleic Acids Research, 2020, Vol. 48, No. 16 e94
doi: 10.1093/narlgkaas82

Variance-adjusted Mahalanobis (VAM): a fast and
accurate method for cell-specific gene set scoring

Hildreth Robert Frost

Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA

Received April 24, 2020; Revised June 10, 2020; Editorial Decision June 23, 2020; Accepted June 26, 2020

ABSTRACT

Statistical analysis of single cell RNA-sequencing
(scRNA-seq) data is hindered by high levels of tech-
nical noise and inflated zero counts. One promising
approach for addressing these challenges is gene
set testing, or pathway analysis, which can mitigate
sparsity and noise, and improve interpretation and
power, by aggregating expression data to the path-
way level. Unfortunately, methods optimized for bulk
transcriptomics perform poorly on scRNA-seq data
and progress on single cell-specific techniques has
been limited. Importantly, no existing methods sup-
port cell-level gene set inference. To address this
challenge, we developed a new gene set testing
method, Variance-adjusted Mahalanobis (VAM), that
integrates with the Seurat framework and can ac-
commodate the technical noise, sparsity and large
sample sizes characteristic of scRNA-seq data. The
VAM method computes cell-specific pathway scores
to transform a cell-by-gene matrix into a cell-by-
pathway matrix that can be used for both data visual-
ization and statistical enrichment analysis. Because
the distribution of these scores under the null of un-
correlated technical noise has an accurate gamma
approximation, both population and cell-level infer-
ence is supported. As demonstrated using simulated
and real scRNA-seq data, the VAM method provides
superior classification accuracy at a lower computa-
tion cost relative to existing single sample gene set
testing approaches.

INTRODUCTION
Single cell transcriptomics

Despite the diversity of cell types and states present in mul-
ticellular tissues, high-throughput genome-wide profiling
has, until recently, been limited to assays performed on bulk
tissue samples. For bulk tissue assays, the measured values
reflects the average across a large number of cells and, when
significant heterogeneity exists, only approximate the true

biological state of the tissue. To address the shortcomings
of bulk tissue analysis, researchers have developed a range
of techniques for the genome-wide profiling of individual
cells (1,2) with single cell RNA sequencing (scRNA-seq) (3)
generating particular scientific interest due to the rapid de-
velopment of the underlying laboratory techniques, which
can now cost-effectively quantify genome-wide transcript
abundance for thousands to tens-of-thousands of cells. Sin-
gle cell genomic assays, in combination with techniques that
infer transcription rates (4), spatial information (5) or tem-
poral dynamics (6,7), provide scientists with a detailed pic-
ture of cellular biology. Such cell-level genomic resolution is
especially important for the study of tissues whose structure
and function is defined by complex interactions between
multiple distinct cell types that can occupy a range of phe-
notypic states, e.g. the tumor microenvironment (8,9), im-
mune cells (10,11), and the brain (12).

Single cell analysis challenges

Although single cell data provides unprecedented insights
into the structure and function of complex tissues and cell
populations, technical and biological limitations make sta-
tistical analysis challenging (13). Single cell methods ana-
lyze very small amounts of genomic material, leading to
significant amplification bias and inflated zero counts rela-
tive to bulk tissue assays (14). Single cell-specific approaches
for quality control, normalization and statistical analysis
(e.g. zero-inflated models) only partially address these chal-
lenges (15,16). In addition to the challenges of increased
noise and missing data, important biological differences ex-
ist between bulk tissue and single cell data. As the average
over a large number of cells, bulk tissue measurements are
typically unimodal and, in many cases, approximately nor-
mally distributed. In contrast, single cell data sets reflect a
heterogeneous mixture of cell types and cell states result-
ing in multi-modal and non-normal distributions (14). The
diverse mixture of cell types and states found in complex
tissues also leads to significant differences in gene expres-
sion patterns between bulk tissue and single cell data. As ev-
idenced by projects such as the Human Protein Atlas (HPA)
(17), gene activity measured on bulk tissue samples can dif-
fer substantially from the activity occurring within the cell
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subpopulations comprising the tissue. Collectively, the dis-
tributional differences between single cell and bulk tissue
genomic data make it challenging to successfully analyze
single cell expression data using methods originally devel-
oped for bulk tissue, which were optimized for non-sparse
gene expression data with lower levels of technical noise and
moderate sample size.

Gene set testing of single cell data

Although high-dimensional genomic data provides a
molecular-level lens on biological systems, the gain in fi-
delity obtained by testing thousands of genomic variables
comes at the price of impaired interpretation, loss of power
due to multiple hypothesis correction and poor repro-
ducibility (18-21). To help address these challenges for bulk
tissue data, researchers developed gene set testing, or path-
way analysis, methods (21,22). Gene set testing is an effec-
tive hypothesis aggregation technique that lets researchers
step back from the level of individual genomic variables and
explore associations for biologically meaningful groups of
genes. By focusing the analysis on a small number of func-
tional gene sets, gene set testing can substantially improve
power, interpretation and replication relative to an analysis
focused on individual genomic variables (18-21). The ben-
efits that gene set-based hypothesis aggregation offers for
the analysis of bulk tissue data are even more pronounced
for single cell data given increased technical variance and
inflated zero counts.

Gene set testing methods can be categorized according to
whether they support supervised or unsupervised analyzes
(i.e. test for association with a specific clinical endpoint or
test for enrichment in the variance structure of the data),
whether they provide results for each sample or for an en-
tire population, whether they test a self-contained or com-
petitive null hypothesis (i.e. the Hy that none of the genes
in the set has an association with the outcome or the H,
that the genes in the set are not more associated with the
outcome than genes not in the set) and whether they test
each gene set separately (uniset) or jointly evaluate all sets
in a collection (multiset). In this paper, we focus on single
sample gene set testing methods, i.e. those that compute a
cell-specific statistic for each analyzed gene set to transform
a cell-by-gene scRNA-seq matrix into a sample-by-pathway
matrix. This class of techniques is of particular interest be-
cause the cell-level pathway scores can be leveraged for both
exploratory data visualization, e.g. shading of cells in a re-
duced dimensional plot according to inferred pathway ac-
tivity, as well as the full range of population-level statistical
gene set tests, i.e. supervised or unsupervised tests of either
the uniset or multiset flavor.

Existing single sample gene set testing methods can be
grouped into three general categories: random walk meth-
ods, principal component analysis (PCA)-based methods
and z-scoring methods. Random walk methods (e.g. GSVA
(23) and ssGSEA (24)) generate sample-level pathway
scores using a Kolmogorov—Smirnov (KS) like random
walk statistic computed on the gene ranks within each sam-
ple, often following some form of gene standardization
across the samples. AUCell (25) also generates cell-level
gene set scores based on gene ranks within each cell but
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uses a more simplistic approach than GSVA or ssGSEA
that does not take into account gene set size or the dis-
tribution of gene expression values across all cells in the
data set. Specifically, AUCell computes the proportion of
the top-ranked genes are also members of a given gene set,
where the number of top-ranked genes to consider is de-
termined by the user. PCA-based methods (¢.g. PAGODA
(26) and PLAGE (27)) perform a PCA on the expression
data for each pathway and use the projection of each sample
onto the first PC as a sample-level pathway score. Z-scoring
methods (e.g. technique of Lee ez al. (28), scSVA (29) and
Vision (30)) generate pathway scores based on the standard-
ized mean expression of pathway genes within each sample.
While these methods have proven effective for the analysis
of bulk expression data, with GSVA and ssGSEA among
the most popular techniques, the application of these meth-
ods to scRNA-seq data is limited by three main factors:
poor classification performance in the presence of sparsity
and technical noise, lack of inference support on the single
cell level, and high computational cost (esp. for the random
walk methods when the number of samples/cells is large).

GSVA, ssGSEA, PLAGE and the Lee et al. z-scoring
methods were all developed for the analysis of bulk gene
expression data and were therefore optimized for, and eval-
uated on, non-sparse data with moderate levels of tech-
nical noise. Although AUCell, scSVA and Vision are all
targeted at single cell expression data, they make no spe-
cial provision for the statistical characteristics of single cell
data such as sparsity and elevated noise. As we demonstrate
through simulation studies later in the manuscript, these
methods all have poor classification performance relative
to the VAM technique on sparse and noisy data, i.e. they
are not able to effectively identify cells whose transcrip-
tomic profile is enriched for specific pathways. In contrast
to the other existing single sample methods, PAGODA was
designed for single cell analysis and specifically addresses
the scRNA-seq features of sparsity and technical noise. In
the case of PAGODA, however, the primary focus is an un-
supervised and population-level analysis; the generation of
sample-level scores is a secondary output which lacks infer-
ence support. Relative to the random walk and z-scoring ap-
proaches, the class of PCA-based methods, which includes
PAGODA, is particularly poor at identifying cells with ele-
vated expression of specific pathways in simulated data sets.

Although the pathway scores generated by the z-scoring
methods should have a standard normal distribution when
the expression data follows an uncorrelated multivariate
normal distribution, this distributional assumption does
not hold for sparse scRNA-seq data. Neither the random
walk nor the PCA-based method generate scores with a well
characterized null distribution. While the lack of a null dis-
tribution does not prevent the cell-specific scores generated
by these techniques from being used for visualization or as
predictors in regression models, it does preclude cell-level
inference and the use of scores as dependent variables in
parametric models.

Given experimental and cost constraints, most bulk gene
expression data sets have sample sizes in the hundreds; bulk
data sets with more than one thousand samples are rare.
Single cell data sets, by contrast, typically profile thou-
sands of cells and data sets containing tens-of-thousands
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to hundreds-of-thousands of cells are becoming increas-
ingly common. These large sample sizes make computa-
tional cost an important factor, especially for techniques
that are used in an exploratory and interactive context. Rel-
ative to the VAM approach, all of the existing single sam-
ple methods have significantly worse computational perfor-
mance on even small (2000 cells, 500 genes) data sets. For
very large scRNA-seq data sets (i.e. 100 000+ cells), the use
of methods like GSVA and ssGSEA will be impractical for
many users.

To support the gene set analysis of sScRNA-seq data and
address the limitations of existing gene set testing methods,
we developed the VAM technique, which was specifically
designed for the analysis of large, noisy and sparse tran-
scriptomic data. In the remainder of the paper, we provide
an overview of the VAM method, detail its statistical char-
acteristics, and illustrate the comparative benefits of VAM
via both simulation studies and real data analyses. An R
package implementing the VAM method and several exam-
ple vignettes are available at http:/www.dartmouth.edu/~
hrfrost/ VAM.

MATERIALS AND METHODS
Variance-adjusted Mahalanobis (VAM)

The VAM method generates cell-specific gene set scores
from scRNA-seq data using a variation of the classic Ma-
halanobis multivariate distance measure (31). VAM takes as
input two matrices:

e X:n x p matrix that holds the positive normalized counts
for p genes in n cells as measured via scRNA-seq. As
detailed in the VAM-Seurat integration Section below,
VAM provides direct support for both Seurat (32) nor-
malization techniques: log-normalization (i.e. log of 1
plus the unnormalized count divided by an appropriate
scale factor for the cell) and the SCTransform method
(33). Other scale factor-based normalization techniques
that are equivalent to Seurat log-normalization (e.g. nor-
malization supported by the Scater framework (15)) can
also be used.

e A:m x p matrix that represents the annotation of p genes
to m gene sets as defined by a collection from a repository
like the Molecular Signatures Database (MSigDB) (34)
(a; ; = 1 if gene j belongs to gene set i).

VAM generates as output one matrix:

e S:n x mmatrix that holds the cell-specific scores for each
of the m gene sets defined in A.

Given X and A, VAM computes S using the following
steps:

1. Estimate technical variances: Let 62, be a length p vec-
tor holding the technical component of the sample vari-
ance of each gene in X. For the VAM-Seurat integra-
tion, two approaches are supported for computing 6t2ech
depending on whether log-normalization or SCTrans-
form is employed (see the VA M-Seurat integration Sec-
tion below for details). Similar variance decomposition
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approaches are supported by other scRNA-seq normal-
ization pipelines (e.g. Scater (15)). VAM can also be used
under the assumption that the observed marginal vari-
ance of each gene is entirely technical. In this case, 62,
is simply estimated by the sample variances of each gene
in X.

. Compute modified Mahalanobis distances: Let M be an

n x m matrix of squared values of a modified Maha-
lanobis distance. Each column & of M, which holds the
cell-specific squared distances for gene set k, is calculated
as:

M, k] = X} (Ig6 g reet) ™ X (1

where g is the size of gene set k, Xy is a n X g matrix con-
taining the g columns of X corresponding to the mem-

bers of set k, I, is a g x g identity matrix, and 65,,&)011

holds Itche elements of 62, corresponding to the g genes
In set k.

. Compute modified Mahalanobis distances on permuted X:

To capture the distribution of the squared modified Ma-
halanobis distances under the H,, that the normalized ex-
pression values in X are uncorrelated with only technical
variance, the distances are recomputed on a version of X
where the row labels of each column are randomly per-
muted. Let X, represent the row-permuted version X and
let M, be the n x m matrix that holds the squared mod-
ified Mahalanobis distances computed on X, according
to (1).

. Fit gamma distribution to each column of M,,: A separate

gamma distribution is fit using the method of maximum
likelihood (as implemented by the fitdistr() function in
the MASS R package (35)) to the non-zero elements in
each column of M,. Let ¢, and B kel,...m repre-
sent the gamma shape and rate parameters estimated for
gene set k using this procedure. As detailed in the Sta-
tistical properties of VAM Section below, the normal 2
approximation for standard squared Mahalanobis dis-
tances does not hold for the values generated according
to (1), however, the null distribution of these values can
be well characterized by a gamma estimated on each col-
umn of M. Note that if computational efficiency is a
major concern, the gamma distributions can be fit di-
rectly on M to avoid the cost of generating X, and My;
this will impact the power to detect deviations from H
but will not inflate the type I error rate.

. Use gamma cumulative distribution function (CDF) to

compute cell-specific scores: The cell-specific gene set
scores are set to the gamma CDF value for each element
of M. Specifically, each column k of S, which holds the
cell-specific scores for gene set k, is calculated as:

SL K = Fy a5 (Mpl. A1) (@)

where F,; 5,0 is the CDF for the gamma distribution

with shape & and rate . Under the Hj of uncorrelated
technical noise, valid P-values can be generated by sub-
tracting the elements of S from 1. The Statistical prop-
erties of VAM Section explores the statistical properties
of the elements of M and inference using P-values gen-
erated via 1 — S in greater detail.
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The use of F,, 4,0 to generate the elements of S has
several important benefits in addition to support for cell-
level inference. First, it transforms the squared modified
Mahalanobis distances for gene sets of different sizes into
a common scale, which is important if values in S are used
together in statistical models, e.g. as regression predictors.
Second, it generates a statistic that is bound between 0 and
1 and is robust to very large expression values, i.e., the CDF
converges quickly to 1 as the squared distances increase.
Such robustness is particularly important for the analysis
of noisy scRNA-seq data; many existing sScRNA-seq anal-
ysis methods such as SCTransform artificially clip normal-
ized data to eliminate extreme values. Lastly, the fact that
the distribution of values is often bimodal with most values
close to 0 or 1 improves the utility of S for both visualization
and statistical modeling.

Comparison of VAM and the standard Mahalanobis distance

For the scenario represented by (1), the squared Maha-
lanobis distance is normally defined as:

ML A = (X — X8, (X — X)) 3)

where X is a matrix whose rows contain the mean values
of the columns of X; and X is the estimated sample co-
variance matrix for X;. There are two important differences
between the modified Mahalanobis distance in (1) and the
standard Mahalanobis distance in (3):

1. The standard Mahalanobis distance uses the full sample
covariance matrix whereas the modified Mahalanobis
distance accounts for just the technical variance of each
gene and ignores covariances.

2. The standard Mahalanobis measure computes the dis-
tances from the multivariate mean whereas the modified
Mahalanobis distance computes distances from the ori-
gin.

A key feature of the VAM method, and the basis for
the ‘variance-adjusted’ portion of the name, is the use of
Ig(rﬁ,’tech instead of the sample covariance matrix included in
the typical Mahalanobis formulation. The practical impact
of this change is that deviations in directions of large es-
timated technical variance are discounted (i.e. larger devia-
tions are expected due to the higher variance) but deviations
in directions of large biological variation (or covariance) are
not discounted (i.e. these deviations are not expected if the
variation in expression is purely technical).

Use of the origin instead of the multivariate mean in (1)
generates a more biologically meaningful distance measure
for scRNA-seq data. With the standard Mahalanobis dis-
tance, it is possible for samples whose elements are all above
the mean, all below the mean or a mixture of above and be-
low to have the exact same distance value. Computing dis-
tances from the origin for positive data eliminates this ambi-
guity: larger distances correspond to larger positive sample
values, i.e. elevated gene expression in the cell, and a dis-
tance of 0 corresponds to lack of expression in all genes.
Measuring distances from the origin will also assign more
extreme values to sets whose members show coordinated

PAGE 4 OF 13

expression. When distances are measured from the multi-
variate mean, it is not possible distinguish between sets with
a mixture of up and down-regulated genes and sets whose
members show coordinated expression. Prioritizing coordi-
nated expression is advantageous since such pathways are
usually more biologically interesting. As a simple example,
imagine a two gene set with mean (1,1) and identity co-
variance matrix. For this set, cells with expression values of
(0,0), (2,0), (0,2) and (2,2) all have the same squared Maha-
lanobis distance of 2 when distances are measured from the
multivariate mean. By contrast, the squared distance from
the origin for these cells is 0, 4, 4 and 8, which better re-
flects the combined expression of these genes. It should be
noted that the difference between the mean and origin will
usually be minor for scRNA-seq data since most genes will
have mean values very close to 0.

Statistical properties of VAM

If the values in X, follow a multivariate normal distribution,
the squared Mahalanobis distances computing according to
the standard definition in (3) can be approximated by a x>
distribution with g degrees-of-freedom, where g is the size
of gene set k. If Xy is replaced by the 0 vector in (3), the
resulting squared distances are instead approximated by a
non-central x > distribution with g degrees-of-freedom and

non-centrality parameter X/ ):?,ZIX;C.

The modified squared Mahalanobis measure used by
VAM and defined in (1) can also be approximated by a non-
central x? distribution under the Hy of uncorrelated tech-
nical noise if the data in Xy is not too sparse, i.e. ~50% or
fewer of the elements are zero, and the non-zero values in
X have an approximately normal distribution. Figure 1 il-
lustrates the density estimate for values computed using (1)
on scRNA-seq data simulated under the Hj of uncorrelated
technical noise for sparsity values of both 0.5 and 0.8 (see
the SI Methods for more details on the simulation model,
which assumes a log-normal distribution for the non-zero
elements in Xy). Figure 1 also includes the density for the
non-central x 2 distribution with the appropriate degrees-
of-freedom and non-centrality parameter. As shown in this
figure, the non-central x 2 distribution provides an accurate
approximation for a sparsity of 0.5 (panel A), but overes-
timates the mean and significantly underestimates the vari-
ance of the squared distances when the sparsity increases to
0.8 (panel B).

Given the poor fit of a non-central x 2 distribution for re-
alistic sparsity levels, we instead model the null distribution
of elements in M by a gamma distribution whose param-
eters are estimated via maximum likelihood as described
above. As shown in Figure 1, the estimated gamma distribu-
tion provides a very good fit for the observed squared mod-
ified Mahalanobis distances at both the 0.5 and 0.8 sparsity
levels. The type I error control and power provided by the
estimated gamma distribution is detailed in the Type I error
control and power Section below.

Comparison methods

For comparative evaluation of the VAM method on both
simulated and real scRNA-seq data, we used methods from
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Figure 1. Distribution of squared modified Mahalanobis distances computed using (1) on scRNA-seq data simulated under the H of uncorrelated technical
noise as detailed in the ST Methods. The densities of the non-central x2 approximation and estimated gamma distribution are also plotted. (A) Density
estimates for data with a simulated sparsity of 0.5. (B) Density estimates for data with a simulated sparsity of 0.8.

each of the existing categories of single sample gene set
testing methods. For the random walk category, we used
both GSVA (23) and ssGSEA (24) given the popularity of
these two techniques, for the class of z-scoring methods, we
used the technique of Lee et al (28), and, for the class of
PCA-based methods we used PLAGE (27). For all of these
comparison methods, the implementations available in the
GSVA R package were employed. Unless otherwise noted,
analyses were performed using default values for method
parameters.

RESULTS AND DISCUSSION
Type I error control and power

Type 1 error control was assessed using scRNA-seq data
simulated according to the process detailed in the SI Meth-
ods with the technical variances set to the sample variance
of the simulated genes. In particular, the non-zero counts
were simulated according to a log-normal distribution esti-
mated from real scRNA-seq data (see Supplementary Fig-
ure S1). The VAM method was applied to a set comprised
by 50 randomly selected genes. The type I error rate at an «
=0.05 for 10 simulated scRNA-seq data sets (2000 P-values
per data set for 20 000 total hypothesis tests) was 0.048. To
assess power, a random group of 50 genes were given in-
flated log-normal values for the first 50 cells with the mean
value ranging from 0.7 to 1.7 (the non-inflated mean was
0.642 to align with the PBMC data). For each inflated mean
value, 10 data sets were simulated and power was computed
on the 50 non-null cells for a total of 500 hypothesis tests.

The estimated power values ranged from 0.11 for an inflated
mean of 0.7 to 0.99 for an inflated mean of 1.7 (this power
curve is illustrated in Supplementary Figure S2).

Classification performance

To compare the performance of VAM against existing single
sample gene set testing methods, we measured the classifi-
cation accuracy of each method (i.e. how well the method
is able to highly rank cells that have inflated values for the
genes in a specific set) on scRNA-seq data sets simulated
according to the procedure outlined in the ST Methods. Use
of classification accuracy vs. statistical power for the com-
parative evaluation had two motivations: (i) VAM is the
only method in the comparison group that generates valid
P-values and (ii) we envision VAM being used primarily
as a means to rank order cells according to pathway ac-
tivity rather than as a tool for cell-level statistical infer-
ence. Figure 2 illustrates the relative classification perfor-
mance (as measured by the area under the receiver oper-
ating characteristic curve (AUC)) of VAM, GSVA (23), ss-
GSEA (24), and representative methods from the z-scoring
and PCA-based categories (the technique of Lee et al. (28)
for z-scoring and PLAGE (27) for PCA-based methods)
across a range of sparsity, noise, effect size and set size
values.

For each distinct combination of parameter values, 50
data sets were simulated according to the procedure out-
lined in the SI Methods and Figure 2 displays the average
AUC for each method across these 50 data sets with error
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Figure 2. Classification performance of VAM, GSVA, ssGSEA and representative z-scoring and PCA-based methods on scRNA-seq data simulated using
the procedure detailed in the ST Methods. Each panel illustrates the relationship between the area under the receiver operating characteristic curve (AUC)
and one of the simulation parameters. The vertical dotted lines mark the default parameter value used in the other panels. Error bars represent the standard

error of the mean.

Table 1. Relative execution time as compared to the VAM method on
simulated scRNA-seq data, the PBMC scRNA-seq data set for MSigDB
C2.CP.BIOCARTA collection and the mouse brain scRNA-seq data set
for the MSigDB C5.BP collection

Simulated PBMC Mouse brain MCA
GSVA 426.29 26.23 3.60 —
ssGSEA 23.99 19.08 26.61 —
z-scoring 6.14 3.41 2.26 0.69
PCA 2.63 0.44 0.05 0.17

bars representing the standard error of the mean. The gen-
eral trends in performance follow the expected trajectories,
e.g. AUC values fall as sparsity or noise increase and AUC
values increase as the effect size or set size increases. Im-
portantly, the VAM method provides superior classification
performance relative to the other evaluated methods across
the full range of evaluated parameter values with the differ-
ence particularly pronounced for the sparsity and variance
found in the PBMC scRNA-seq data.
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Computational efficiency

Table 1 displays the relative execution time of GSVA, ss-
GSEA and representative z-scoring and PCA-based meth-
ods as compared to VAM. Relative times are shown for
the analysis of the simulated data sets (2000 cells and 500
genes) used to generate the classification results shown in
Figure 2, for the analysis of the 3k cell PBMC scRNA-seq
data set using the the BioCarta (C2.CP.BIOCARTA) col-
lection from the Molecular Signatures Database (MSigDB)
(34) (see the Human PBM C analysis Section for detailed re-
sults on the PBMC data set), for the analysis of the 11.8k
cell mouse brain scRNA-seq data set using the MSigDB
Gene Ontology biological process (C5.BP) pathway collec-
tion (see the Mouse brain data analysis Section for detailed
results on the mouse brain data set), and for the analysis
of the very large 242k cell Mouse Cell Atlas (MCA) (36)
scRNA-seq data set using a collection comprised by one
gene set for the first 50 genes. Since the R implementa-
tions of the comparison methods force the conversion of
the gene expression matrix into a non-sparse format, these
methods had to be executed on a subset of the MCA ex-
pression data containing just the 50 genes in the gene set
to avoid memory limits. For the z-scoring and PCA-based
methods, this subsetting does not impact the value of the
generated gene-level scores. The GSVA and ssGSEA meth-
ods, however, require the full gene expression matrix for
correct score generation and were therefore excluded from
the analysis. For more details on the PBMC, mouse brain
and MCA data sets and processing pipeline, please see the
SI Methods.

Although the simulation results reflect the average across
a large number of simulated data sets, the real data re-
sults represent a single execution on the relevant scRNA-seq
data. The VAM method had a much faster average execu-
tion on the simulated data set relative to the other methods
with the difference particularly dramatic for the two most
popular single sample methods, GSVA and ssGSEA. Al-
though the relative performance values dropped on the real
scRNA-seq data sets, with notable scaling efficiency for the
PCA-based method, the relative efficiency of VAM com-
pared to GSVA and ssGSEA on these real data sets was still
large with the absolute difference in execution time substan-
tial given the longer time taken by VAM on large data sets.
For the very large MCA data set, only the VAM, z-scoring
and PCA-based methods could be evaluated due to mem-
ory constraints. It should be noted that execution times can
be highly variable and, for techniques like GSVA, strongly
dependent on how effectively the logic can leverage paral-
lel processing in the underlying architecture so users may
encounter a wide range of relative performance values in
practice.

Human PBMC analysis

As detailed in the SI Methods, we applied the VAM method
and comparison techniques to the 10x 2.7k human PBMC
data set used in the Seurat Guided Clustering Tutorial (see
the SI Methods for more details on this data set and the as-
sociated processing pipeline). Figure 3 is a reduced dimen-
sional visualization of the 2638 cells remaining after quality
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Table 2. Top five BioCarta pathways found to have higher pathway activity scores in the B cell cluster relative to other cells in the PBMC data set according
to a Wilcoxon rank sum test. Pathways are ordered according to P-value from Wilcoxon test. The columns reflect the method used to compute the cell-

specific pathway scores.
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Figure 4. Heatmap visualization of the VAM generated cell-specific scores for the top five BioCarta pathways most significantly enriched in each cluster of
the PBMC scRNA-seq data according to a Wilcoxon rank sum test on the VAM scores. Note that gene sets only appear once in the heatmap even if they

are among the top five sets for multiple clusters.

control filtering. Cluster cell-type labels match the assign-
ments in the Seurat Guided Clustering Tutorial. For this
analysis, the cell-specific pathway scores were used to iden-
tify pathways with elevated activity within cell-type specific
clusters. As an illustrative example, we highlight the results
for the B cell cluster. Table 2 lists the five MSigDB BioCarta
pathways most significantly up-regulated in the B cell clus-
ter according to a Wilcoxon rank sum test applied to the
cell-specific scores computed by VAM and other compari-
son methods. All of the evaluated methods correctly asso-

ciate B cell-related pathways with the B cell cluster, which is
not surprising given the very distinct transcriptomic profile
of B cells. While all of the methods offer similar classifica-
tion performance in this scenario, VAM still has the bene-
fits of low computational cost and support for cell-level in-
ference. For more complex cell populations, e.g. the mouse
brain scRNA-seq data, VAM appears to offer superior clas-
sification performance relative to the other techniques.

A important use for the cell-specific scores generated by
VAM is the visualization of pathway activity across all cells
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Figure 5. Projection of mouse brain scRNA-seq data onto the first two
UMAP dimensions. Cells are labeled according to the output from unsu-
pervised clustering.

profiled in a given scRNA-seq data set. Figure 4 illustrates
such a visualization for the four BioCarta pathways most
significantly up-regulated in each cell type cluster accord-
ing to cell-specific scores generated by the VAM method.
This type of visualization provides important information
regarding the range of pathway activity across all profiled
cells, e.g. IL-5 activity is also up-regulated in monocytes.
The VAM scores can also be visualized in a reduced dimen-
sional space generated via a technique like UMAP (see Sup-
plementary Figure S3 for an example).

Mouse brain cell analysis

As detailed in the SI Methods, we applied the VAM
method and comparison techniques to the 10x 11.8k mouse
brain scRNA-seq data set. For this example, we used
the SCTransform normalization technique instead of log-
normalization and explored a much larger pathway col-
lection (the MSigDB Gene Ontology biological process
(C5.BP) collection with 6097 gene sets after size-based fil-
tering). Figure 5 is a reduced dimensional visualization of
the 9320 cells remaining after quality control filtering with
cells labeled according to the output from unsupervised
clustering. Similar to the PBMC analysis, the cell-specific
pathway scores were used to identify pathways with elevated
activity within specific clusters.

We highlight the results for cluster 4, which appears to
represent glial cells including a population of astrocytes, a
glial cell subtype. Table 3 lists the five MSigDBC C5.BP
gene sets most significantly up-regulated in cluster 4 accord-
ing to a Wilcoxon rank sum test applied to the cell-specific
scores computed by VAM and other comparison methods.

Nucleic Acids Research, 2020, Vol. 48, No. 16 e94

Table 3. Top five Gene Ontology Biological Process gene sets (from
MSigDB C5.BP collection) found to have higher pathway activity scores
in cluster 4 relative to other cells in the mouse brain data set according to a
Wilcoxon rank sum test. Gene sets are ordered according to P-value from
Wilcoxon test

VAM

GLIAL-CELL-DIFFERENTIATION
LEPTIN-MEDIATED-SIGNALING-PATHWAY
CHOLESTEROL-CATABOLIC-PROCESS
ASTROCYTE-DIFFERENTIATION
GLIAL-CELL-DEVELOPMENT

GSVA

POSITIVE-REGULATION-OF-EXTRACELLULAR-MATRIX...
POSITIVE-REGULATION-OF-POSTSYNAPTIC-MEMBRA...
GLIAL-CELL-FATE-COMMITMENT
CHOLESTEROL-CATABOLIC-PROCESS
NOTOCHORD-DEVELOPMENT

ssGSEA

STRESS-RESPONSE-TO-METAL-ION
POSITIVE-REGULATION-OF-EXTRACELLULAR-MATRIX...
CHOLESTEROL-CATABOLIC-PROCESS
GLIAL-CELL-FATE-COMMITMENT
REGULATION-OF-EXTRACELLULAR-MATRIX-ASSEMBLY
z-scoring

REGULATION-OF-EXTRACELLULAR-MATRIX-ASSEMBLY
REGULATION-OF-GROWTH-RATE
ADENOHYPOPHYSIS-DEVELOPMENT
PROSTATE-GLAND-MORPHOGENESIS
STRESS-RESPONSE-TO-METAL-ION

PCA

CELLULAR-RESPONSE-TO-COPPER-ION
RESPONSE-TO-ZINC-ION
CELLULAR-RESPONSE-TO-CADMIUM-ION
PROSTATE-GLAND-MORPHOGENESIS
RESPONSE-TO-COPPER-ION

As seen in Table 3, VAM clearly associates
this cluster with glial cells with GLIAL-CELL-
DIFFERENTIATION the top ranked set and both
ASTROCYTE-DIFFERENTIATION and GLIAL-CELL-
DEVELOPMENT also in the top five list. Figure 6 is a
heatmap illustration of the VAM scores for the top five
pathways in each cluster. A visualization of the VAM
scores for the top four gene sets up-regulated in cluster 4 in
the space of the first two UMAP dimensions can be found
in Supplementary Figure S4. By contrast, neither the z-
scoring nor PCA-based methods included glial cell-related
sets in the top five and ssGSEA and GSVA each only
identified one, GLIAL-CELL-FATE-COMMITMENT.
None of these other methods identified an astrocyte-
related gene set within the top five. Although it is not
possible to say with certainty that cluster 4 captures the
glial (and potentially astrocyte-specific) sub-population
in this scRNA-seq data, the top five most significantly
up-regulated genes in cluster 4 according to a Wilcoxon
test on the SCTransform-corrected counts all have a known
association with astrocytes: Dbi (37), Ptn (38), Tubb4b
(39), Hopx (40), Igfbp2 (41).
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Figure 6. Heatmap visualization of the VAM generated cell-specific scores for the top five MSigDB C5.BP gene sets most significantly enriched in each
cluster of the mouse brain scRNA-seq data (as seen in Figure 5) according to a Wilcoxon rank sum test on the VAM scores. Note that gene sets only appear
once in the heatmap even if they are among the top five sets for multiple clusters.

The fact that the VAM scores can be easily converted
into P-values according to the Hj of uncorrelated technical
noise enables the use of cell-level inference for this example.
Specifically, if we treat all ~57 million computed scores as a
family of hypotheses, ~1.9% of the scores are significant at
a false discovery rate (FDR) of 0.1 as computed using the
Benjamini and Hochberg method (42). These inferential re-
sults are visualized in Figure 7, which indicates that the glial
cell signature is statistically significant for most cells in clus-
ter 4 according hypothesis tests on the VAM scores. Given
the very large size of the family of tested hypotheses, this
result provide strong support for the glial cell association
with cluster 4. For scenarios where cell-level inference is the
primary goal, statistical power can be greatly increased by
using a more targeted collection of gene sets, e.g. just the
signatures of cell types expected in the analyzed tissue. It
is important to note that this type of cell-level inference is
not supported by any other existing single sample gene set
testing methods.

CONCLUSION

Single cell RNA-sequencing is a powerful experimental tool
for exploring the biology of heterogeneous cell populations.
The significant sparsity and technical noise associated with
scRNA-seq data, however, makes statistical analysis chal-
lenging, especially for tests conducted on the level of indi-
vidual genes. One promising approach for addressing the
statistical challenges of scRNA-seq data is gene set test-
ing or pathway analysis, a hypotheses aggregation technique
that can mitigate the issues of sparsity and technical noise
to improve power, replication and interpretability. The class
of single sample gene set testing methods, which transform
a cell-by-gene matrix into a cell-by-pathway matrix, is par-
ticular effective for single cell analyses since it enables the
full range of standard downstream processing (visualiza-
tion, clustering, differential expression testing etc.) to be
performed on the pathway-level rather than on the gene-
level. Unfortunately, almost all existing single sample gene
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Figure 7. Heatmap visualization of VAM score statistical significance for the top five MSigDB C5.BP gene sets most enriched in each cluster of the mouse
brain scRNA-seq data (as seen in Figure 5). Scores that are significant at an FDR of 0.1 are shown in orange and non-significant scores are shown in blue.
Note that gene sets only appear once in the heatmap even if they are among the top five sets for multiple clusters.

set testing methods were designed for the analysis of bulk
tissue gene expression data, which is non-sparse and, com-
pared to scRNA-seq data, has a small sample size and lim-
ited technical noise.

To remedy the lack of effective single sample gene set
testing methods for scRNA-seq data, we developed the
variance-adjusted Mahalanobis (VAM) method, a novel
modification of the standard Mahalanobis multivariate dis-
tance measure that generates cell-specific pathways scores
which account for the inflated noise and sparsity of scRNA-
seq data. Although we expect the scores generated by VAM
to be primarily used in contexts that do not assume a specific
statistical model, e.g. as predictor variables, the fact that the
distribution of the VAM-generated scores has an accurate
gamma approximation under the null of uncorrelated tech-
nical noise enables inference regarding pathway activity for
individual cells. As demonstrated on both simulated and
real scRNA-seq data, the VAM method provides superior

classification performance at low computational cost rela-
tive to existing single sample techniques. The utility of VAM
is also aided by direct integration with the popular Seurat
framework, which makes it easy to incorporate VAM into
existing scRNA-seq analysis pipelines. These features com-
bine to make the VAM method an effective and practical
tool for the visualization and statistical analysis of sScRNA-
seq data.
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