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Abstract: The use of allogeneic adipose-derived mesenchymal stromal cells (alloADSCs) represents
an attractive approach for treating myocardial infarction (MI). Furthermore, adding a natural support
improves alloADSCs engraftment and survival in heart tissues, leading to a greater therapeutic effect.
We aimed to examine the safety and immunological reaction induced by epicardial implantation of
a clinical-grade collagen scaffold (CS) seeded with alloADSCs for its future application in humans.
Thus, cellularized scaffolds were myocardially or subcutaneously implanted in immunosuppressed
rodent models. The toxicological parameters were not significantly altered, and tumor formation
was not found over the short or long term. Furthermore, biodistribution analyses in the infarcted
immunocompetent rats displayed cell engraftment in the myocardium but no migration to other
organs. The immunogenicity of alloADSC-CS was also evaluated in a preclinical porcine model
of chronic MI; no significant humoral or cellular alloreactive responses were found. Moreover,
CS cellularized with human ADSCs cocultured with human allogeneic immune cells produced
no alloreactive response. Interestingly, alloADSC-CS significantly inhibited lymphocyte responses,
confirming its immunomodulatory action. Thus, alloADSC-CS is likely safe and does not elicit any
alloreactive immunological response in the host. Moreover, it exerts an immunomodulatory action,
which supports its translation to a clinical setting.

Keywords: myocardial infarction; adipose-derived mesenchymal stromal cells; collagen scaffold;
safety; allogeneic
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1. Introduction

Cardiovascular diseases (CVDs) are the leading cause of death worldwide. According
to the most recent report from the European Society of Cardiology, CVDs remain the
most common cause of death in Europe, accounting for 4 million deaths per year. The
development of new drugs and better medical care improved the acute mortality rates and
patients’ prognoses. However, the number of chronic patients is still increasing, exerting
tremendous pressure on healthcare systems [1].

The therapeutic benefit of mesenchymal stromal cells (MSCs) has been extensively
demonstrated in different experimental models of myocardial infarction (MI) [2]. Therefore,
several clinical trials, including the recent MSC-HF, MESAMI, and ATHENA trials, have
been performed in patients with chronic cardiomyopathies, confirming the safety and
feasibility of autologous MSC transplantation [3–5]. Nevertheless, the benefits of such
treatments have been modest at best, as poor engraftment and survival of the injected cells
hinder their therapeutic potential [6]. Several approaches have been explored to improve
cell retention, including the use of natural or synthetic matrices to facilitate cell support [7].
Among natural materials, collagen represents an optimal candidate owing to its remarkable
biocompatibility and mechanical stability [8,9]. We have previously demonstrated long-
term cardiac recovery after treatment with an adipose-derived MSC (ADSC) collagen
scaffold (ADSC-CS) in a preclinical porcine model of chronic MI. Furthermore, the use of
the collagen system results in a much more robust ADSC trophic action, positively affecting
myocardial remodeling and revascularization [10].

In addition, the use of autologous cells from diseased patients may have reduced the
therapeutic potential and quality of the treatment; thus, using allogeneic cells from healthy
donors may be a more attractive option [11]. Furthermore, allogeneic cells can be prepared
as an off-the-shelf product, significantly reducing the associated logistical burden and costs.
In the case of MSC therapy, the use of an allogeneic source of cells can also be justified
based on their immunoregulatory properties [12]. Several clinical trials have demonstrated
that despite the allogeneic origin of mesenchymal cells, they are safe and beneficial to
patients with chronic cardiomyopathies [13].

In this study, we developed a clinical-grade system using a bovine CS seeded with
ADSC and examined its safety and immunoregulatory properties for clinical application.
We demonstrated that the transplantation of allogeneic ADSC-CS in a porcine model
of chronic MI is safe and does not induce an alloreactive response. Additionally, its
immunomodulatory potential has been shown in vitro with a human ADSC-CS.

2. Materials and Methods
2.1. Characterization of ADSCs and Production of Cellularized Collagen Scaffolds

Rat and pig ADSCs were isolated and characterized as previously described (Figure S1) [14].
Human ADSCs at passage 3 were provided by 3P-Biopharmaceuticals (Noain, Spain) after
extensive quality characterization. A non-cross-linked collagen type I scaffold of bovine ori-
gin (20-µm thickness) was created by Naturin-Viscofan SA company (Weinheim, Germany).
The chemical and mechanical features of this scaffold have previously been reported by
Araña et al. [15]. ADSCs were seeded at a density of 105 cells/cm2 onto the scaffolds and
cultured for 24 h before in vivo implantation. The 1 × 1-cm2 CS constructs were used for the
rodent experiments, and the 10 × 10-cm2 CS constructs were used for minipig experiments.

2.2. Rat and Minipig MI Models

All the in vivo experiments were performed in accordance with the “Principles of
Laboratory Animal Care” formulated by the National Society for Medical Research and
the “Guide for the Care and Use of Laboratory Animals” prepared by the Institute of
Laboratory Animal Resources, Commission on Life Science, National Research Council,
and published by the National Academy Press, revised 1996. All the animal procedures
were approved by the Institutional Committee on Care and Use of Laboratory Animals at
the University of Navarra (Project codes: 083-14 (approval date: 06/2014); 144-14 (approval
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date: 11/2014) and 095-16 (approval date: 09/2016)). MI was induced in rats and pigs by
permanent ligation of the left coronary artery as previously described [16,17]. Animals
were implanted with ADSC-CS, as previously reported [10].

2.3. ADSC-CS Safety Assessment in Rodent Models

The putative toxicity elicited by the implantation of human ADSC-CS was assessed
as per the Good Laboratory Practices (GLP) standards in an infarcted immunosuppressed
rat model. Therefore, ADSC-CS was prepared with 5 × 105 human ADSCs. A total
of 128 adult immunosuppressed Rowett RH-Foxn1rnu rats (Harlan, Barcelona, Spain)
(10–14-weeks old), with an equal number of males and females, were categorized into
64 infarcted and 64 non-infarcted in the study. Half of the infarcted animals were implanted
with ADSC-CS (MI-ADSC-CS group), and the other half was implanted with only CS
(MI-CS group). The non-infarcted animals were subjected to surgery; half of them were
implanted with ADSC-CS (Sham-ADSC-CS group) and the other half was not implanted
(Sham group). In each treatment group, animals were categorized into four subgroups
depending on the analyses and/or timepoint of euthanasia: the acute toxicity (euthanized
on day 2 post-implantation), subacute toxicity (euthanized on day 10 post-implantation),
subchronic toxicity (analyzed on day 28 post-implantation without euthanasia), and chronic
toxicity (euthanized on day 90 post-implantation) groups. Throughout the study, mortality,
general symptomatology, weight, and food consumption of the animals were analyzed
daily. Moreover, blood and urine samples were collected at all timepoints for biochemical
and hematologic analyses. Moreover, macroscopic evaluation of the necropsies as well as
organ weight and histopathologic analyses were performed.

Additionally, a tumorigenicity study was performed using 8–10-week-old adult
Rag2−/−gc−/− immunosuppressed mice (Jackson laboratory, Bar Harbor, ME, USA).
ADSC-CS prepared with 5 × 105 human ADSCs were subcutaneously implanted into
the animals, and the animals, 5 males and 5 females per timepoint, were maintained for
3 and 8 months. Finally, the animals were euthanized, and the skin and muscle samples
from the implantation region were biopsied and processed for further anatomopathological
analysis by a qualified GLP laboratory (University of Zaragoza).

Finally, a biodistribution study was performed to determine the fate of the implanted
cells. Rat GFP+-ADSC-CS (5 × 105 cells/scaffold) constructs were epicardially implanted
in 4 male and 4 female 10–12-week-old chronically infarcted immunocompetent Sprague
Dawley rats. After euthanization at 7- and 30-days post-implantation, hearts were his-
tochemically evaluated for the presence of GFP+ cells. An anti-GFP polyclonal antibody
(diluted 1:500 in TBS; Invitrogen, Waltham, MA, USA) was used as the primary antibody
and the EnVision™-HRP conjugated system (Dako, Santa Clara, CA, USA) as the secondary
reagent to amplify the signal. GFP+ ADSCs were quantified in four serial sections of heart,
spleen, lung, liver, kidney, ovary, and testicle organs.

2.4. Implantation of alloADSC-CS in a Preclinical Porcine Model of MI

Chronically infarcted Gottingen pigs (60–80 kg, male and female) were treated 1 month
after MI induction with 50 × 106 allogeneic pig ADSCs previously seeded onto a 10 × 10 cm2

CS. Another group of pigs was intramyocardially injected with the same number of cells or
DMEM media (control group). Blood samples were obtained at baseline and 15, 30, and
90 days after implantation. Serum IgG/IgM and globulin/albumin protein levels were
analyzed, and the NK cells, monocytes, B and T cells, as well as T-cell differentiation and
activation were examined using cytometric tests. In addition, hearts were extracted on days
7 and 90 post-implantation for the histological analysis of the scaffold’s biocompatibility.
Macrophage and lymphocyte infiltration was quantified in 5–8 heart sections obtained
from the implantation site after immunohistochemical staining for CD3+ and CD68+ cells,
respectively. Cell detection was performed using an anti-CD3 antibody (Abcam, Cam-
bridge, UK) and an anti-pig macrophage antibody (BIO-RAD, Hercules, CA, USA) diluted
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1:50 and 1:500 in TBS and 10% BSA, respectively. An EnVisionTM-HRP conjugated system
(Dako) was used as the secondary reagent.

2.5. In Vitro Coculture of alloADSC-CS and PBMCs

Human ADSCs at passage 3–4 (obtained from 3P-Biopharmaceuticals) were preseeded
onto CS and cocultured with peripheral blood mononuclear cells (PBMCs) previously iso-
lated from different donors. After 96 h of coculturing, the lymphocytes were obtained, and
a flow cytometry analysis was performed to determine the proliferation, activation state,
and intracellular cytokine production of CD4+ and CD8+ cells. Additionally, PBMCs were
activated by adding PHA (1 µg/mL), IL-2 (300 IU/mL), or PMA/Ionomycin (0.5 µg/mL
and 1 µg/mL, respectively) to the culture media to stimulate proliferation and activation of
lymphocytes as well as cytokine production. Lastly, the lymphocytes cultured alone onto
CS were utilized as control.

3. Results
3.1. Safety Assessment of ADSC-CS

The primary goal of this study was to examine the safety and immunological reaction
induced by transplantation of a GMP-grade alloADSC-CS into the heart for its clinical use
in patients with MI.

Three different rodent models were used to test the potential tumorigenicity and
toxicity of ADSC-CS and analyze the fate of the ADSCs throughout the body after ADSC-
CS transplantation into the heart. Experimental design and assessment was performed
in accordance with the official guidelines of the Agency of Medicines and Medical De-
vices (AEMPS).

First, the tumorigenicity of the clinical-grade human ADSC-CS was assessed by
subcutaneous implantation of CS cellularized with 5 × 105 human ADSCs in male and
female immunosuppressed mice (Figure 1A). Tumor formation was not detected in animals
sacrificed at 3- and 8-months post-implantation. Additionally, no ectopic tissue formation
(bone, cartilage, or fat) derived from ADSCs was found at those timepoints (Figure 1B).

Next, for future clinical use, we examined acute, subacute, subchronic, and chronic
toxicity associated with the implantation of the cellularized scaffold. MI was induced in
male and female immunosuppressed rats, and human ADSC-CS (MI-ADSC-CS group) or
CS (MI-CS group) were epicardially transplanted 1 month later. Two groups of healthy rats
were implanted with the cellularized scaffold (Sham-ADSC-CS group) or left untreated
(Sham group) (Figure 1C). The Irwin test was performed in all animals to analyze their
general symptomatology, showing overall normal values (Tables S1–S4). No significant
changes in food intake and weight were detected during the study period (Figure S2). No
acute (2 days post-treatment) or subacute (10 days post-treatment) mortality was found in
animals treated with CS or ADSC-CS. By 90 days post-treatment, 7 out of the 80 animals
(2 to 3 rats/treated group) died, most likely owing to surgery or infarct induction. Blood,
serum, and urine analysis showed no significant changes associated with CS implantation
(Tables S5–S10) in comparison with the sham animals. After the animals were sacrificed,
different organs were harvested, examined, and weighed. No significant changes were
observed in the organs; only the infarcted hearts showed increased weight compared with
the sham animals, likely owing to heart remodeling after ischemia (Tables S11 and S12).
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Figure 1. Safety analysis of ADSC-CS in rodent models. (A) Tumorigenicity study of the immunosuppressed mice subcutaneously 
implanted with human ADSC-CS. (B) Anatomopathological analysis of the mouse muscle tissues 3- and 8-months post-implantation. 

Figure 1. Safety analysis of ADSC-CS in rodent models. (A) Tumorigenicity study of the immunosuppressed mice
subcutaneously implanted with human ADSC-CS. (B) Anatomopathological analysis of the mouse muscle tissues 3- and
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8-months post-implantation. The representative images of H&E-stained muscle tissue sections exhibit (i) healthy skeletal
muscle (left side) and brown adipose (right side) tissues, (ii) healthy white adipose tissue with mammary gland ducts
(indicated by asterisks), (iii) suture material with moderate inflammation (green circles), and (iv) suture material in the
implantation zone with a low-grade inflammatory response (indicated by green circles). Pictures scale bars: 200 µm (i,iii) and
100 µm (ii,iv). (C) The experimental design for the toxicological study in an immunosuppressed chronic MI rat model
implanted with or without human ADSC-CS and CS. (D) The anatomopathological assessment of heart tissue sections. The
representative images of H&E-stained heart ventricle show that (i) the MI-CS group with remains of matrix and myocardial
necrosis (Grade 3) at the acute stage (day 2 post-implantation), (ii) the MI-CS group with mineralization (Grade 2), (iii) the
MI-ADSC-CS group with fibrosis (Grade 3), and (iv) the MI-CS group with fibrosis (Grade 2) at the chronic stage (90 days
post-implantation). Pictures scale bars: 100 µm. (E) The biodistribution analyses of ADSC after the transplantation of
GFP+-ADSC-CS in a chronic rat model of MI. (F) The immunohistochemical detection of GFP+ cells (brown) at 7- and 30-days
post-implantation in the heart, spleen, lung, liver, kidney, and male or female reproductive organs. Pictures scale bars: 100 µm.

The histological analysis of the hearts revealed ischemia-associated changes (data not
shown). On days 2 and 10 post-implantation, remnants of CS were detected in the ventricle
(pericardium) in the three groups implanted with CS or cellularized CS. Minimal pericar-
dial inflammation was observed in the non-infarcted animals implanted with ADSC-CS,
confirming the biocompatibility of the scaffold. Furthermore, infarcted hearts implanted
with the scaffold did not contain any remnants of CS in the long term (90 days post-
treatment). Meanwhile, only low-to-moderate myocardial mineralization was detected
with the sporadic presence of pigmented macrophages and multinucleated giant cells,
indicating a weak inflammatory reaction in response to the implantation of alloADSC-CS
over the long term (Figure 1D, Table 1).

Finally, GFP+-rADSC cells were detected immunohistochemically in the myocardium
1-week post-implantation at 161 ± 45 GFP+ cells/mm2 in the implantation zone and
1 month later at 29 ± 9 GFP+ cells/mm2 in the same area (Figure 1E,F). Importantly, GFP+

cells were not detected in the spleen, liver, kidneys, lungs, or reproductive organs in any of
the animals sacrificed after 1 and 4 weeks (Figure 1F), confirming the engraftment of the
ADSCs into the heart without migration to other organs.

Table 1. Microscopic findings in the hearts of each group and sex. The incidence (number of rats) and average degree of
severity of main findings (in brackets) are shown. The degree of severity was assessed according to the following scale:
Grade 1 (minimum); Grade 2 (mild); Grade 3 (moderate); and Grade 4 (high).

Time-
Point Findings MI-ADSC-CS MI-CS Sham-ADSC-CS Sham

Day 2

Sex
(N◦ of animals)

Males
(3)

Females
(3)

Males
(3)

Females
(3)

Males
(3)

Females
(3)

Males
(3)

Females
(3)

Remains of matrix 3 3 3 3 3 2 - -
Inflammation, acute,

pericardium 3 (2.3) 3 (1.3) 3 (1.3) 3 (1.3) 3 (1.3) 1 (2.0) - -

Myocardial necrosis 3 (3.0) 3 (3.0) 3 (3.0) 3 (2.7) - - - -
Macrophage aggregates 3 (3.0) 3 (1.7) 3 (2.3) 3 (2.0) 3 (2.0) 3 (1.3) - -
Pigmented macrophages - 1 (1.0) 3 (1.0) 3 (1.3) - - - -

Epicardial fibrosis 3 (1.3) 3 (1.7) 3 (1.7) 3 (1.0) 2 (1.5) 2 (2.0) - -
Multinucleated giant cells - - - - - - - -

Day 10

Sex
(N◦ of animals)

Males
(3)

Females
(3)

Males
(3)

Females
(3)

Males
(3)

Females
(3)

Males
(3)

Females
(3)

Remains of matrix 3 3 3 3 3 2 - -
Inflammation, acute,

pericardium - - - - - - - -

Myocardial necrosis 3 (3.0) 3 (3.0) 3 (3.0) 3 (2.7) - - - -
Macrophage aggregates 3 (3.0) 3 (1.7) 3 (2.3) 3 (2.0) 3 (2.0) 3 (1.3) - -
Pigmented macrophages - 1 (1.0) 3 (1.0) 3 (1.3) - - - -

Epicardial fibrosis 3 (1.3) 3 (1.7) 3 (1.7) 3 (1.0) 2 (1.5) 2 (2.0) - -
Multinucleated giant cells - - - - - - - -
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Table 1. Cont.

Time-
Point Findings MI-ADSC-CS MI-CS Sham-ADSC-CS Sham

Day 90

Sex
(N◦ of animals)

Males
(5)

Females
(5)

Males
(5)

Females
(5)

Males
(5)

Females
(5)

Males
(5)

Females
(5)

Remains of matrix 0 0 1 0 0 1 - -
Inflammation, acute,

pericardium - - - - - - - -

Myocardial necrosis - - - - - 1 (2.0) - -
Macrophage aggregates - - - - - - - -
Pigmented macrophages 4 (1.5) 4 (1.0) 2 (1.0) 1 (1.0) - 3 (1.0) – -

Epicardial fibrosis 5 (2.4) 4 (1.8) - - 2 (2.5) 5 (2.2) - -
Multinucleated giant cells 1 (1.0) - - - - - - -
Myocardial mineralization 5 (2.8) 1 (3.0) 1 (2.0) - - - - -

3.2. Inflammatory and Immunomodulatory Action of Allogeneic Pig ADSC-CS

Next, we investigated the inflammatory and immunological effects of the implantation
of a CS cellularized with allogeneic ADSCs. We compared the effect of the transplanta-
tion of 50 million allogeneic pig ADSCs or the same number of cells seeded onto CS in a
porcine model of chronic MI. A sham-operated group was used as an additional control.
Peripheral blood was obtained at different timepoints after transplant and were analyzed
by flow cytometry (Figure 2A). No significant differences in the percentage of monocytes,
granulocytes, NK cells, or leukocytes were observed among the groups at different time-
points (Figure 2B). Additionally, no significant lymphocyte activation was detected in
different subpopulations among the three groups (Figure 2C). Furthermore, no significant
differences were found in the levels of serum IgG and IgM or globulin/albumin proteins,
confirming the absence of an inflammatory reaction against the allogeneic cellularized
scaffold (Figure 2D). Consistent with the studies performed in rats, no significant changes
in renal or liver function tests or other biochemistry tests were found (Table S13). Finally,
local inflammation associated with transplantation of CS or ADSC-CS was assessed 90 days
after implantation. No significant increase in the CD3+ lymphocytes was observed in the
ADSC-treated hearts compared with the controls (Figure 2E), and almost no macrophages
were detected (data not shown).

3.3. In Vitro Assessment of Human ADSC-CS Immunomodulatory Action

Based on the safety profile of the allogeneic CS in the preclinical model, we ana-
lyzed the potential immunological response to alloADSC-CS in humans in further detail
by performing additional studies in vitro. Human alloADSC-CS was cocultured with
the PBMCs isolated from different human donors to determine its impact on activation
and proliferation of lymphocytes as well as immune response (Figure 3A). Culture of
allogeneic ADSC-CS did not induce alloreactivity in CD4+ or CD8+ lymphocytes. Con-
versely, coculturing with allogeneic ADSC-CS significantly inhibited the proliferation of
PHA-pre-stimulated lymphocytes, demonstrating the immunomodulatory properties of
the cellularized scaffold despite its allogeneic origin (Figure 3B). Additionally, cocultur-
ing allogeneic ADSC-CS with PB lymphocytes for 96 h had no impact on the percentage
of the different subpopulations of T cells (naive, effector, effector memory, or T-central
memory) (Figure 3C). Conversely, the expression of the activation markers HLA-DR and
programmed death-1 was significantly decreased in both IL-2 pre-stimulated CD4+ and
CD8+ cells when cocultured with the allogeneic ADSC-CS. Similarly, the expression of the
CD137 activation marker was significantly decreased in the CD4+ lymphocytes, suggesting
a potent immunomodulatory action of the ADSC on lymphocyte populations (Figure 3D).

Finally, allogeneic ADSC-CS induced a significant decrease in the production of
proinflammatory cytokines IL-2, TNFα, and IFNγ both in CD4+ and CD8+ lymphocytes
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after activation with PMA/ionomycin compared with CS (Figure 3E). These results indicate
the potential of the allogeneic ADSC-CS to modulate inflammatory reaction.
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(A) Experimental design. Adult pigs were implanted with only pig alloADSCs or alloADSCs seeded onto CS 1-month
post-infarction. A third group was injected with a cell culture medium (Control). (B) Flow cytometric analyses of the
blood leukocytes, granulocytes, monocytes, NK cells, and CD4+ and CD8+ lymphocytes (% of cells) before and 15, 30,
and 90 days after implantation of ADSC-CS. (C) The analysis of the CD25+ or DR+-activated CD4+ or CD8+ lymphocyte
subpopulations (% of cells) or both. (D) The measurement of IgG/IgM (mg/mL) and albumin/globulin (%) in peripheral
blood serum. (E) The immunohistochemical detection and quantification of CD3+ cells (brown cells) in infarcted hearts
90 days post-implantation. Scale bars: 100 µm. Eight animals per experimental group were included in the study. The
data are represented as the mean ± SEM. Statistical differences were not found among groups at the different timepoints
(One-way ANOVA and Sidak multiple comparisons).
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Human PBMCs were cocultured with only CS or CS previously seeded with human allogeneic ADSCs for 96 h. Subsequently,
lymphocyte proliferation rate, activation, and differentiation were determined by flow cytometry. (B) The percentage of
proliferating CFSE-labeled lymphocytes (stimulated with 1 µg/mL PHA or unstimulated) in the presence of alloADSC-CS
or CS. (C) The percentage of lymphocyte phenotypical differentiation into naive, effector, effector memory (EM), or central
memory (CM) cells in the total number of CD4+ or CD8+ cells after coculturing with alloADSC-CS. (D) The quantification
of HLA-DR, CD137, and PD1 activation markers (% of cells) in the CD4+ and CD8+ subpopulations after incubation with
300 IU/mL IL-2 and coculturing with alloADSC-CS or CS. (E) The production of proinflammatory cytokines, IL-2, TNFα,
and IFNγ by CD4+ or CD8+ lymphocytes after activation with 0.5 µg/mL PMA and 1 µg/mL ionomycin and coculturing
with alloADSC-CS or CS. The data were obtained from five or six independent experiments. The results are expressed as
mean ± SEM. * p < 0.05; ** p < 0.01 (ratio paired t-test).

4. Discussion

The therapeutic benefit of MSCs has been demonstrated in the treatment of ischemic
cardiomyopathies [2]; however, the limited engraftment and poor survival of the MSCs
injected into an ischemic heart hindered the efficacy of the treatment. The use of scaffolds
and polymeric supports to provide anchorage to the cells, a straightforward approach
to circumvent this limitation, has already been tested in patients with CVDs [7]. Indeed,
we successfully demonstrated a robust therapeutic benefit of ADSCs when transplanted
with a CS in a preclinical porcine model of MI compared with cells without CS. The
functional improvement in cardiac function and myocardial remodeling after ADSC-CS
transplantation was associated with increased cell engraftment [10]. The translation of
these results to a clinical setting required us to create our cardiac scaffold following all
the GMP regulatory and quality requirements and test its safety as a therapeutic product.
No relevant acute, subacute, subchronic, or chronic toxicity responses were detected after
the implantation of the scaffold into the heart under GLP conditions. As expected, tumor
formation or ADSC-derived ectopic tissue formation was observed even over the long term.

Additionally, we confirmed that the cells engrafted in the heart did not migrate to
any other organ. As previously reported [10], we observed a robust retention of the
cells using the scaffold system, with the cells still being detected 1 month after their
implantation. All these safety results are consistent with the findings of previous analyses
of the biocompatibility of the CS, in which a significant tolerance to the scaffold was
observed in rodent and minipig infarct models [15]. Our data are also in agreement with
similar analyses of this CS in rat and porcine models of urethral stricture, showing optimal
integration of the urothelium–matrix constructs into host tissues with no toxicity, adverse
secondary effects, or inflammatory responses [18,19].

Once the safety of the scaffold was confirmed and because we were willing to use
allogeneic cells that could be advantageous in clinical applications, we analyzed the in-
flammatory and immune response toward our alloADSC-CS in a preclinical chronically
infarcted porcine model. Although MSC immunoprivilege has been extensively observed,
some preclinical studies have reported some degree of immune activation/recognition and
response by the host following allogeneic MSC infusion or implantation [20–22]. Here, we
found no relevant immunological abnormalities in our immunocompetent pig MI model
after pig alloADSC-CS transplantation. In addition, no significant systemic changes were
found over time, and no long-term inflammatory reaction in the implanted area of the
myocardium was noted. In previous studies [10,15], we have demonstrated CS degradation
within 3–4 weeks as well as a reduction in the number of engrafted cells over time. Together
with the observed collagen biocompatibility and ADSC immunotolerance, these data can
explain the lack of chronic inflammatory response toward alloADSC-CS. Moreover, the
immunomodulatory action of ADSC may regulate any inflammatory reaction. Further-
more, no exacerbated acute inflammation was found at the heart implantation site (data
not shown). This result was expected because in previous studies, macrophage infiltration
was detected to a moderate extent at 2 and 10 days after CS implantation [15], a phe-
nomenon which is in fact milder than that noted with several other natural and synthetic
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scaffolds [23]. Notably, a prominent anti-inflammatory M2-macrophage phenotype was
induced by CS, likely beneficial for cardiac recovery after the ischemic event [23].

The results of our preclinical study with alloADSC-CS corroborate with the results
observed in the clinical trials testing allogeneic MSCs in patients with ischemic LV dys-
function. In phase I of the PROCHYMAL trial, a good safety profile was found in the
treated patients [24]. Similarly, the POSEIDON trial, a phase I–II early-stage study, showed
no major alloreactivity against the exogenous BM-MSC, with low alloimmune reactions
in patients (3.7%). Additionally, the incidence of adverse events was extremely low, and
improved cardiac function and reduced infarct size were documented [25]. Similarly,
in a more recent dose-comparison study with allogeneic MSC in patients with ischemic
cardiomyopathy (the TRIDENT study), no serious adverse events were found, and the
highest dose was reported to have a beneficial effect [26]. Moreover, a recent trial involving
patients with anthracycline-induced cardiomyopathy heart failure (CCTRN SENECA Trial)
also revealed an acceptable safety profile of MSCs [27].

Finally, we performed an in vitro coculture of the cellularized CS with allogeneic
PBMCs to better understand the immunological response elicited by the alloADSC-CS in
the human context. Lymphocytes play a key role in allograft rejection through the detection
of allogeneic surface antigens [28]. Thus, we assessed the putative immune reaction elicited
by lymphocytes toward alloADSC-CS. Because lymphocyte allorecognition of exogenous
cells requires costimulatory molecules presented by activated macrophages, dendritic
cells, or other antigen-presenting cells [29], we established a coculture of ADSC-CS with
PBMCs containing the entire immune cell population. Our overall results did not show
any lymphocytic immune reaction toward ADSC-CS. Moreover, we demonstrated that
alloADSC-CS could suppress the proliferative lymphocyte response after mitogenic stimu-
lation and the release of proinflammatory cytokines by lymphocytes after PMA/ionomycin
stimulation in vitro. Additionally, the lymphocyte activation markers DR, CD137, and
PD1 were reduced when activated T cells were cocultured with alloADSC-CS. All these
data are consistent with the results of previous studies in which lymphocyte proliferation
and activation are regulated by MSC cultures derived from different tissue sources [30,31].
Thus, all the immunological effects exerted by our cellularized CS can be beneficial in the
ischemic environment of an infarcted heart, in which an excessive immune response leads
to a deleterious remodeling process and a dysfunctional myocardium.

Thus, the safety of ADSC-CS demonstrated in rodent models, the immunoprivilege
and immunomodulatory action of ADSC-CS attained in the allogeneic porcine infarct
model, and the data from the in vitro human experiments in this study, with the previously
demonstrated therapeutic benefit of ADSC-CS, support the clinical testing of alloADSC-
CS in an ongoing phase 1 clinical trial (Nº EudraCT:2017-004503-49) with patients with
chronic cardiomyopathy. Hopefully, data obtained from this clinical trial will validate
the safe use of our therapeutic bioengineered cell-product in humans as well as confirm
its potential as an effective therapeutic agent for the treatment of patients with chronic
ischemic cardiomyopathy.
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