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Abstract 

Background:  Transcription factor (TF) binding motifs are identified by high through-
put sequencing technologies as means to capture Protein-DNA interactions. These 
motifs are often represented by consensus sequences in form of position weight 
matrices (PWMs). With ever-increasing pool of TF binding motifs from multiple sources, 
redundancy issues are difficult to avoid, especially when every source maintains its 
own database for collection. One solution can be to cluster biologically relevant or 
similar PWMs, whether coming from experimental detection or in silico predictions. 
However, there is a lack of efficient tools to cluster PWMs. Assessing quality of PWM 
clusters is yet another challenge. Therefore, new methods and tools are required to 
efficiently cluster PWMs and assess quality of clusters.

Results:  A new Python package Affinity Based Clustering for Position Weight Matrices 
(abc4pwm) was developed. It efficiently clustered PWMs from multiple sources with 
or without using DNA-Binding Domain (DBD) information, generated a representa-
tive motif for each cluster, evaluated the clustering quality automatically, and filtered 
out incorrectly clustered PWMs. Additionally, it was able to update human DBD family 
database automatically, classified known human TF PWMs to the respective DBD fam-
ily, and performed TF motif searching and motif discovery by a new ensemble learning 
approach.

Conclusion:  This work demonstrates applications of abc4pwm in the DNA sequence 
analysis for various high throughput sequencing data using ~ 1770 human TF PWMs. 
It recovered known TF motifs at gene promoters based on gene expression profiles 
(RNA-seq) and identified true TF binding targets for motifs predicted from ChIP-seq 
experiments. Abc4pwm is a useful tool for TF motif searching, clustering, quality assess-
ment and integration in multiple types of sequence data analysis including RNA-seq, 
ChIP-seq and ATAC-seq.

Keywords:  Transcription factor, Position weight matrices, DNA-binding domain, DNA 
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Background
The complex yet crucial gene regulatory mechanisms to a large extent depend on tran-
scription factors (TFs). TFs read the regulatory signals embedded in the genome and 
facilitate transmission of these signals to the process of gene regulation. TFs can read the 
signals by binding to short regulatory sequences called transcription factor binding sites 
(TFBS) through their DNA binding domains (DBDs). DNA binding domains are struc-
tural motifs of protein domains recognizing single stranded or double stranded DNA. 
Position Weight Matrices (PWMs) or Position-specific scoring matrices (PSSMs) are 
frequently used for the representation of DNA-binding (TFDB) preference of transcrip-
tion factors [1]. PWMs are obtained by aligning the experimentally validated TFBS while 
considering the number of occurrences and positions of the nucleotides in the binding 
sites. This model of representation of TFDB assumes that binding preferences are inde-
pendent of each other. In some cases, there are dependencies between nucleotides [2, 3], 
which may need an alternative representation for TF binding. Nevertheless, PWMs are 
still the most popular representation of TFDB available. As the number of these TFDBs 
is increasing, several databases are maintained to keep this information such as JASPAR 
[4] and TRANSFAC [5] for experimentally derived TFDBs. These are the knowledge-
bases used for interpretation of functional genomics results in DNA sequence analysis. 
Unfortunately, the increasing number of sources for PWMs has given rise to redun-
dancy for TFDBs. For instance, different high throughput methods (e.g., protein bind-
ing microarrays, SELEX, ChIP-seq) generate different PSSMs or PWMs for the same TF. 
Apart from that, orthologues TFs from different organisms may also share similar TF 
binding profiles, as well as TFs from the same DBD family preserve similar binding spec-
ificity. These factors give rise to multiple TFs sharing similar binding motifs or PWMs. 
It has not only increased intra-databases redundancy, but also inflated inter-database 
redundancy. An exponential increase in the collection of PWMs (e.g., JASPAR [4] alone 
has doubled the number of its PWMs in just two years), and the generation of diverse 
PWMs from multiple studies [6, 7], may cause a problem in their application. For exam-
ple, multiple collections of PWMs for the same TF may confuse people about using a 
trustful source and cause a problem in interpreting results based on different versions of 
PWMs. Although efforts have been made to solve the issue by creating meta-databases 
such as cis-BP [8] and FootprintDB [9], the redundancy problem in PWMs has not been 
fully addressed as yet.

Clustering of PWMs is an efficient solution to solve the redundancy problem. It has 
been used to cluster structurally similar motifs for making Familial Binding Profile (FBP) 
among related TFs. This has not only improved the performance of TF motif detection 
[10, 11], but also predicted DBD (or structural class) for a newly discovered motif [12] 
that has been utilized in a variety of functional genomic studies [13]. Although there are 
a handful of tools for clustering PWMs [14–17], none of them considers the DBD fam-
ily information as well as the quality of clustering. A recently published tool MASSIF 
considers the DBD information, but it only evaluates the likelihood of a linked motif (or 
TF) of interest to be associated with the same DBD [18]. Since TFs are associated with 
different DBDs, a classification of TFs into respective DBDs may help in the downstream 
analysis. For example, if a large number of putative PWMs are predicted from a single 
high throughput sequencing (e.g., ChIP-seq and ATAC-seq) experiment, then they need 
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to be clustered and quality evaluated before further biological interpretation of results 
[13]. Though numerous studies have attempted to classify TFs into relevant DBD fami-
lies [4, 19, 20], none of them adopts any uniform naming convention. For example, tran-
scription factor E47 is assigned to bHLH in some databases, but others define E2A as 
its DBD family, while E2A related factors is a subclass of bHLH [19]. Thus, there is a 
hierarchical mismatch between the assigned DBD name and the transcription factors. 
In addition, different nomenclature is used in different databases. For instance, the same 
TF is assigned to either bZIP or “Basic Leucine Zipper” in different sources, which is 
not suitable for automatic text mining. Some TFs do not completely function in a single 
DBD (e.g., E47 for bHLH [21]) and which require other protein regions for complete 
binding activity. Therefore, a uniformly named DBD database and a clustering quality 
assessment metrics for any given PWMs is urgently needed.

In order to meet the aforementioned challenges and fill the gap of quality assessment 
for clustering of PWMs, a new PWM analysis package was introduced—Affinity Based 
Clustering for Position Weight Matrices (abc4pwm). It included both PWMs clustering 
and quality evaluation. First, abc4pwm generates a clean uniform named DBD database 
from known human transcription factor classification databases [20, 22], assigns a set of 
known human TF PWMs into their respective DBD family, and clusters PWMs within 
each DBD family. Then, clustering quality assessment metrics are calculated in each 
cluster for filtering out wrongly clustered PWMs before further analysis (e.g., TF motif 
search). Abc4pwm has functions for visualization of PWMs clusters, and for searching a 
given PWM against known PWMs (e.g., from JASPAR or TRANSFAC) by reporting the 
top matched ones. It also has format conversion function for conversion between various 
formats (e.g., TRANSFAC [5], JASPAR[4], and BayesPI [23]). Moreover, the package also 
includes various demo applications of abc4pwm in DNA sequence analysis. For example, 
to predict TFs that are known for periodic regulation of yeast cell cycle by using gene 
expression profiles [24], to identify TF binding motif from ChIP-seq data or differentially 
expressed genes, and to perform ensemble clustering for PWMs predicted from ChIP-
seq experiment [13, 25]. In short, Abc4pwm is a useful tool for DNA sequencings analy-
sis which can reduce the analysis time and help in meaningful biological interpretations.

Implementation
Public data and tools

In abc4pwm package, ~ 1,770 human TF PWMs were collected from previous pub-
lications [26, 27]. DBD information for human transcription factors is retrieved from 
three sources (TFClass, The Human Transcription Factors by Jolma, and JASPAR) [4, 
19, 20]. Yeast cell cycle microarray experiments of ~ 800 yeast cell cycle regulated genes 
were obtained from the Spellman study [28]. RNA-seq dataset for differential gene 
expression in HCT116 p53 +/+ cells (e.g., after inducing TP53 expression with Nut-
lin treatment compared to non-treatment) was downloaded from Andrysik et al. [29]. 
It contains ~ 4,363 differentially expressed genes, from which the up-regulated genes 
(~ 2,093) were used to predict putative TF binding motifs at promoters by using Baye-
sPI2 [13, 23]. BayesPI2 is a tool that integrates a Bayesian model regularization method 
with biophysical modeling of protein-DNA interactions, to predict TF binding sites or 
PWMs at DNA sequences, from either promoter of genes or TF binding occupancy 
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regions (e.g., ChIP-Seq). ER-alpha ChIP-Seq data in MCF7 cells was referred by Zhou 
et al. [30] and [13]. DNA sequences of gene promoter regions (i.e., − 800 and − 1000 to 
TSS in yeast and human data, respectively) were retrieved by the Regulatory Sequence 
Analysis Tool (RSAT) [31].

Creation of uniform DBD database for human TFs

Here, a uniform DBD naming TF database in human was created for automatically 
assigning ~ 1,770 known human PWMs [26, 27] to their respective DBD family with a 
unique name. It was based on three sources, TFClass [19], The Human Transcription 
Factors by Jolma [20], and JASPAR [4], and automatically generated such non-redundant 
human TF DBD database by fetching information from these three online databases 
(Additional file 1: Figure S1). Based on this new DBD database, abc4pwm can assign any 
known human TFs to a respective DBD family. If a TF lacks DBD information, it was 
labeled as an unknown DBD category. PWMs assigned in each DBD family were further 
clustered by a clustering method.

Pair‑wise comparison of PWMs by similarity score

TF searching for any unknown PWMs was achieved by comparing them with known 
TF PWMs from existing databases. A previously published method forward–backward 
alignment [23] with motif similarity score calculation [32] (Additional file 1: methods) 
was implemented in abc4pwm to evaluate the similarity of PWMs. For example, a com-
bination of similarity matrix calculation (n x n) for n input PWMs and a dynamical for-
ward–backward PWM alignment method were used to perform a pair-wise comparison 
between PWMs. In this way, it not only generated a representative motif and evaluated 
the quality of PWMs in the same cluster, but also ranked top matched TFs after compar-
ing unknown PWM with known sources (e.g., from TRANSFAC or JASPAR).

Clustering of PWMs

As described earlier, there may be multiple PWMs for the same TF resulting from dif-
ferent computational or experimental studies. These PWMs from various sources may 
cause redundancy for data analysis. Clustering is thus a handy solution for such issue 
by grouping similar PWMs together, which significantly reduces the computation time 
and simplifies the data interpretation. However, prior information about the number of 
clusters for PWMs is usually absent, which is a challenge for unsupervised clustering 
methods. In such a case, many popular methods (e.g., K-means and DBSCAN clustering 
[33]) may not perform well because they need either an initial number of clusters or a 
cutoff value for grouping the clustering results. Affinity Propagation clustering instead 
requires only measures of similarity between pairs of input data points [34], then uses 
four matrices (similarity matrix—S, responsibility matrix—R, availability matrix—A, 
and criterion matrix—C) to perform unsupervised clustering. A similarity matrix S can 
be calculated from a pair-wise comparison between input PWMs with motif similarity 
score [23]. The remaining three matrices can be inferred from the similarity matrix. In 
abc4pwm package, this scalable clustering algorithm can be applied on either all input 
PWMs or PWMs in the same DBD family. The following is a short description of these 
four matrices in affinity propagation clustering:
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•	 Similarity matrix S: A similarity matrix of dimension n x n, while n is the number 
of input data points or PWMs, is calculated for each data point against all input 
data. Values for diagonals are not calculated. The algorithm converges toward a 
small number of clusters if a smaller value is chosen for the diagonal, and vice 
versa. A formula for similarity matrix between two data points is given as:

In abc4pwm, the similarity matrix is based on motif similarity score that described 
in previous section.

•	 Responsibility matrix R: Responsibility R(i, k) quantifies how well-suited element 
k is to be an exemplar for element i, which is calculated with the following for-
mula:

 where A(i , k) is availability matrix and S(i , k) is similarity matrix, and A is set to zero 
in the first iteration of calculation for R.

•	 Availability matrix A: From responsibility matrix R, algorithm calculates availabil-
ity matrix. The availability matrix A shows how available one object or data point 
is to be an exemplar for another object or data point. Calculation for diagonal data 
points can be computed as:

While off-diagonal points can be calculated as:

where R refers to the responsibility matrix.

•	 Criterion Matrix C: The last matrix is named as criterion matrix C. Each cell in the 
criterion matrix is the sum of the responsibility matrix R and availability matrix A 
at that index.

A pseudo code for Affinity Propagation Clustering Algorithm based on aforemen-
tioned Eqs.  2, 3, 4, and 5 was provided in (Additional file  1: methods), where more 
information about ideas behind Eqs.  2, 3 and 4 were illustrated, as well as a step-
by-step example of calculations was provided. Two parameters (e.g., preference and 
damping) associated with affinity propagation clustering may need to be tuned during 
the training (see the Additional file 1: method). In abc4pwm, PWMs with known DBD 
information can be classified into their respective DBDs before the clustering. Alter-
natively, clustering of all available PWMs can be performed at once though it may not 
provide good clustering quality (e.g., in ~ 1,770 human TFs PWMs) [14].
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Clustering quality assessment and representative motif for PWMs

Quality assessment for clustered PWMs is essential, but there is only one feature (a 
similarity score matrix for all input PWMs) in the current study. Therefore, a combi-
nation of several statistical summaries was used in the quality assessment of clustered 
PWMs (e.g., mean and Z-score of similarity scores in a cluster). In a good cluster, 
if the mean of similarity scores for PWMS is higher (e.g., >  = 0.8 default parameter) 
then the PWMs are more similar. After identifying the good clusters, the poorly 
grouped PWMs was further evaluated. Here, a Z-score was used to indicate how dif-
ferent a PWM is from the mean of the cluster: a Z-score matrix (n x n) of PWM simi-
larity scores in a cluster was calculated for each PWM. Any PWM with Z-score < − 1 
(default parameter) will be subjected to further evaluation, and the frequency of 
PWMs with low similarity scores (e.g., Z-score < − 1) in a cluster will be recorded. 
Then, the top 15% (default parameter) of such PWMs were defined as poorly clus-
tered PWMs. Finally, PWMs with poor quality were removed from a cluster (e.g., 
poor similarity scores with Z-score < − 1 and has at least 5% of other PWMs in the 
cluster). A detailed graphical overview of such cluster quality assessment for PWMs 
was shown in Fig. 1. After the automatic clustering quality assessment process, a rep-
resentative PWM (or motif ) was generated [13] for each cluster which was an average 
of all PWMs (Fig. 2) in the same cluster.

Fig. 1  Automatic quality assessment method for PWM clustering. First, a similarity score matrix for PWMs in 
a cluster is calculated and Z-score is calculated for each row (one row represents one PWM; Z-scores of one 
PWM versus all others). Then, Z-scores less than a threshold (e.g., < − 1) are counted to make a frequency 
count vector, which is sorted and the top 15% of them (default parameter in abc4pwm) are selected as 
putative poorly clustered PWMs. Finally, the poorly clustered PWMs are identified and be removed from 
clusters (e.g., PWMs 15, 3, 20 and 21 in the figure)
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Motif discovery using ensemble learning approach

abc4pwm implemented a new ensemble learning approach to predict PWMs from 
protein-DNA interaction experiments (e.g., ChIP-seq or ChIP-chip) [13, 23]. First, it 
randomly selected a subset of input data (e.g., 15% of called peaks from a ChIP-Seq 
experiment) for predicting enriched TF binding energy matrices (or PWMs) in DNA 
sequences, by using BayesPI2[13]. The random selection and the PWM prediction 
were repeated multiple times (e.g., 10 times by default), before PWMs were clustered 
and the quality was assessed. Subsequently, the representative motifs were generated 
for the clusters and were compared against known TF PWMs, from which the top 
matched ones are reported. In abc4pwm, a parallel implementation of the ensemble 
learning approach for PWM clustering was adapted from a previously publication 
[13]. Multiple parameters were available for customization which can be easily tuned 
to improve this analysis (e.g., the random seed number, the percentage of input data, 
the number of random selections, the maximum/minimum length of motifs, and the 
on/off of clustering quality assessment et  al.). The ensemble learning approach sig-
nificantly speeds up the motif discovery process, if the input is large (e.g., hundred 
thousand of called peaks from a ChIP-Seq experiment). It has been evaluated in both 
synthetic yeast ChIP-chip and real human TF ChIP-seq datasets (e.g., the estrogen 
receptor α factor—ESR1).

Fig. 2  An example of representative motif for a cluster of PWMs in bZIP DBD family. Here, there are five 
PWMs in a cluster (ATF2, ATF3, ATF4, ATF4_1 and BACH2) from bZIP family. A representative motif of this 
cluster is shown on the top of figure
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Modules in abc4pwm

Abc4pwm was implemented in various features modules, including plotting, visualiz-
ing, and searching etc. For example, a “plotting” module to visualize PWM clustering 
with weblogo [35]. It not only plots all clusters in a specified DBD, but also plots all 
clusters for all DBDs. Results of ‘plotting’ module are exported to both a pdf file and a 
text file. Another module ‘visualize’ generates statistical summary figures for the clus-
tering quality assessment (e.g., boxplots of similarity scores for PWMs of clusters in a 
DBD family; Fig. 3) at any desired DBD family. The other important feature is “search-
ing” that compares unknown PWMs to a list (or database) of known TF PWMs (e.g., 
from TRANSFAC [5], JASPAR [4], abc4pwm, or BayesPI [23]), and reports the top 
matched ones. Here, Logo plots of all query PWMs and the top matched ones are 
exported to a pdf file. Other results (e.g., the similarity scores, DBD information, and 
cluster number) and parameters (e.g., information of matched DBD source, DBD fam-
ily labels, the number of PWMs/clusters in a DBD, and clustering parameters etc.) are 
stored in text files. A full illustration of functions in abc4pwm was shown in Fig. 4. 
abc4pwm is a command line tool in Python 3.0, which is suitable for analyzing large 
DNA sequencing data with parallel computation in either PCs or high-performance 
computing clusters (HPCs). It is publicly available at (https://​github.​com/​abc4p​wm/​
abc4p​wm) and can be easily installed on both Linux and Mac OS systems.

Results and discussion
Clustering quality assessment: manual versus automatic evaluation

A collection of ~ 1,770 human TF PWMs [36] was used to evaluate the automatic clus-
tering quality assessment in abc4pwm. First, a clean and uniformly named DBD database 
was generated to maintain human TF DBD information from three sources (TFClass 
[22], Human Transcription Factors [20], and JASPAR [4]). Then, these human TF PWMs 
were classified into their respective DBD family based on the new DBD database. Within 

Fig. 3  A boxplot of similarity scores for PWMs in clusters of bZIP DBD family. This figure shows 15 PWM 
clusters in a bZIP DBD. X-axis indicates the number of poorly clustered PWMs (total number of PWMs) in each 
cluster. Y-axis shows the distribution of PWM similarity scores in each cluster

https://github.com/abc4pwm/abc4pwm
https://github.com/abc4pwm/abc4pwm
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each DBD family, PWMs were clustered and the quality of clusters was automatically 
evaluated by abc4pwm. In this analysis, there were ~ 121 poorly clustered PWMs (mean, 
Z-score, the top occurrences, and the occurrences threshold in abc4pwm was set 0.80, 
− 1.2, 0.05, and 0.05, respectively). Based on a manual examination of the quality of the 
same clusters, there were 75 wrongly clustered PWMs. Among them, ~ 77% (58 out of 

Fig. 4  An overview of abc4pwm workflow. This figure shows an overview of all major features in abc4pwm. 
Purple line flow shows classification module where input PWMs are divided into DBD. Then, clustering 
module (orange flow) is applied within each DBD. Subsequently, resulted clusters are subjected to quality 
assessment (green flow) and a representative motif or PWM is created for each cluster. Green dotted line 
shows flow where input PWMs skip DBD assignment step. Orange dotted line shows the flow of ensemble 
learning technique for motif prediction
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75) were labeled by the automatic assessment as wrongly clustered (Fig. 5). In the fig-
ure, a “mild dissimilar” refers to PWMs with 40–50% non-identical nucleotides, while 
a “milder dissimilar” refers to 60–70% non-identical nucleotides in a PWM. If a less 
stringent criteria (e.g., PWMs with ~ 50% identical nucleotides are considered as simi-
lar) was used in manual quality assessment, then 73 out of 75 wrongly clustered PWMs 
were found by both the manual and automatic evaluations. This was a very encouraging 
result because there was a large overlap for clustering quality assessment between the 
manual and the automatic clustering evaluation. A detailed description of this compari-
son was shown in Additional file 2, which showed that the automatic clustering quality 
assessment worked well in general, but it did not mean the automatic quality assessment 
would always be better than the manual examination. Nevertheless, the automatic clus-
tering quality assessment in abc4pwm was a robust method, which may significantly 
reduce the time for evaluation and interpretation of large numbers of PWMs.

Clustering of PWMs with‑DBD versus no‑DBD information

Initially, clustering of PWMs was applied on ~ 1,770 collected Human TF PWMs directly 
(no-DBD information) where many PWMs were wrongly clustered (right panel of 
Fig. 6). In the figure, green and yellow colors represent good quality (~ 48%) and average 
quality clusters (~ 20%), respectively. The good quality clusters are those with ~ 85–100% 
of similar PWMs, the average and the bad ones are clusters with ~ 50–80% and < 50% 
similar PWMs, respectively. In summary, there were ~ 32% of the clusters with poor 

Fig. 5  Comparison between automatic quality assessment and manual quality assessment. Here, dark blue 
represents manual or eye balling assessment of quality for clustered PWMs, where 75 PWMs were identified 
as poorly clustered. Light blue color shows result of automatic quality assessment for the same clusters 
provided by abc4pwm, where 121 PWMs were marked as poor quality. There are 58 of PWMs overlapping 
(dark green color) between the two results. The remaining 15 out of 17 that identified by manual evaluation 
have mild dissimilarity
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quality in no-DBD clustering. However, classifying PWMs into relevant DBD family 
(with-DBD information) and then clustering them within each DBD family had signifi-
cantly improved the results as shown in the left panel of Fig. 6. The total number of good 
quality clusters (~ 75%; green color) increased and average quality (~ 13%; yellow color) 
clusters are decreased. And also, there were only ~ 7% and ~ 5% of the poor-quality clus-
ters and singletons (clusters with only one PWM), respectively. Thus, clustering PWMs 
with-DBD information provided better results than that with no-DBD information. 
Detailed supporting data of this summary were in Additional files 3 and 4.

Clustering of PWMs: abc4pwm versus STAMP

To further evaluate the performance of PWM clustering by abc4pwm, we compared it 
with one of the popular tools, STAMP [16] that generates a similarity score tree to clus-
ter PWMs. From a collection of ~ 1770 human PWMs, we selected PWMs from six DBD 
families (e.g., HMG, C2H2_ZF, Tryptophan, T_box, RHR, and bSHS), converted them to 
TRANSFAC format, then submitted these PWMs to STAMP online tool. These six DBD 
families include small (~ 3–4 clusters e.g., RHR, bSHS, T_box), average (~ 11–12 clusters 
e.g., HMG, Tryptophan), and large (~ 20–25 clusters e.g., C2H2_ZF) size of DBDs. For 
STAMP, a column comparison metric Pearson Correlation Coefficient, un-gapped Smith 
Waterman alignment method, and UPGMA were chosen for Tree building algorithm. 
Tree results were visualized by MEGAX [37] and kept to have similar number of clusters 
between STAMP and abc4pwm. For abc4pwm, default parameters were used in cluster-
ing of PWMs. A comparison of clustering results between the two methods was assessed 
by manual assessment. For small DBD family, three good PWM clusters were produced 
by both tools in RHR; six and five good clusters were predicted by abc4pwm and STAMP 
in T-box, respectively; four good clusters were obtained by both tools in bSHS family. 
For average sized DBDs, 11 clusters were obtained by both tools in HMG, where 10 and 

Fig. 6  Comparison clustering quality of PWMs between with and no DBD information. Here, green color 
represents good homogeneous clusters, yellow means average quality clusters, red are bad quality ones 
(clusters without similar PWMs). Left panel shows clustering results of TF PWMs by classifying them to DBD 
family before clustering (with-DBD), while right panel shows clustering results for the same set of PWMs by 
clustering them directly without consider DBD information (no-DBD)
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9 of them were of good quality from abc4pwm and STAMP, respectively; 12 and 10 clus-
ters were obtained from both tools in Tryptophan, where 12 and 7 good clusters from 
abc4pwm and STAMP, respectively. For large sized DBD, 24 and 18 clusters were pro-
duced in C2H2_ZF by the two tools, respectively, where 12 and 6 were good clusters but 
5 and 9 bad ones. More information of this comparison is illustrated in Table 1. These 
results indicate that both tools can produce PWM clusters with good quality for small 
sized DBDs, but abc4pwm provide better clusters than STAMP for average and large 
sized DBDs. Thus, abc4pwm is a robust tool for clustering large number of PWMs.

Application of abc4pwm in predicting yeast cell cycle transcription factors by using gene 

expression profiles

The cell cycle is regulated by complex transcriptional programs in cells which is peri-
odically self-regulated through an intricate interplay between trans-acting elements 
and their respective regulated genes. The yeast cell cycle is known to be regulated by 
three types of transcription factors; MBF and SBF factors, Mcm1p-containing factors, 
and Swi5p/Ace2p. In total, there are nine TFs known to regulate the yeast cell cycle: 
Ace2,FKH1, FKH2, MBP1, MCM1, NDD, SWI4, SWI5, SWI6 [38]. Spellman et.al. iden-
tified a comprehensive list of ~ 800 genes that are periodically regulated in the yeast cell 
cycle by the aforementioned set of transcription factors [28]. Here, BayesPI2 [13, 23] was 
used to predict protein binding energy matrices (PBEMs) enriched in the upstream reg-
ulatory region of genes, by using microarray experiments of the putative 800 yeast cell 
cycle regulated genes from the Spellman study [28]. Then, abc4pwm was used to com-
pare the predicted PBEMs against the known PWMs of the desired yeast TFs.

Alpha pheromone arrest was used in the aforementioned study to arrest cell cycle at 
different stages [27]. Three time points (alpha 7, alpha 42 and alpha 49) that correspond 
to M/G1 and S/G2 of the yeast cell cycle were used in this study. Unlike higher eukary-
otes where regulatory sequences for transcription are located anywhere in the noncod-
ing genome, in case of yeast they are located upstream of transcription start site [39]. 
In light of aforementioned information and the previously published study [24] 800 bp 
upstream of the genes was chosen to search for TF binding motifs and their energy 
matrices. From which, multiple PBEMs were predicted by BayesPI2 for motif length 
ranging between 6 and 14 bps on both reverse and forward strands. Subsequently, all the 
predicted PBEMs, for each time point, were searched against the database of PWMs of 

Table 1  A comparison of PWM clusters between abc4pwm and STAMP

Here, results of a manual comparison of clustering quality between abc4pwm and STAMP are provided. Good = more than 
90% of the PWMs in a cluster are identical, Mix = 70% of the PWMs in a cluster are similar, and Bad = less than 30% of the 
PWMs in a cluster are similar. Total number of clusters in each DBD family are shown in the parenthesis

DBD family PWMs in DBD Abc4pwm STAMP

RHR 20 All good (3) All good (3)

bHSH 27 All good (4) 1 mix 3 good (4)

T_box 32 All good (6) All good (5)

Tryptophan 95 All good (12) 2 bad 1 mix 7 good (10)

HMG 101 10 good 1 mix (11) 2 bad, 9 good (11)

C2H2_ZF 161 5 bad 7 mix 12 good (24) 9 bad 3 mix 6 good (18)
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nine yeast TFs by using abc4pwm. For the time point alpha7, almost all nine TFs (SWI4, 
SWI5, MCM1, NDD1, ACE2, MBP1, FKH1) have their binding sites predicted as shown 
in Additional file  1: Table  S1. It fits with previous observation in ChIP-chip [38] that 
M/G1 cell cycle phase has binding preference for almost nine yeast cell cycle related 
TFs [38]. Results, were presented in Additional file  1 of Figure S2A. Alpha 42 and 49 
were the timepoints adjacent to each other (S/G2 phase) which means the set of tran-
scription factors with active binding sites during these two time points must be over-
lapping. Abc4pwm predicted binding sites for SWI4, NDD1, MBP1and MCM1for alpha 
42 (Additional file 1: Table S2). For alpha49, NDD1 and ACE2 binding sites were found 
highly enriched (Additional file 1: Figure S2B, Table S3). Alpha7 depicts arrest in M/G1 
phase, while Alpha42 and 49 depict arrest in S/G2 phase. M and G1 phase of yeast cell 
cycle involved most of the TFs (Ace2, FKH1, FKH2, MBP1, MCM1, SWI4, SWI5, SWI6) 
with different intensities. Using abc4pwm, we were able to report PBEMs for 7 out of 8 
of these TFs correctly. On the other hand, S/G2 phase requires involvement of FKH1, 
FKH2, NDD1, MCM1, and SWI4. The abc4pwm recovered 3 out of 5 of TFs with accu-
racy. However, it has been reported that Fkh1/Fkh2 are required to recruit NDD1 in G2 
phase. Absence of Fkh1/Fkh2 from prediction by abc4pwm might be due to intermedi-
ate roles of these TFs at this stage of cell cycle. Logo plots and similarity score predicted 
by abc4pwm for these PWMs are shown in Additional file 1 (Tables S1, S2, and S3) and 
demo for yeast cell cycle in abc4pwm package.

Application of abc4pwm in motif prediction for ESR1 ChIP‑Seq data

To explore the application of abc4pwm package in motif prediction, we evaluated its 
ability in finding true TF targets for motifs predicted from ChIP-Seq experiment. The 
estrogen receptor alpha (ESR1) is an important transcriptional regulator, known to 
mediate the effects of estrogen mainly by binding to the conserved motifs of the targeted 
genes in their promoter regions [30]. We extracted the reads count (called peak abun-
dance) and the related sequences from ESR1ChIP-seq experiment in human MCF7 cells, 
which were used as input data for BayesPI2. It predicted three highly enriched motifs or 
PBEMs of 20 bp. Then, abc4pwm search module was used to compare these predicted 
PBEMs against ~ 1,770 collected human TF PWMs. Among top ranked TFs, one of the 
enriched motifs from ChIP-seq data was similar to 3 known-ESR1 PWMs (e.g., with 
similarity score ranging between 0.89 and 0.86; Fig. 7A). It suggests that abc4pwm is a 
useful tool to identify true target TFs for de novo motifs predicted from in vivo ChIP-seq 
experiments.

Application of abc4pwm in TP53 binding motif prediction in RNA‑seq dataset

Here, abc4pwm package was further evaluated to identify de novo motifs in RNA-seq 
datasets. RNA-seq is widely used to identify differentially expressed genes (DEGs) in 
transcriptome, DEGs enrichment in biological pathways and in molecular functions. 
To identify the conserved motifs or motifs enrichments among the DEGs is crucial 
for further understanding the transcription networks and it has great potential to 
find the key regulators in disease conditions or after drug/therapy treatments. Cur-
rently, only few packages were available to search motifs from RNA-seq dataset, such 
as HOMER [40]. Here we used BayesPI2 to predict novo motifs from DEGs based on 
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promoter sequence and transcription in fold change level, and further used abc4pwm 
to search for true TF targets of these motifs (e.g., similarity search against known 
motifs). A previously published RNA-seq dataset from HCT116 p53 +/+ cells after 
inducing TP53 expression with Nutlin treatment [29] was used in this work. TP53 is a 
crucial transcription factor, binding to at least 542 binding loci via a conserved motif. 
It plays key role in p53-dependent tumorigenesis in primary cancer [41]. The con-
sensus binding site of the TP53 motif consists of two copies of the 10 base pair motif 
5′-PuPuPuC(A/T)(T/A)GPyPyPy-3′ separated by variable base pairs [42].

In the RNA-seq dataset, there were ~ 2,093 up-regulated genes induced by drug 
treatment compared to non-treatment. A main proportion of these genes were TP53 
targets in transcriptional regulation. First, the promoter region 1,000 bp upstream of 
TSS of each DEG were retrieved using RSAT tool. The novo motifs inside the pro-
moter region were identified by BayesPI2. By searching for a collection of ~ 1770 
human TF PWMs in abc4pwm, a set of top ranked the novo motifs (e.g., Fig.  7B, 
9–12 bp length, similarity scores 0.80–0.85) were found to be similar with four known 
TP53 motifs as well as the consensus binding site in literature [41]. For example, the 
novo motif L10_1 was found similar to two known TP53 motifs in the top 8 ranked 
motifs, which was also similar to motifs of IRX2, Meis2-3 and EBOX1. These results 
showed that TP53 motif was successfully recovered from DEGs in RNA-seq dataset, 
supporting that the TP53 binding to its conserved motifs was the driving force in the 
regulatory network after Nutlin treatment. Thus, by using both motif prediction tool 
and abc4pwm package, we were able to discover putative target TFs that regulate 
gene expressions in microarray or RNA-seq experiments, as well as to identify poten-
tial target genes of TF through in vivo protein-DNA interaction measurements such 
as ChIP-seq.

Fig. 7  Application of abc4pwm in TF binding motif prediction by using either ChIP-seq data or gene 
expression profiles. A Application of abc4pwm in ESR1 CHIP-seq data in MCF7 cells, where the predicted 
novo motif L20_1 is similar to known-ESR1-1,2,3 motifs (similarity score = 0.89) based on motif search module 
of abc4pwm. B Application of abc4pwm in RNA-seq data of TP-53 knockout experiment, the top enriched 
novo motif L10_1 in promoters of differentially expressed genes is similar to known-TP53 motifs TP53_6 and 
TP53_7 (similarity score = 0.85). The left panel is the motif logo of TFs, the right panel shows the output of 
motif similar scores from abc4pwm searching module
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Ensemble learning of PWM clustering in synthetic and real ChIP‑Seq data

ChIP-chip and ChIP-seq are widely used for in  vivo protein-DNA interaction studies. 
One of the essential tasks is to identify TF binding sites in the regulatory regions. A new 
ensemble learning approach for PWM clustering [23] was applied on yeast SWI4 ChIP-
chip synthetic dataset. The predicted PWMs were then clustered, quality evaluated, and 
searched against ~ 233 known yeast PWMs from SGD database. As expected, the top 
matched yeast TF is SWI4 in this test (i.e., similarity score > 0.80). Results and demo 
script file for this analysis is included in abc4pwm package. Subsequently, the same pro-
cedure was applied on ESR1 ChIP-seq data in MCF7 cell lines [43], where 10 times ran-
domly selected (e.g., ~ 8%) called peaks (~ 16,500) were used to predict enriched PWMs 
(motif length from 16 to 22 bp). All predicted PWMs were clustered into 33 clusters, 
and 4 of them passed clustering quality assessment in abc4pwm. Then, representative 
motifs of these good quality clusters were generated and searched against known human 
PWMs (i.e., a collection of ~ 1770 human TF PWMs). The top 2 matched human TFs 
were reported for each cluster (e.g., similarity score > 0.80), and representative motifs 
match to two human ESR1/ESRRA PWMs are shown in Fig. 8. Results and scripts of this 
analysis are also included in abc4pwm package. Thus, the ensemble learning approach in 
abc4pwm not only improves the computational efficiency for large input data (> 10,000 
called peaks), but also predicts the correct TF for in  vivo ChIP-seq experiment by 
searching for a large number of known human PWMs. More details of the ensemble 
learning for DNA motif analysis is available in the demo of abc4pwm package.

Conclusions
Abc4pwm is a command line Python software package for TF analysis, which can cluster 
large sets of PWMs like other published tools [17, 44]. However, the better clustering 
results and the novel clustering features in the package, such as the automatic quality 

Fig. 8  Applying an ensemble learning approach to predict TF binding motifs from ESR1 ChIP-seq data. 
First, input data is randomly selected multiple times from all called peaks from ESR1 ChIP-seq experiment 
in MCF7 cell line for predicting enriched motif, by using bayesPI2. Then, all predicted PWMs from multiple 
selections are clustered and quality evaluated by abc4pwm (e.g., three clusters indicated by brown color). 
Representative motifs or PWMs of good quality clusters are generated, and are used to search against known 
PWMs of human TFs (~ 1770 PWMs) by using searching module of abc4pwm (gray colored box). The top two 
matched search results (ESR1_M00959 and ESR1_M00191) are displayed along with their similarity scores, 
where the motif images are cropped to highlight matched areas
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assessment for clustered PWMs and the ensemble learning approach for motif enrich-
ment prediction, make abc4pwm an unique tool for DNA sequence analysis. In this 
work, biological applications of abc4pwm were illustrated in both synthetic and real 
experimental datasets. For example, abc4pwm successfully clustered ~ 1,770 human TFs 
to ~ 271 clusters by considering DBD information, predicted correct PWMs for yeast 
cell cycle TFs and human TP53 TF from gene expression profiles, and identified true TF 
binding sites from ER-alpha ChIP-seq experiment in MCF7 cells. All of aforementioned 
demos were included in the package, which can be a useful resource for biologists to 
perform DNA sequence analysis (e.g., in gene expression profile, ChIP-chip or ChIP-seq 
data) for understanding complex gene regulatory networks. For instance, the searching 
module of abc4pwm can associate the newly discovered TFBS with known TFs. Both the 
classification of PWMs to DBD family and the clustering of PWMs modules help gener-
ate familial binding profiles for PWMs in the same cluster, which significantly reduces 
the computational and interpretation time of further data analysis. In addition, abc4pwm 
includes a novel method for automatic PWM clustering quality assessment, which sim-
plifies the cluster quality evaluation and expedites the further biological interpretation 
of data. Abc4pwm is easy to be installed and utilized by any user with basic knowledge 
of computers. Package is tested and operational for variety of platforms i.e. Mac OS and 
Linux system. The tool was implemented in parallel computations to optimize most of 
calculations and is scalable for large input data. Hence, it is suitable for small scale com-
putations on personal computers as well as for large scale computations on high perfor-
mance computing systems. In conclusion, abc4pwm is not only useful for clustering of 
PWMs, but also for the association of unknown PWMs to known regulatory elements 
in the genome. It can help researchers in DNA sequence analysis for exploring various 
regulatory elements in the genome.

Availability and requirements
Abc4pwm is available under the MIT license from: https://​github.​com/​abc4p​wm/​abc4p​
wm. A README file is included for comprehensive description of its features. The data-
sets used and/or analyzed during the current study are available from the corresponding 
references.

•	 Project name: abc4pwm
•	 Project home page: https://​omer0​191.​github.​io/​abc4p​wm/
•	 Operating system(s): Mac or Linux
•	 Programming language: Python
•	 License: MIT License
•	 Any restrictions to use by non-academics: None
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Additional file 1: Supplementary methods and figures. The file contains supplementary methods, figures and tables 
related to the main text.

Additional file 2: Manual versus automatic clustering quality evaluation. The file contains results of comparison 
between manual and automatic clusters quality evaluation in each DBD family.

Additional file 3: Manual evaluation of cluster quality for clustering within each DBD family. The file contains results 
for details of manual evaluation of clustering quality in each DBD family.

Additional file 4: Manual evaluation of cluster quality for clustering 1772 PWMs. The file contains results for manual 
evaluation of clustering quality for 1772 PWMs without DBD information.
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