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Abstract: Deaths caused by respiratory and cardiovascular diseases have increased by 10%. Every
year, exposure to high levels of air pollution is the cause of 7 million premature deaths and the loss
of healthy years of life. Air pollution is generally caused by the presence of CO, NO2, NH3, SO2,
particulate matter PM10 and PM2.5, mainly emitted by economic activities in large metropolitan
areas. The problem increases considerably in the absence of national regulations and the design,
installation, and maintenance of an expensive air quality monitoring network. A smart multi-sensor
system to monitor air quality is proposed in this work. The system uses an unmanned aerial vehicle
and LoRa communication as an alternative for remote and in-situ atmospheric measurements. The
instrumentation was integrated modularly as a node sensor to measure the concentration of carbon
monoxide (CO), nitrogen dioxide (NO2), ammonia (NH3), sulfur dioxide (SO2), and suspended
particulate mass PM10 and PM2.5. The optimal design of the multi-sensor system has been developed
under the following constraints: A low weight, compact design, and low power consumption. The
integration of the multi-sensor device, UAV, and LoRa communications as a single system adds
aeeded flexibility to currently fixed monitoring stations.

Keywords: air quality; remote sensing; UAV; LoRa; smart sensors

1. Introduction

Deaths caused by respiratory and cardiovascular diseases have increased by 10%.
Every year, exposure to air pollution is estimated to cause 7 million premature deaths
resulting from problems ranging from respiratory infections to lung cancer, stroke and
chronic obstructive pulmonary disorder [1]. In 2018, the World Health Organization (WHO)
stated that 93% of the world’s children breathe polluted air every day. According to this
information, 1.8 billion children breathe air so polluted that their health and development
are in serious danger. In 2019, more than 90% of the global population lived in areas
where pollution concentrations exceeded the 2005 WHO air quality guideline for long-term
exposure to PM2.5 [2]. This increase in atmospherically active gases leads to soil and water
acidification and the reduction of the vision of the atmosphere [3,4]. Since 2020, air pollution
has been related to population mortality [5] and the rapid spread of COVID-19, focusing
on cities whose PM daily concentrations were higher during the months preceding the
pandemic than the annual average [6,7].

Mexico has specific areas with serious environmental problems. Torreón city, located
in Region Lagunera of Coahuila state, was ranked as the fourth highest of 248 of the
most contaminated regions around the world in terms of ammonia concentration [8].
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Ammonia is not usually considered in the different official standards due to its small
presence in natural conditions, being observed in high quantities in industrial regions
where substances or compounds related to this material are improperly handled and
during intensive agricultural and livestock activity, which promotes the release of greater
than average amounts of fertilizer use. Additionally, when combined with other acidic
contaminants such as sulfur dioxide (SO2) and nitrogen oxides (NOx), ammonia (NH3)
becomes ammonium (NH4) +, which has a high diffusion range, extending several hundred
kilometers from its point of origin (between 100 and 1000 km) [9,10].

Previously, the measurement of air quality was carried out by non-continuous methods
known as “wet chemistry” for gases and high volumes for suspended particles using
complex and costly stationary equipment to “collect” data [11]. This paradigm is changing,
with advanced electronics and new low-cost and easy-to-use sensors being developed,
providing high-resolution and real-time data that can be “accessed” [12,13]. These attributes
offer opportunities to improve a range of existing air pollution monitoring capabilities
and provide avenues for new applications. The integration of emerging technologies, such
as unmanned aerial vehicles (UAV), wireless sensors networks (WSN), the internet of
things (IoT), and advances in computing and communications (TIC’s), achieves availability
and accessibility of data in real-time, as well as expanding the sampling areas [14,15] and
generating instant alerts when the peak values are exceeded [16].

Several solutions have been proposed for air quality monitoring and measuring
environmental parameters in this sense. Some developed systems exploit wireless commu-
nication for the development of WSN. For example, Kasar et al. [17] presented a low-cost
WSN-based Air Pollution System using the ZigBee protocol and an Arduino to monitor CO2
and NO2. However, the range for these modules does not exceed one hundred meters, and
the battery consumption is high. In contrast, Lee and Ke [16] and Yousuf et al. [18] imple-
mented a LoRa WAN network to collect data from IoT sensors for a large geographical area.
The results proved the communications between nodes, but these did not acquire data from
the sensors. An improved proposal was made by Candia et al. [19], who present a monitor-
ing system of air quality based on the LoRaWAN network with low-cost sensors to measure
PM10 and PM2.5, and Raju. et al. [20] provides an overview of LoRa in analyzing the air pol-
lutants data from different sensors (CO2, NO, CO, temperature, and humidity) connected
to a PC to store and analyze the real-time data for further use. Liu et al. [21] researched
monitoring with three low-cost sensors for PM2.5 particulate matter, obtaining results very
close to those detected by the environmental monitoring system. Samad et al. [22] highlight
that low-cost sensors can be reliable for air monitoring systems, as long as calibration tests
are carried out, considering the influence of environmental variables such as temperature
and humidity. Badura et al. [23] evaluated three small, low-cost optical sensors that could
be used to improve the spatial and temporal resolution of PM data.

Drones, or unmanned aerial vehicles (UAVs), have become technologies employed to
collect data in a given outdoor environment. In this sense, Zulkifli et al. presented a simple
monitoring system based on the Internet of Things (IoT). A MQ 135 sensor was mounted
on a drone to transmit dates to a smartphone, using the Blynk application, air quality
level was measured in ppm [24]. Wivou et al. proposed a system to collect data through
sensors mounted in a drone. The control system was based on an Arduino to acquire three
MQ-type sensors to monitor CH4, CO, and CO2 [25]. Trasviña-Moreno et al. [26] proposed
a WSN using a UAV as a mobile data collector for monitoring marine environments. The
sensor node was based on temperature, humidity and pressure sensors, anemometers, and
an insulated temperature sensor for water measurements. The control was based on the
Beagle Bone Blac (BBB) board AM335x and the WSN was implemented with the LoRa NET.
Madokoro et al. [27] developed a unified sensor and communication system for in situ
atmospheric measurements. The sensor system is mounted on a drone to measure PM2.5
and LoRaWAN was used for the wireless communications. A single-board computer SBC
Raspberry for the control and a mobile battery was used.
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Although the previous developments have presented significant advances in the
monitoring of air pollutants, it is difficult to generate a broad overview of environmental
conditions and health risks, if not fully involve the main air pollutants or ecological
parameters in the same sampling or monitoring system. Nowadays, drones have been
used to offer greater mobility to the measurement systems, these being limited by their
payload. As described above, the selection of development platforms for control (Arduino,
Raspberry, BBB, etc.), and some sensors increased the weight and dimensions of the system,
e.g., more than 1 kg. Expensive high-end UAVs offer this payload capacity. In addition,
the validation of a system, its characteristics and accuracy were not compared with fixed
stations or international systems to have reliability in the measured data.

In the present work, we presented the development and implementation of a smart
multi-sensor system for remote monitoring air quality. The proposed system consists of a
sensor node based on microdevices with the capacity to measure in-situ the concentrations
of carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), ammonia (NH3),
and suspended particles PM10 and PM2.5, as well as environmental parameters such
temperature, humidity, and pressure. Due to its miniaturization and low cost, the system
could be operated as a fixed or mobile station for remote sensing applications using LoRa
WAN protocol and an Unmanned Aerial Vehicle (UAV), which collects data in real-time.
The device was probed by measurements carried out in three principal metropolitan areas
and agriculture and livestock zones in Mexico. The results were compared with the official
data and international databases.

2. International Standards and Monitoring Networks by Environmental Protection

In order to measure air quality and environmental conditions, international standards,
measurement methodology [11] and prevention parameters have been implemented to
reduce the risk of the population and improve the environment.

The National Ambient Air Quality Standards (NAAQS) were established to protect
public health in the United States. This standard specifies the concentration levels allowed,
over a set period of time, for carbon monoxide (CO), lead (Pb), nitrogen dioxide (NO2),
sulfur dioxide (SO2), ozone (O3), particulate lead, and suspended particulate mass (PM10,
PM2.5) [11].

The Mexican Standard Metropolitan Air Quality Index (IMECA, for its acronym in
Spanish) was created in 1982 and it was initially based on the NAAQS. Due to the growing
problem of air pollution in Mexico City, the IMECA decided to relax the limits of health
risk and now it has more permissible threshold values than NAAQS because according to
NAAQS, Mexico City would always be in an environmental contingency. One aspect to
consider is that IMECA indicated only the value of the pollutant that presents the greatest
risk at this moment, with it being possible that other pollutants’ concentrations can also be
found at dangerous levels without being reflected in the final value [11].

The Air Quality Index (AQI) is also used to indicate how pure the air is or how much
pollution is in the air and the health effects on the population.

Each country provides it is own AQI. The AQI is managed by the Environmental
Protection Agency (EPA) in the USA and looks for five major air pollutants: particle
pollution, ground-level ozone, carbon monoxide, nitrogen dioxide, and sulfur dioxide.
Table 1 shows the numeric values from the AQI.

To obtain the AQI values, the EPA collects data from monitoring stations and calculates
them according to [29] to provide simple information about the local air quality.

With increasing public demands for timely and accurate air pollution reporting, more
air quality monitoring stations have been deployed by governments and society in urban
metropolises to increase the coverage of urban air pollution monitoring.
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Table 1. Air quality index basics [28].

Index Color Level of Health Concern Numeric Value Meaning

Green Good 0–50 Air quality is satisfactory, and air pollution
poses little or no risk.

Yellow Moderate 51–100
Air quality is acceptable. However, there

may be a risk for some people, particularly
those unusually sensitive to air pollution.

Orange Unhealthy for
sensitive groups 100–150

Members of sensitive groups may experience
health effects. The general public is less

likely to be affected.

Red Unhealthy 151–200

Some members of the general public may
experience health effects; members of
sensitive groups may experience more

serious health effects.

Purple Very unhealthy 201–300 Health Alert: The risk of health effects is
increased for everyone.

Maroon Hazardous 301–500 Health Warning of emergency conditions:
Everyone is more likely to be affected.

In this sense, international air quality monitoring systems have been developed to
inform the population about air quality. Plumelabs integrates a portable system called
Flow, which uses a particle counter to measure the concentrations of particulate material
through light scattering and a metal oxide sensor to measure the concentrations of gases.
The equipment measures particulate matter (PM1, PM2.5, and PM10), volatile organic
compounds and nitrogen dioxide. The information is displayed on an interactive map
called Plume Air Report and a mobile application with indicators representing the AQI
scale. Another platform for measuring the air quality monitoring is The Weather Channel
which, in an alliance with the IBM Cloud Service and the use of artificial intelligence,
data, and cloud computing [30], forecasts air quality. Its web page is weather.com and
it displays the environmental conditions, air quality, and the AQI scale. National Air
Quality Information System (SINAICA, for its acronym in Spanish) collects, transmits,
and publishes information about air quality in Mexico. It is generated on the monitoring
systems of air quality (SMCA for its acronym in Spanish) spread all over the country. A total
of 36 SMCA with 242 monitoring/samples systems across the country have been operating
according to NOM156 [31]. SINAICA presents a problem due to the constant interruptions
in the service, which generates unreliable data in its reports.

Between the pollution measurements at the regional level and the national measure-
ments, the uncertainty in the estimation of emissions is too high, leading to the conclusion
that measurement campaigns should be carried out in the field [32]. In addition, although
monitoring stations are installed in Mexico, the absence of national regulations for the
design and installation of air quality monitoring networks means that air quality monitor-
ing networks have different operational criteria and have strong limitations in terms of
the availability of financial, human, and material resources. For this reason, the design of
new networks to measure air quality, as well as the redesign of current networks and the
expansion of their coverage, are necessary to improve their operation, by homogenizing
the criteria of their establishment, process, and maintenance [33] as well as mobility.

3. Proposed System
3.1. System Architecture

The smart multi-sensor system architecture is shown in Figure 1, to determine the
influence of pollutant emissions on air quality. The system comprises three elements: a
smart multi-sensor (sensor node), the LoRa wireless communication module (gateway)
and the visualization and processing data (base station). The sensor node is mounted on

weather.com
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a UAV for collecting data across a large geographical area as a remote fixed station or
mobile station.
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Figure 1. The architecture of smart multi-sensor systems.

The multi-sensor node integrates a microcontroller and a LoRa communication module
RA01. It is configured as an end-device. The gateway uses the same LoRa communication
module RA01. The end devices send the information to the gateways in a process known as
uplinks. These send the information to the network servers and thus to its endpoint, which
is an application itself. Similarly, network servers can send messages through gateways to
end nodes in a process called downlinking. This generates two-way communication. The
method of uplinking is shown in Figure 2.
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To better explain the full functionality of this proposed device, this section has been
divided into the following subsections, covering the features of the multi-sensor node, the
LoRa wireless communications and the description of the UAV, including the design and
manufacturing of the prototype support for mounting the sensor on the drone. Moreover,
the methodology and some gas considerations are also covered.

3.2. Smart Multi-Sensor Node

The smart multi-sensor node was developed to measure and monitor the most im-
portant pollutant gases concentration. The proposed system was integrated modularly to
develop the four following measures: (a) meteorological parameters, (b) pollutants gases,
(c) SO2, and (d) particulate material.
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A BME280 sensor (Bosh Sensortec GmbH, Reutlingen, Germany) was integrated
to measure temperature, relative humidity, altitude, and atmospheric pressure, with a
resolution of 0.01. It is the importance of measure these variables because they affect the
measurement and are a reference for the calibration of the sensor device [22].

In this same module, Grove-Multichannel Gas Sensor MICS-6814 (SGX Sensortech,
Nürnberg, Germany) is a robust MEMS sensor with the ability to detect carbon monoxide
(CO) range of 1–1000 ppm with a sensitivity factor of 1.5, nitrogen dioxide (NO2) range
of 0.05–10 ppm with a sensitivity factor of 2, ammonia (NH3) range of 1–500 ppm with a
sensitivity factor of 1.5. For polluting gas monitoring the sensor has a sensitivity factor
between 1.2 and 2. Other gases such as hydrogen (H2), methane (CH4), propane, ethanol
and iso-butane could also be measured. The gas sensor was configured according to [34].
Its structure consists of an accurately micro machin ed diaphragm with an embedded
heating resistor and the sensing layer on top. The gas sensor includes three sensor chips
with independent heaters and sensitive layers. One sensor chip detects oxidizing gases
(OX), the other sensor detects reducing gases (RED), and the other detects NH3.

In addition, the ULPSM-SO2 sensor (SPEC Sensors, Newark, CA, USA) was integrated
to detect sulfur dioxide (SO2) in a range of 0–20 ppm with a resolution of 1.5 µm and
reading accuracy of ±2%.

After the monitoring of pollutants, the multi-sensor system measures particulate
matter, integrating a digital particle sensor module based on the PMS7003 device (Plantower,
CHN) for the measurement of 10 and 2.5 micron particles sizes, in a range of 0–500 µg/m3,
signal response of less than 1 s with resolution of 1–2.5 µm and 2.5–10 µm. The particle
counting efficiency is 98%.

For air quality measurement according to the methodology proposed here, the acqui-
sition of signals begins by calibrating the sensors by “heating” for 30 min the first time of
operation and 5 min for subsequent operations.

Five parameters are important for a gas sensor based on the change of its resistance:
response, response time, recovery time, selectivity, and working temperature. The response
to reductive gas is defined as [35]:

S = Ra/Rg (1)

or [36]:
S =

(
Ra − Rg

)
/Rg (2)

where Ra and Rg are the resistances of the device in air and the target gas atmosphere,
respectively. Generally, the response time (Tres) and recovery time (Trec) is defined as
time spent by a sensor to achieve 90% of the total resistance change during the adsorption
and desorption process respectively. An optimal gas sensor should meet the requirements
of large sensing response, low working temperature, and high selectivity to the target
analytes [37]. The characterization of the multi-sensor system for each gas was carried out
in preliminary work [38].

To control the microdevices and data processing the Teensy 4.0 development board
(SparkFun Electronics, Niwot, CO, USA) was used, which integrates an ARM Cortex-
M7 processor at 600 MHz, with an NXP iMXRT1062 chip and 12 A/D converter. Figure 1
emphasizes the exchange of data between the control and the sensors as well as the multiple
operation and communication interfaces (Analogic, I2C, Serial, SDIO, SPI, and WIFI). The
control system restricts the communication distance to a maximum of 122 m of height and
a maximum of 457 m in the horizontal direction, according to NOM-107-SCT3-2019. The
multi-sensor node was configured as an end-device integrating a LoRa communication
module RA01 (Semtech Co., Camarillo, CA, USA).

For the supply and operation of the system, a 7.4 V LiPo battery, 300 mA hr (Turnigy,
Kwun Tong), adjustable voltage regulator, 3.3 V regulator, and a pair of indicator LEDs was
integrated into the smart multi-sensor node.

The multi-sensor system implemented is shown in Figure 3. The distribution of
components allows an easy operation of the system and maximum compaction to not
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interfere with the development of the flight. For its implementation, low-consumption,
long-range, surface-mount devices were selected and modules for its connectivity, obtaining
a total weight of 82 g. Due to its modular design, components can be removed and easily
replaced in failure.
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3.3. LoRa Wireless Communication

LoRa is an RF modulation technology for low-power, wide-area networks (LPWANs).
This technology enables the extremely long-range data links’ communications: up to 5 km
in urban areas, and up to 15 km or more in rural areas (line of sight). The LoRa RA01-SX1278
operates on the ISM band of 433 MHz, has an idle current consumption of 1.6 mA and a
current working consumption of 4.5 mA with an operating voltage of 3.3 V [39–41]. LoRa
can be used in applications that require long-range or deep in-building communication
among many devices with low power requirements and that collect small amounts of data.
LoRa is typically used in IoT. An ESP32 board (Esspresif Systems Co., Shanghai, China)
was used for the communication control. It integrates a Tensilica Xtensa LX6 dual-core
microprocessor, and a resolution of 12 bits as an SoC technology. It is used for mobile
applications and the internet of things. The ESP32 provides connectivity to link to a network
service (WiFi, Bluetooth, and BLE (Bluetooth Low Energy)) and SPI protocol.

3.4. System Transportation
3.4.1. Unmanned Aerial Vehicle

A Mavic Air 2 unmanned aerial vehicle (UAV) was used to provide mobility to the
proposed system. The UAV is equipped with a three-axis stabilization system, a global
navigation satellite system with GPS + GLONASS, a maximum transmission distance
of 10 km on the 2.4 and 5 GHz band, 34 min of maximum flight time, and a weight of
570 g. The system includes three modes of flight control: Normal, Sport, and Tripod. The
Advanced Pilot Assistance Systems 3.0 (APAS 3.0) is enabled when using the Normal Mode
and helps avoid obstacles easier. It includes a smart return to home (RTH) function which
brings the aircraft back to a previously established Home Point. The UAV is equipped with
an Infrared Sensing System, which consists of two 3D infrared modules and a Forward,
Backward, and Downward Vision System that consists of two cameras and provides the
UAV with a detection range of 0.35–22 m for the Forward Vision System, 0.37–23.6 m for
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the Backward Vision System and an altitude of 0.5 to 30 for the Downward Vision System.
Although these UAV are not designed to carry weight, the Mavic Air 2 can an additional
830 g of payload. This feature gives us greater freedom when designing the multi-sensor
system in terms of weight.

3.4.2. Support Structure

The multi-sensor system was modularly integrated, and it was necessary to manu-
facture a support structure to mount it on the drone. This structure was designed using
SOLIDWORKS® software. The design is shown in Figure 4, and has two parts: a support
base to keep the electronic instrumentation and a supported lock with the function of
closing the base door support to protect the sensor node. This structure was manufactured
using the 3D printer Prusa i3 mk2.5s (Prusa3d, CR) using ABS filament, which is more
resistant than the commonly used PLA filament.
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Figure 4. Design of the support box for the multi-sensor system. (a) Support base, (b) Assembly with
support lock.

The multi-sensor system placed on the support structure was mounted on the drone
as shown in Figure 5. The final dimensions were 41 × 80 × 49 mm, adding a total weight
of 0.92 g to the drone so it did not generate instability in the flight.
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3.5. Methodology

Before operating the sensing device, it must be ensured that the backup storage unit is
installed in the transmitting node and the battery is 100% charged in the device and UAV.



Sensors 2022, 22, 1706 9 of 29

The first time the device is operated, a calibration of the gas sensors should be performed,
“heating” for 30 min in relatively clean ambient conditions. After this start step, each
time the sensor is used, pre-heating must be carried out on the gas sensors, “heating”
for 5 min before taking the measurement. Once this time has elapsed, the sensor node
(end device) is ready to start the measurement by pressing the power button. At this
time, the Gateway device connects to a network, opening a channel for data reception.
During this waiting time, the device is placed on the drone Mavic Air 2 (DJI, Pekin, China),
using the adapter support structure and the scanning of measurements at different heights
begins. An algorithm for data acquisition, processing, storage, and transmission was
implemented, which generates a 14-bit vector, according to the order of four following
measures: (a) meteorological conditions, (b) pollutants gases, (c) SO2, and (d) particulate
material. All data obtained are stored in the micro SD memory and sent to the Gateway
in data packets separated by an identifier character. The data received are displayed in
an API provided by Matlab (MathWorks Inc., Natick, MA, USA) called ThingSpeak for
visualization in real time. They are exported in .CSV files and can be linked to an email
to communicate values oriented to applications in IoT. This process lasts approximately
6 s, which is repeated until the system is turned off. The data were obtained from the API
of ThingSpeak.

3.6. Gas Considerations

In order to measure these air pollutants, one must know the emission sources as well
as their behavior.

SO2 pollution was worsened by increased emissions caused by rapid urbanization and
industrialization. The dispersion of SO2 concentrations was influenced by the meteorologi-
cal parameters of wind speed and direction, temperature, and relative humidity. Multiple
regression models showed that SO2 concentrations increased with the decrease of wind
speed and temperature, and with the increase of relative humidity [42]. NOX is a group of
gases formed by nitrogen and oxygen (NO2, NO, etc.) emitted from the burning of fossil
fuels in road vehicles and power generation plants. NOX participates in ozone formation
through photochemical reactions, and their half-life varies from a few hours on sunny days
to several days in humid periods. Both NO2 and SO2 react with water in the atmosphere to
form nitrates and sulfates, components of acid rain [43]. The increase of gaseous ammonia
(NH3) concentration in the atmosphere significantly impacts the regional air quality, human
health, and the nitrogen cycle of ecosystems. This shows a significant increasing trend at a
rate of densely populated, intensive agricultural activities. NH3 concentrations show their
highest values in summer and lowest in autumn. Such seasonal variation is mainly affected
by seasonal differences in NH3 emissions and meteorological conditions. Control measures
show that they can reduce SO2 and NO2 pollution but have not yet mitigated atmospheric
NH3 pollution [44]. There is also little effect on the PM2.5 concentration due to ammonia
emissions variability in the summer when gas-phase changes are favored, but variability in
wintertime emissions, as well as in early spring and late fall, will have a larger impact on
PM2.5 formation [45].

On the other hand, the variations of mass concentrations of PM2.5, PM10, SO2, NO2,
CO, and O3 were analyzed based on data from 286 monitoring sites obtained for one year.
By comparing the pollutant concentrations over this length of time, the characteristics of
variations of the mass concentrations of air pollutants were determined using the Pearson
correlation coefficient, which establishes that a relationship between PM2.5, PM10, and the
gas pollutants exists [46–48]. A lot of studies have provided transferable models to estimate
the health effects of air pollutants to support the creation of environmental health public
policies for national and international intervention [49].

In this sense, environmental variables such as temperature, humidity, wind speed,
direction, and the weather and seasons affect the concentration of air pollutants.
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4. Location Measurement Site Selection

A very important factor in establishing effective air quality monitoring programs is
to assign the optimal location for monitoring stations based on five criteria (population,
wind direction, spatial proximity to roads, industries, and high traffic areas) that are
considered the most important criteria [50]. Three important metropolitan regions of
Mexico were selected to monitor according to their pollution indexes: Region Lagunera
Coahuila-Durango, metropolitan area of Monterrey, N.L and the metropolitan area of
Guadalajara, Jal. The monitoring sites are shown in Figure 6.
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Torreon is a Mexican city belonging to the state of Coahuila, and is the 10th largest
city in Mexico with an average altitude of 1120 m.a.s.l. Torreon is subject to occasional
harsh climatic conditions such as low temperatures, strong winds and drought in a season-
dependent manner. Annual average temperatures are typically 2 ◦C to 5 ◦C for the winter
months of December and January, and 39 ◦C to 45 ◦C for June and August. The city has
a population of 731,902 residents [51]. Its main source of contamination is the PEÑOLES
metallurgical industry, the FERTIREY fertilizer industry, and the LALA dairy industry,
including livestock and forage agriculture. Torreon currently has only one air quality
monitoring station CONALEP, and is not in operation [52]. The location of the monitoring
site 25◦32′07′′ N 103◦26′06′′ W.

The Matamoros city in Region Lagunera of Coahuila has a population of 119,919 res-
idents [51]. The city has an average altitude of 1120 m.a.s.l. Its climate is hot, with rains
in summer and strong winds that reach 44 km per hour in spring produce dustbins. The
annual average temperature oscillates between 22 and 24 degrees Celsius in summer, with
records of up to 40 ◦C to 53 ◦C. Winters have been recorded with minimum temperatures of
−3 to −8 ◦C. The sources of contamination come from the brick industry, burning mesquite
charcoal, and livestock for milk production and forage agriculture [53]. The location of the
monitoring site is 103◦13′42′′ W 25◦31′41′′ N.

The Gómez Palacio city in the Region Lagunera of Durango has a population of
371,002 residents. Its climate is desert. The average annual temperature is 22.6◦. In a
year, the rainfall is 225 mm. Gomez Palacio, currently has two fixed monitoring stations;
El Campestre and La Esperanza [52], with intermittent operation. The main sources of
contamination are found in the manufacturing industry, thermoelectric and combined cycle
plants, extraction of construction materials, marble industry, and the livestock sector. The
location of the monitoring site is 25◦34′40” N 103◦29′54” W.

The other metropolitan area is because Monterrey, Nuevo León, currently considered
the second largest in Mexico. The city has a population of 5,341,171 residents [54]. The cli-
mate averages 23 ◦C annually, with light wind gusts. The temperature contrast throughout
the day can be very noticeable and this is due to the fact that the region is 500 m.a.s.l. This
metropolitan area has 14 fixed monitoring stations [52] that constantly warn about a large
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amount of suspended particles less than 10 µm present in the region [55]. The primary
sources of emissions are the oil sector, petrochemicals, the glass industry, cargo transport
(heavy and light), and automobiles [56]. The location of the monitoring site is 25◦40′00′′ N
100◦18′00′′ W.

The metropolitan area of Guadalajara, Jalisco, has a population of 5,268,642 resi-
dents [57]. The region is located above 1500 m.a.s.l. and its climate is mainly humid. This
metropolitan area has ten fixed monitoring stations [52]. The air pollutants constantly
reported are suspended particles less than 10 µm and Ozone (O3) [58]. Its main source of
pollution comes from agricultural and garbage burning, industrial emissions (food, cement
and chemical), livestock farms, vehicular traffic (where almost three vehicles per inhabitant
are reported), and brickyards [59]. The location of the monitoring site is 25◦40′00′′ N
100◦18′00′′ W.

5. Experimental Results
5.1. Experimental Set Up

The multi-sensor system was probed by tests carried out in different sites of Mexico.
The monitoring time was determined according to a set of heights, which were previously
programmed in the flight plan of the drone, and its battery time for a safe flight of approxi-
mately 25 min. Six navigation heights were set: home, 10 m, 30 m, 50 m, and 100 m. This
protocol was conditioned by weather conditions and flight restrictions in the measurement
areas. For the data acquisition, the setup of the system is carried out according to the
proposed methodology. The multi-sensor system was put on the drone and then it flew ver-
tically during a range of 16 to 26 min. Two frequencies were programed, every 6 and 1.65 s.
After the measure, the results were compared in real time with international information
systems, Weather.com [60] and Plumelabs.com [61]. ThenNational air quality information
system (SINAICA) from the government website [52] did not offer data because it was
frequently out of service. Meteorological parameters’ data were validated by the National
Meteorology System (SMN by its acronym in Spanish), and were downloaded from the
government website [62]. The multi-sensor system mounted and flying over UAV is show
in Figure 7.
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5.2.1. Torreon, Coah

La Laguna Technological Institute monitoring site was selected. This site is located
very close to the most important metallurgical industries in Latin America and fourth
worldwide, Met-Mex-Peñoles and Fertirrey which manufactures fertilizers rich in nitrogen
and sulfur and it is the most important ammonium sulfate production plant in the north of
Mexico. The tests were carried out last winter during January, the season with the highest
level of pollution [38].

In this series of experiments, according to the algorithm for data acquisition, meteo-
rological parameters for two days were measured, and these are shown in Table 2. The
acquired data is very close to those acquired by Gov. Website, with a difference in relative
humidity measurements of 3 to 5%, and of the temperature of 1 to 4 ◦C. It can be seen
that the measurements by the two systems show a relationship of the low humidity-high
temperature, and on the contrary, low temperature-high humidity, which is a climate
characteristic of this region.

Table 2. Information of meteorological parameters [38].

Meteorological
Parameter

Date 11 January 2021 Date 15 January 2021

Multi-Sensor Gov. Website Multi-Sensor Gov. Website

Temperature (◦C) 7 8 16 12

Relative humidity (%) 60 55 22 25

Atmospheric Pressure
(hPa) 879 880 878 880

Weather cold windy

Altitude (m.a.s.l.) 1120–1220 1 1120 1120–1220 1 1120

Win speed (m/s) - 2 - 1–3

Direction speed - East - West
1 Indicates the range of height from home to +100 m provided by drone, where 1120 m.a.s.l. is the altitude
in Torreon.

For air quality, we monitored the concentration of SO2, NH3, CO, NO2, PM10, and
PM2.5 in the site location. Every 6 s, 168 to 250 samples were acquired average in simple
data. The response of the multi-sensor system is shown in Figure 9 with data acquired on
11 January 2021, and Figure 10 shows the values measuring on 15 January.
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(b) Suspended particles [38].

In Figures 9a and 10a one can be seen that the NH3 sensor shows a delay. The sensor
needs a period of time to set up its chemical equilibrium. This is due to chemical compounds
being desorbed or absorbed on the sensing surface after which point the resistance will
stabilize. Generally speaking, the longer the warm-up phase, the better the precision will
be. After that time the measurement stabilizes. In the case of the CO sensor, it did not
present sensitivity which is consistent with what was reported in [34]. On the other hand,
it can also be seen that the suspended particles, in this case, study, remain suspended up to
the height of the drone.

After the analysis, the results were compared with data collected from international
air quality measurement systems. This comparison is shown in Table 3. According to
the precision and linearly of an optical sensor of PM, coefficients of variation were below
7% [23].
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Table 3. Comparative values of others monitoring sources and the multi-sensor system [38].

Pollutants
Date: 11 January 2021 Date: 15 January 2021

Weather.com Plumelabs.com Multi-Sensor Weather.com Plumelabs.com Multi-Sensor

O3 (ppm) 0.045 0.044 - 0.051 0.052 -

NO2 (ppm) 0.03 0.02 0.12 0.05 0.04 0.25

SO2 (ppm) 0.15 - 0.6 0.014 - 0.07

CO (ppm) 0.065 - 0.26 0.052 - 0.26

NH3 (ppm) - - 0.51 - - 0.26

PM10 (µg/m3) 16.5 16 15.55 16.5 16 55

PM2.5 (µg/m3) 9.72 9 14 10.72 10 43.89

In these experiments, the values provided by the proposed system correspond to
real-time measurement at specific points in situ. On the other hand, the data reported by
the database corresponds to a 24 h average, considering a regional area through satellites
and atmospheric behavior algorithms. Figure 11 shows capture images of the drone where
it can be seen that Figure 11a presence of dust at the monitoring site and Figure 11b the
contamination by industry. In this case, we can prove that the results measured were
real-time and only represent the 1.7% (25 min) of the total period measured (24 h measured
by the international air quality systems.

Sensors 2022, 22, x FOR PEER REVIEW 15 of 30 
 

 

  
(a) (b) 

Figure 11. Aerial views of the city of Torreon, Coahuila taken by DJI Mavic Air 2 UAV at an altitude 
of 100 m; (a) Torreon-ITL zone, (b) Peñoles. 

5.2.2. Matamoros, Coahuila 
In the second series of experiments in the Region Lagunera, data acquisition was 

measured in the agricultural and livestock areas. In order to validate the multi-sensor 
monitoring system, controlled tests were made to measure CO, NO2, NH3, and PM2.5. For 
collecting data, there were restrictions by the farmers’ property, mainly that taking pic-
tures in flight or on the ground and revealing the location was not allowed. Monitoring 
was carried out at a distance of 1 to 3 m from the crop fields, in the last autumn-winter 
cycle, during February. In Figure 12 we can see the results in the measurement of NH3 
and NO2 and one can observe that there are no health risks, considering that both meas-
urements are within the levels allowed by the WHO. Then, we were informed that nitro-
gen fertilizers had not been used. 

  
(a) (b) 

  
(c) (d) 

Figure 12. The air quality was measured on crop fields in Matamoros, Coahuila, Mexico. Measured 
polluting gases were: (a) CO; (b) NH3; (c) NO2; and (d) suspended particles PM2.5. 

Figure 11. Aerial views of the city of Torreon, Coahuila taken by DJI Mavic Air 2 UAV at an altitude
of 100 m; (a) Torreon-ITL zone, (b) Peñoles.

5.2.2. Matamoros, Coahuila

In the second series of experiments in the Region Lagunera, data acquisition was
measured in the agricultural and livestock areas. In order to validate the multi-sensor
monitoring system, controlled tests were made to measure CO, NO2, NH3, and PM2.5. For
collecting data, there were restrictions by the farmers’ property, mainly that taking pictures
in flight or on the ground and revealing the location was not allowed. Monitoring was
carried out at a distance of 1 to 3 m from the crop fields, in the last autumn-winter cycle,
during February. In Figure 12 we can see the results in the measurement of NH3 and NO2
and one can observe that there are no health risks, considering that both measurements are
within the levels allowed by the WHO. Then, we were informed that nitrogen fertilizers
had not been used.

Weather.com
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Weather.com
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The response of the proposed system at NO2, showed an oscillation between 0.05 and
0.06 due to the sensitivity of the sensor. Its measurements were low and there was no risk
to health. In the case of the measurement of suspended particles (PM2.5), two significant
results were observed; the readings that were taken on the second day were much higher
because the climate conditions were dry and dusty. The sensor measurement showed an
unhealthy quality range according to the AQI. This is a very constant condition in this city.

The second series of measurements were carried out in small livestock for milk pro-
duction with 25 cows. For this measurement, preventive actions were considered, due
to the direct exposure of the cow’s waste, which emits polluting gases such as ammonia,
mainly found in cow’s urine. N95 masks were used as protection. In Figure 13 one can
observe that NH3 increases as a function of the height when the drone rises. For example, a
height of 3 m, the NH3 concentration was approximately of 5 ppm. While at 15 m the NH3
concentration was approximately of 5 ppm. Both measurements are within the permitted
level of 25 ppm, above which there are health risks a risk.

The results showed the sensitivity of the proposed system to NH3. Although there
was no access to larger barn facilities, it can be observed that cow waste (due to their
feed) increased NH3 values. This is verified by comparing the results obtained in the
measurement of NH3 of an agricultural plot with the values obtained in a small livestock.

Although the results were not compared with national or international systems because
the NH3 pollutant was not measured by them, we can observe that the proposed system
was sensitive to NH3 concentration. Furthermore, we found a higher concentration of
ammonia in stables than the concentrations measured in critical zones of metropolitan areas.
According to the observed results, there could be a correlation between the generation of
NH3 and the cattle in stables, according to [8].
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5.2.3. Gomez Palacio, Durango

The third series of experiments in this region was carried out in Gomez Palacio,
Durango. Monitoring was carried out for nine continuous hours for six days from 21 to
28 September, as a fixed monitoring system. The frequency sampling was 1.6 s. The site
selected to monitor was situated on the periphery of the town near a stable field and walnut
trees (nogalera).

Firstly, meteorological parameters were measured by the multi-sensor system, and
the data are shown in Table 4. The acquired data are very close to those acquired by our
referenced government website.

Simultaneously, we measured the pollution conditions, and more than 20,000 samples
per day were acquired as a result of this monitoring.

Figure 14 shows the evolution of air pollution in this site according to the environmen-
tal parameters described in Table 4. The weather in 2021 was typical for early autumn with
representative gusts of wind, as well as high temperatures and humidity.

In Figure 14, we can observe in Figure 14a that the proposed system was sensitive to
the measurement of SO2 concentration. These concentration increases are located in the
time from 15:00 to 18:00 h. This behavior was constant during the 6 days of study. The data
acquired for NO2, shown in Figure 14b, displayed the same behavior, this presented an
increasing trend with a higher concentration over time from 12:00 to 15 h. The results for
NH3 measurement was shown in Figure 14c. The NH3 sensor, after auto-calibration, had
its output values stabilized at around 0.91 ppm.

In this sense, with a wide range of monitoring samples (20,000 samples per day),
during a year, the proposed system could define a forecast in environmental behavior,
defining an approximation of air quality. The output values were unsteady with wide
fluctuations due to the sensibility of the sensor. In this case, moving averages as a statistical
prediction technique was used to reduce the impact of irregular data in a time series of
data. Figure 15 depicts the data acquired from the particulate matters sensor as an adjusted
graph. On 25 September, the mean value from the international monitoring system during
this period was 5.85 ± 1 µg/m3 to PM2.5. The mean value obtained using our system
during this period was 6.5 µg/m3. A comparison of both values shows the difference as
0.65 µg/m3.
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Table 4. Information of meteorological parameters in Gomez Palacio, Durango, Mexico.

Meteorological Parameter Date 21 September 2021 Date 23 September 2021

Multi-Sensor Gov. Website Multi-Sensor Gov. Website

Temperature (◦C) 36 30 29.69 27

Relative humidity (%) 38.78 40 34.4 30

Atmospheric Pressure (hPa) 891.6 890 891.3 890

Weather Hot Hot

Altitude (m.a.s.l.) 1080–1180 1 1135 1080–1180 1 1135

Win speed (m/s) - 5.28 - 2.2

Direction speed - East - East

Meteorological Parameter Date 25 September 2021 Date 26 September 2021

Temperature (◦C) 34 32 34 30

Relative humidity (%) 22 24 39 40

Atmospheric Pressure (hPa) 889 890 890.3 890

Weather Hot and dry Hot

Altitude (m.a.s.l.) 1080–1180 1 1135 1080–1180 1 1135

Win speed (m/s) - 3.9 - 2.5

Direction speed - East - West

Meteorological Parameter Date 27 September 2021 Date 28 September 2021

Temperature (◦C) 35 27 33 30

Relative humidity (%) 28.9 30 31 30

Atmospheric Pressure (hPa) 889.66 890 887.43 890

Weather Sunny Sunny

Altitude (m.a.s.l.) 1080–1180 1 1135 1080–1180 1 1135

Win speed (m/s) - 1.4 - 2.9

Direction speed - West - NorthEast
1 Indicates the range of height from home to +100 m provided by drone, where 1080 m.a.s.l. is the altitude in
Gomez Palacio.

In Figure 15, we can observe that particulate matter in the air was influenced by
meteorological conditions. In particular, lower concentrations correspond to measurements
when there were high gusts of wind, see Figure 15a,b.

The results are shown in Table 5. SINAICA was unavailable due to technical difficulties
with the website.

Figure 16 shows capture images of the drone where the presence of dust at the moni-
toring site can be seen.
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Table 5. Comparative values of others monitoring sources and the multi-sensor system.

21 September 2021 23 September 2021

Pollutants Plume Labs Weather Multi-Sensor Plume Labs Weather Multi-Sensor

SO2 (ppm) - 0.83 2.41 - 2.89 1.385

NH3 (ppm) - - 0.214 - - 0.1

CO (ppm) - 0.123 0.24 - 0.181 0.25

NO2 (ppm) 1.89 1.93 0.317 0.8 0.73 0.495

PM2.5
(µg/m3) 6.61 7.15 6.5 8.1 8.39 17.98

PM10
(µg/m3) 13.95 12.95 7.96 20.94 12.22 20.26

25 September 2021 26 September 2021

Pollutants Plume Labs Weather Multi-Sensor Plume Labs Weather Multi-Sensor

SO2 (ppm) - 0.81 2.15 - 0.54 2.15

NH3 (ppm) - - 0.077 - - 0.077

CO (ppm) - 0.135 0.26 - 0.233 0.25

NO2 (ppm) 0.76 0.76 0.609 0.92 0.54 0.609

PM2.5
(µg/m3) 6.61 5.85 6.5 10.22 5.16 12.99

PM10
(µg/m3) 19.88 9.99 7.77 26.16 8.54 14.28

27 September 2021 28 September 2021

Pollutants Plume Labs Weather Multi-Sensor Plume Labs Weather Multi-Sensor

SO2 (ppm) - 0.89 2.15 - 1.82 1.77

NH3 (ppm) - - 0.084 - - 0.084

CO (ppm) - 0.133 0.26 - 0.132 0.25

NO2 (ppm) 1.03 0.57 0.609 1.44 0.66 0.57

PM2.5
(µg/m3) 10.22 5.16 12.99 10.77 7 6.33

PM10
(µg/m3) 26.16 8.54 14.28 18.27 10.67 7.35

27 September 2021 28 September 2021

Pollutants Plume Labs Weather Multi-Sensor Plume Labs Weather Multi-Sensor

SO2 (ppm) - 0.89 2.15 - 1.82 1.77

NH3 (ppm) - - 0.084 - - 0.084

CO (ppm) - 0.133 0.26 - 0.132 0.25

NO2 (ppm) 1.03 0.57 0.609 1.44 0.66 0.57

PM2.5
(µg/m3) 10.22 5.16 12.99 10.77 7 6.33

PM10
(µg/m3) 26.16 8.54 14.28 18.27 10.67 7.35

5.3. Monitoring in Monterrey Metropolitan Area

In the Monterrey metropolitan area, the weather conditions and pollution were mea-
sured during four days near to three different air quality monitoring stations, as shown in
Figure 17. However, due to weather conditions and the denied permits to fly the drone,
most of the tests were performed keeping the system static.
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Figure 17. Location of monitoring sites in Monterrey metropolitan area: (a) Obispado station moni-
toring, (b) San Nicolas Station monitoring, (c) San Pedro station monitoring.

The meteorological parameters present during the measurement can be seen in Table 6.
Slight variations can be observed in the sensor readings with respect to the information
provided by the government; this is mainly due to the mountainous terrain of the region.

Table 6. Information of meteorological parameters in Monterrey metropolitan area.

Meteorological
Parameter

Date 14 July 2021 Date 15 July 2021

Multi-Sensor Gov. Website Multi-Sensor Gov. Website

Temperature (◦C) 29.47 28.42 30.45 30.45

Relative humidity (%) 48.51 50 45.69 56

Atmospheric Pressure
(hPa) 952.4 913 960.8 961

Weather cloudy cloudy

Altitude (m.a.s.l.) 520 540 425–455 1 512

Win speed (m/s) - 3.167 - 4.63

Direction speed - North West - West

Date 16 July 2021 Date 17 July 2021

Temperature (◦C) 35.48 30.81 31.29 29.92

Relative humidity (%) 39.49 49 42.72 43

Atmospheric Pressure
(hPa) 941.68 950 949.07 950

Weather cloudy cloudy

Altitude (m.a.s.l.) 615 540 550 540

Win speed (m/s) - 5.97 - 2.94

Direction speed - North West - North
1 Indicates the range of height from home to +50/20/10 m provide by drone, where 512 m.a.s.l. is the altitude in
Monterrey stations.

Figure 18 illustrates the acquired data by the multi-sensor system due to concentrations
of SO2, NH3, CO, NO2, PM10, and PM2.5 on 15 July 2021. Figure 19 shows the values
measured on 16 July 2021. In this experiment, the multi-sensor system was evaluated by
acquiring data at different heights and keeping the system at a fixed height. In the case of
the system when it is on the drone, it can be seen that the values of SO2 and NH3 show a
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decrease as a function of the height, as it is shown in Figure 18a. In Figure 19a, the values
of SO2 and NH3 show a constant trend at a fixed height.
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pended particles.
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Figure 19. The air quality measured on 16 July, in San Pedro station; (a) Polluting gases; (b) Sus-
pended particles.

Table 7 shows the comparison of the multi-sensor system with respect to an interna-
tional source and the data obtained at the same time from the network of the corresponding
SINAICA monitoring stations.

Figure 20 shows captured images of the drone where the presence of dust can be seen
at the monitoring sites: Figure 20a for Obispado station and Figure 20b for San Nicolas.
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Table 7. Comparative values of others monitoring sources and the multi-sensor system.

Pollutants

Date: 14 July 2021, Downtown Station Date: 15 July 2021, San Nicolas Station

Downtown
Station

(Sinaica)
Plumelabs Weather Multi-Sensor

San Nicolas
Station

(Sinaica)
Plumelabs Weather Multi-Sensor

NO2 (ppm) 0.003 0.01 0 0.095 0.006 0.01 0 0.08

SO2 (ppm) 2 - 2.25 0.9309 4 - 3.9 0.96

CO (ppm) 0.196 - 0.158 0.263 0.204 - 0.106 0.267

NH3 (ppm) - - - 1.255 - - - 1

PM10
(µg/m3) 46 15 12.55 9.94 64 6 10.24 13.1

PM2.5
(µg/m3) 10 9 7.62 8.5 17 4 4.7 11.11

Pollutants

Date: 16 July 2021, San Pedro Station Date: 17 July 2021, Obispado Station

San Nicolas
Station

(Sinaica)
Plumelabs Weather Multi-Sensor

Obispado
Station

(Sinaica)
Plumelabs Weather Multi-Sensor

NO2 (ppm) 0.014 0.01 0 0.14 0.003 0.01 0 0.16

SO2 (ppm) 4 - 2.18 2.24 2 - 3.8 1.24

CO (ppm) 0.81 - 0.327 0.26 0.2 - 0.236 0.26

NH3 (ppm) - - - 0.32 - - - 3

PM10
(µg/m3) 83 21 22.5 13.88 65 20 15.75 23

PM2.5
(µg/m3) 19 13 15 12.73 25 12 10.53 20

5.4. Monitoring in Guadalajara Metropolitan Area

In the Guadalajara metropolitan area, the meteorological parameters and pollution
were measured during four days near to three different air quality monitoring stations,
as shown in Figure 21. However, due to weather conditions and the denied permits to
fly the drone, most of the tests were performed keeping the system static. Although this
metropolitan city has 10 monitoring stations, only a couple of them measure three or more
pollutants, which represents a shortage of information.

The meteorological parameters present during the measurement can be seen in Table 8.
The Centro and Vallarta stations only provide the temperature inside the monitoring
station; they do not take into account the outdoor conditions over which the monitoring
is performed.

Table 8. Information of meteorological parameters in Guadalajara metropolitan area.

Meteorological
Parameter

Date 23 November 2021 Date 24 November 2021 Date 25 November 2021 Date 26 November 2021 Date 27 November 2021

Multi-
Sensor

Gov.
Website Multi-Sensor Gov.

Website
Multi-
Sensor

Gov.
Website Multi-Sensor Gov.

Website Multi-Sensor Gov.
Website

Temperature
(◦C) 24 25 27.31 23 26.17 22 23.79 22 26.48 25

Relative
humidity (%) 41.12 42 25.62 32 14.12 10 38.95 38 31.49 35

Atmospheric
Pressure (hPa) 845.75 1020 849.3 1021 841.88 1020 845 1021 843.05 1020

Weather Clear sky Cloudy cloudy cloudy cloudy
Altitude
(m.a.s.l.) 1498 1566 1450–1490 1 1566 1535 1566 1495–1540 1 1566 1524.49 1566

Win speed (m/s) - 3.68 - 4.33 - 2.52 - 0.48 4.49
Speed direction SW S SE SE S

1 Indicates the range of height from home to +40 m provide by drone, where 1566 m.a.s.l. is the altitude in
Guadalajara, Mex.
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Figure 21. Location of monitoring sites in Guadalajara metropolitan area: (a) Mendoza Hotel;
(b) Centro Station monitoring; (c) Vallarta station monitoring; (d) Miravalle station monitoring;
(e) Tlaquepaque station monitoring.

Figure 22 displays acquired data near to in Centro station on 24 November 2021 for
the concentrations of SO2, NH3, CO, NO2, PM10, and PM2.5. Figure 23 shows the data
measured on 26 November in Miravalle station. It is worth noting the sensitivity of the
system, which was able to detect peaks in the measurement of suspended particles and SO2.
Further, we observed the SO2 and PM’s concentration as a function of height, see Figure 22.

Sensors 2022, 22, x FOR PEER REVIEW 24 of 30 
 

 

Figure 21. Location of monitoring sites in Guadalajara metropolitan area: (a) Mendoza Hotel; (b) 
Centro Station monitoring; (c) Vallarta station monitoring; (d) Miravalle station monitoring; (e) 
Tlaquepaque station monitoring. 

The meteorological parameters present during the measurement can be seen in Table 
8. The Centro and Vallarta stations only provide the temperature inside the monitoring 
station; they do not take into account the outdoor conditions over which the monitoring 
is performed. 

Table 8. Information of meteorological parameters in Guadalajara metropolitan area. 

Meteorological  
Parameter 

Date 23 November 
2021 

Date 24 November 
2021 

Date 25 November 
2021 

Date 26 November 
2021 

Date 27 November 
2021 

Multi-
sensor 

Gov. 
Website 

Multi-
sensor 

Gov. 
Website 

Multi-
sensor 

Gov. 
Website 

Multi-
sensor 

Gov. 
Website 

Multi-
sensor 

Gov. 
Website 

Temperature (°C) 24 25 27.31 23 26.17 22 23.79 22 26.48 25 
Relative humidity 

(%) 41.12 42 25.62 32 14.12 10 38.95 38 31.49 35 

Atmospheric Pres-
sure (hPa) 

845.75 1020 849.3 1021 841.88 1020 845 1021 843.05 1020 

Weather Clear sky Cloudy cloudy cloudy cloudy 

Altitude (m.a.s.l.) 1498 1566 
1450–
1490 1 1566 1535 1566 

1495–
1540 1 1566 1524.49 1566 

Win speed (m/s) - 3.68 - 4.33 - 2.52 - 0.48  4.49 
Speed direction  SW  S  SE  SE  S 

1 Indicates the range of height from home to +40 m provide by drone, where 1566 m.a.s.l. is the altitude in Guadalajara,Mex. 

Figure 22 displays acquired data near to in Centro station on November 24th 2021 for 
the concentrations of SO2, NH3, CO, NO2, PM10, and PM2.5. Figure 23 shows the data meas-
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pended particles.

For comparison, the data were contrasted with international air quality measurement
systems and with local air quality stations, and the analysis is shown in Table 9.

Figure 24 shows captured images of the drone where the presence of dust can be seen
at the monitoring sites (a) Centro station and (b) Miravalle station.
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Figure 23. The air quality measured on 26 November, in Tlaquepaque station; (a) Polluting gases;
(b) Suspended particles.
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6. Discussion

The change in resistance with the change in gas concentration is not a linear response.
The results were analyzed and compared between the proposed system and interna-

tional data base. In particular, we estimated the root mean square error, RMSE, as Figure of
Merit to compare the performance of the proposed system with international data bases.
This comparison is shown in Table 10. We can note that pollution measures are in the
expected, i.e., the results showed measured values are very close to the values reported by
fixed monitoring systems implemented.

According to the analysis described in Table 10, the measurement system based on low-
cost sensors proved to be a very useful alternative to help contrast and complement the data
obtained or missing from other methods of measuring air quality pollutants. For example,
monitoring pollution emitted into the atmosphere by factories and farms in order to identify
and control sources of emission of polluting gases and solid particles. In addition, the
proposed system, mounted on a drone, could be used to determine regions of contamination
and delimit affected areas in the event of disasters or environmental contingencies.

Table 10. Measured errors between our air quality system and international data base.

Pollutant
RMSE

Multisensor-Weather Multisensor-Plumelabs Multisensor-Sinaica Weather-Plumelab

NO2 0.4505 0.5841 0.1376 0.3652

SO2 1.3678 - 0.9782 -

CO 0.1128 - 0.2960 -

NH3 -

PM10 6.1577 8.4557 37.0752 7.1786

PM2.5 6.7284 7.3425 11.4225 4.6608

The advantages of low cost technologies and simple implementations, such as LoRa,
allow the development of practical devices to measure the air quality using a drone.

The estimated values of suspended particulate matter present the lowest error between
the measurement equipment, the presence of gases according to the stations and the system
present little variation between locations. The point measurements of suspended particulate
matter made by the system usually have better agreement with the international sources.

We found that the models that describe the behavior of the system resulted in less
variation and a better trend in the measurement of SO2, CO, NH2, in contrast to interna-
tional monitoring systems. In the case of particulate matter, the proposed system presented
unstable measurements with wide fluctuations which were due to the location of the moni-
toring site. Such is the case of the output values of the PM sensor, which presented some
interference in the measurements as a fixed station in Guadalajara and Gomez Palacio.
These interferences were punctually focused: cigarette smoke, street sweepers, etc., which
at ground level are very punctual. However, the trend and forecast was comparable to the
other monitoring systems.

Although that NH3 is not measured by any environmental agency we found it is
present in Region Lagunera, which is emitted by the agricultural areas and stables, accord-
ing to [8]. For that, Systems similar to the one proposed in this paper could be used to
monitor gases that are not regularly measured by fixed gas monitoring stations.

In this study, it was important to measure the meteorological parameters in order to
calibrate the system and the possibility of correcting the error in the measurements that are
directly influenced by them.

For our future work, we would verify a reference for the NH3 measure. Further, in
the new design we would be contemplating the use of sensors CO, CO2 and O3, CO with
high sensitivity and capable of detecting low concentration as 122 µg/m3. In addition,
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we would continue to acquire data and verify stability and durability for long-duration
operation of the proposed system.

7. Conclusions

In this work, we show a remote sensing system designed to monitor the air quality at
selected zones, with a particular interest in bigger cities and heavily populated industrial
zones, as an alternative to fixed air quality monitoring stations. In particular, we present
and discuss the performance of a smart multi-sensor system. The integration of the multi-
sensor device, UAV, and LoRa communications as a single, low cost, size and weight system
adds a needed flexibility to current fixed monitoring stations with the possibility of mobile
monitoring for a larger area and difficult access, since the sensor node can be implemented
as end-device in a WSN to obtain data in-situ and real-time.

The multi-sensor system was probed to monitoring sites to determine spatial and
temporal patterns of NO2, SO2, NH3, CO, PM10, and PM2.5 in three important metropolitan
areas: Region Lagunera, Monterrey and Guadalajara in Mexico. In addition, the multi-
sensor system, acquires measurements of environmental variables such as temperature,
humidity, pressure, and wind speed for its calibration and operation.

The results showed measurement values very close to the values delivered by fixed
monitoring systems implemented with complex and expensive technology.

For the future work, we have considered the need to increase measurements to achieve
more robust forecast results. In addition, we could implement a WSN to expand the
spectrum of environmental monitoring.

The finding of the study can help government agencies, health ministries, and pol-
icymakers globally to take proactive actions. The pollution data could be considered
by the local air quality regulations in order to prevent risks to the main population in
Region Lagunera.
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