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Evaluating the informativeness of deep learning
annotations for human complex diseases
Kushal K. Dey 1✉, Bryce van de Geijn1, Samuel Sungil Kim 1,2, Farhad Hormozdiari1, David R. Kelley 3 &

Alkes L. Price 1,4✉

Deep learning models have shown great promise in predicting regulatory effects from DNA

sequence, but their informativeness for human complex diseases is not fully understood.

Here, we evaluate genome-wide SNP annotations from two previous deep learning models,

DeepSEA and Basenji, by applying stratified LD score regression to 41 diseases and traits

(average N= 320K), conditioning on a broad set of coding, conserved and regulatory

annotations. We aggregated annotations across all (respectively blood or brain) tissues/cell-

types in meta-analyses across all (respectively 11 blood or 8 brain) traits. The annotations

were highly enriched for disease heritability, but produced only limited conditionally sig-

nificant results: non-tissue-specific and brain-specific Basenji-H3K4me3 for all traits and

brain traits respectively. We conclude that deep learning models have yet to achieve their full

potential to provide considerable unique information for complex disease, and that their

conditional informativeness for disease cannot be inferred from their accuracy in predicting

regulatory annotations.
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D isease risk variants identified by genome-wide association
studies (GWAS) lie predominantly in non-coding regions
of the genome1–7, motivating broad efforts to generate

genome-wide maps of regulatory marks across tissues and cell
types8–11. Recently, deep learning models trained using these
genome-wide maps have shown considerable promise in pre-
dicting regulatory marks directly from DNA sequence12–18. In
particular, these studies showed that variant-level deep learning
annotations (predictive annotations based on the reference allele)
attained high accuracy in predicting the underlying chromatin
marks13–16, and that models incorporating allelic-effect deep
learning annotations (absolute value of the predicted difference
between reference and variant alleles) attained high accuracy in
predicting disease-associated SNPs13–16. Additional applications
of deep learning models, including analyses of signed allelic-effect
annotations, are discussed in the Discussion section. However, it
is unclear whether deep learning annotations at commonly
varying SNPs contain unique information for complex disease
that is not present in other annotations.

Here, we evaluate the informativeness for complex disease of
allelic-effect annotations at commonly varying SNPs constructed
using two deep learning models previously trained on tissue-
specific regulatory features (DeepSEA13,15 and Basenji16). We
apply stratified LD score regression5,19 (S-LDSC) to 41 inde-
pendent diseases and complex traits (average N= 320K) to
evaluate each annotation’s informativeness for disease heritability
conditional on the underlying variant-level annotations as well as
a broad set of coding, conserved, regulatory and LD-related
annotations from the baseline-LD model19 and other sources
(imputed Roadmap and ChromHMM annotations11,20–22). As a
secondary metric, we also evaluate the accuracy of models that
incorporate deep learning annotations in predicting disease-
associated or fine-mapped SNPs23,24. We aggregate DeepSEA and
Basenji annotations across all tissues in meta-analyses across all
41 traits, across blood cell types in meta-analyses across 11 blood-
related traits, and across brain tissues in meta-analyses across 8
brain-related traits.

Results
Overview of methods. We define a genomic annotation as an
assignment of a numeric value (either binary or continuous-
valued) to each SNP (Methods). Our focus is on continuous-
valued annotations (with values between 0 and 1) trained by deep
learning models to predict biological function from DNA
sequence. Annotation values are defined for each SNP with minor
allele count ≥5 in a 1000 Genomes Project European reference
panel25, as in our previous work5. We have publicly released all
annotations analyzed in this study (see Data availability).

In our analysis of allelic-effect (Δ) deep learning annotations
across 41 traits, we analyzed 16 non-tissue-specific deep learning
annotations: 8 DeepSEA annotations13,15 previously trained to
predict 4 tissue-specific chromatin marks (DNase, H3K27ac,
H3K4me1, H3K4me3) known to be associated with active
promoter and enhancer regions across 127 Roadmap tissues11,26,
aggregated using the average (Avg) or maximum (Max) across
tissues, and 8 analogous Basenji annotations16, quantile-matched
with DeepSEA annotations to lie between 0 and 1 (Table 1 and
Methods). To assess whether the allelic-effect annotations
provided unique information for disease, we conservatively
included the underlying variant-level (V) annotations (Supple-
mentary Table 1) as well as a broad set of coding, conserved,
regulatory and LD-related annotations in our analyses: 86
annotations from the baseline-LD (v2.1) model19, which has
been shown to effectively model LD-dependent architectures27; 8
Roadmap annotations11 (for same chromatin marks as DeepSEA

and Basenji annotations), imputed using ChromImpute20; and 40
ChromHMM annotations21,22 based on 20 ChromHMM states
across 127 Roadmap tissues11 (Supplementary Table 2). When
comparing pairs of annotations that differed only in their
aggregation strategy (Avg/Max), chromatin mark (DNase/
H3K27ac/H3K4me1/H3K4me3), model (DeepSEA/Basenji) or
type (variant-level/allelic-effect), respectively, we observed large
correlations across aggregation strategies (average r = 0.71),
chromatin marks (average r = 0.58), models (average r = 0.54)
and types (average r = 0.48) (Supplementary Fig. 1).

In our analysis of 11 blood-related traits (respectively 8 brain-
related traits), we analyzed 8 DeepSEA annotations and 8
Basenji annotations that were aggregated across 27 blood cell
types (respectively 13 brain tissues), instead of all 127 tissues.
Details of other annotations included in these analyses are
provided below.

We assessed the informativeness of these annotations for
disease heritability using stratified LD score regression (S-LDSC)
with the baseline-LD model5,19. We considered two metrics,
enrichment and standardized effect size (τ⋆). Enrichment is
defined as the proportion of heritability explained by SNPs in an
annotation divided by the proportion of SNPs in the annotation5,
and generalizes to continuous-valued annotations with values
between 0 and 128. Standardized effect size (τ⋆) is defined as the
proportionate change in per-SNP heritability associated with a
1 standard deviation increase in the value of the annotation,
conditional on other annotations included in the model19; unlike
enrichment, τ⋆ quantifies effects that are unique to the focal
annotation. In our “marginal” analyses, we estimated τ⋆ for each
focal annotation conditional on annotations from the baseline-LD
model. In our “joint” analyses, we merged baseline-LD model
annotations with focal annotations that were marginally sig-
nificant after Bonferroni correction and performed forward
stepwise elimination to iteratively remove focal annotations that
had conditionally non-significant τ⋆ values after Bonferroni
correction, as in ref. 19. All analyses of allelic-effect annotations
were further conditioned on jointly significant annotations from a
variant-level analysis, if any. Distinct from evaluating deep
learning annotations using S-LDSC, we also evaluated the
accuracy of models that incorporate deep learning annotations
in predicting disease-associated or fine-mapped SNPs23,24

(Methods).

Table 1 List of non-tissue-specific allelic-effect analyzed.

Allelic-effect annotations Size (%)

DeepSEAΔ-DNase-Avg 0.3
DeepSEAΔ-DNase-Max 2.0
DeepSEAΔ-H3K27ac-Avg 0.2
DeepSEAΔ-H3K27ac-Max 0.9
DeepSEAΔ-H3K4me1-Avg 0.3
DeepSEAΔ-H3K4me1-Max 1.7
DeepSEAΔ-H3K4me3-Avg 0.1
DeepSEAΔ-H3K4me3-Max 0.7
BasenjiΔ-DNase-Avg 0.3
BasenjiΔ-DNase-Max 2.1
BasenjiΔ-H3K27ac-Avg 0.2
BasenjiΔ-H3K27ac-Max 0.9
BasenjiΔ-H3K4me1-Avg 0.3
BasenjiΔ-H3K4me1-Max 1.7
BasenjiΔ-H3K4me3-Avg 0.1
BasenjiΔ-H3K4me3-Max 0.7

We list the 16 allelic-effect deep learning annotations (8 DeepSEAΔ, 8 BasenjiΔ) and their
annotation sizes (average annotation value across SNPs). A list of non-tissue-specific variant-
level annotations is provided in Supplementary Table 1.
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Basenji all-tissues H3K4me3 is informative for disease. We
evaluated the informativeness of allelic-effect deep learning
annotations for disease heritability by applying S-LDSC with the
baseline-LD model5,19 to summary association statistics for 41
independent diseases and complex traits (average N= 320K); for
6 traits we analyzed two different data sets, leading to a total of 47
data sets analyzed (Supplementary Table 3). We meta-analyzed
results across these 47 data sets, which were chosen to be inde-
pendent28. The 41 traits include 27 UK Biobank traits29 for which
summary association statistics are publicly available (see Data
Availability).

Although our main focus is on allelic-effect deep learning
annotations, analysis of variant-level deep learning annotations
was a necessary prerequisite step, for two reasons: (i) allelic-effect
annotations are computed as differences between variant-
level annotations for each allele, and (ii) we wished to condition
analyses of allelic-effect annotations on jointly significant variant-
level annotations, if any. We thus constructed 8 variant-level
DeepSEAV annotations by applying previously trained DeepSEA
models15 (see Code availability) for each of 4 tissue-specific
chromatin marks (DNase, H3K27ac, H3K4me1, H3K4me3)
across 127 Roadmap tissues11 to 1 kb of human reference
sequence around each SNP; for each chromatin mark, we
aggregated variant-level DeepSEAV annotations across the 127
tissues using either the average (Avg) or maximum (Max) across
tissues (Table 1 and Methods). The DeepSEA model was highly
predictive of the corresponding tissue-specific chromatin marks,
with AUROC values reported by ref. 15 ranging from 0.77−0.97
(Supplementary Table 4). We also constructed 8 variant-level
BasenjiV annotations by applying previously trained Basenji
models16 (see Code availability) and aggregating across tissues in
analogous fashion (Table 1 and Methods); Basenji uses a Poisson
likelihood model, unlike the binary classification approach of
DeepSEA, and analyzes 130 kb of human reference sequence
around each SNP using dilated convolutional layers. The
constituent tissue-specific BasenjiV annotations do not
lie between 0 and 1; so we transformed these annotations to lie
between 0 and 1 via quantile matching with corresponding
DeepSEAV annotations, to ensure a fair comparison of the two
approaches (Methods). Although the variant-level DeepSEAV
and BasenjiV annotations were highly enriched for heritability,
we determined that none of them were conditionally informative
across the 41 traits (Supplementary Figs. 2–6 and Supplementary
Note). This is an expected result, because the variant-level deep
learning annotations simply predict measured variant-level
annotations from Roadmap that are also included in the model.

Our main focus is on allelic-effect annotations (absolute value
of the predicted difference between reference and variant alleles),
which have been the focus of recent work13–16. We evaluated the
informativeness of 8 non-tissue-specific DeepSEAΔ and 8 non-
tissue-specific BasenjiΔ allelic-effect annotations (Table 1) for
disease heritability by applying S-LDSC to the 41 traits. Analyses
of allelic-effect annotations were conditioned on the baseline-LD
model plus 7 annotations from Supplementary Fig. 6. For ease of
comparison, allelic-effect Basenji annotations were quantile-
matched with corresponding allelic-effect DeepSEA annotations,
analogous to analyses of variant-level annotations.

A summary of the results is provided in Fig. 1 (All tissues, All
traits column; numerical results in Supplementary Table 5),
which reports the number of allelic-effect annotations of various
types with significant heritability enrichment, marginal condi-
tional signal, and joint conditional signal, respectively. In our
marginal analysis of disease heritability, all allelic-effect annota-
tions from DeepSEA and Basenji models were significantly
enriched for heritability across 41 traits; the allelic-effect BasenjiΔ
annotations were more enriched for disease heritability (2.40x)

than allelic-effect DeepSEAΔ annotations (1.91x) (Supplementary
Table 6). However, only 0 DeepSEAΔ annotations and 1 BasenjiΔ
annotation, BasenjiΔ-H3K4me3-Max, attained a Bonferroni-
significant standardized effect size (τ⋆) (Fig. 2 and Supplementary
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Fig. 1 Summary of disease informativeness of allelic-effect deep learning
annotations. We report the number of allelic-effect annotations with
significant heritability enrichment, marginal conditional τ⋆, and joint
conditional τ⋆, across a different deep learning models (DeepSEA/Basenji),
b different aggregation strategies (Avg/Max) and c different chromatin marks
(DNase/H3K27ac/H3K4me1/H3K4me3). Numerical results are reported in
Supplementary Table 5 (numerical summary of results), Supplementary
Table 6 (enrichment and marginal τ⋆ for all tissues, all traits analysis),
Supplementary Table 15 (enrichment and marginal τ⋆ of blood cell types,
blood traits analysis), Supplementary Table 21 (enrichment and marginal τ⋆ of
brain tissues, brain traits analysis) and Supplementary Table 27 (joint τ⋆ of
brain tissues, brain traits analysis). No Supplementary Table is needed for
joint τ⋆ of all tissues, all traits (1 marginally significant annotation) or blood
cell types, blood traits (0 marginally significant annotations).
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Table 6); results were similar when conditioned on just the
baseline-LD model (Supplementary Table 7). Despite the high
correlation between variant-level and allelic-effect annotations
(r = 0.48; Supplementary Fig. 1), the corresponding variant-level
annotation (BasenjiV-H3K4me3-Max) did not produce signifi-
cant conditional signal (Fig. 2 and Supplementary Table 8),
consistent with Supplementary Fig. 2). We note that since
BasenjiΔ-H3K4me3-Max was the only marginally significant
annotation in the non-tissue-specific allelic-effect analysis, it is
automatically jointly significant.

To assess the impact of conditioning on conservation-related
annotations, we performed a marginal analysis in which we no
longer conditioned on the 11 conservation-related annotations of
the baseline-LD model (e.g. GERP++19,30, PhastCons31, con-
servation across 29 mammals32, Background selection statistic33;
Supplementary Table 9). In this analysis, 6 DeepSEAΔ and 4
BasenjiΔ produced Bonferroni-significant conditional signals
(Supplementary Table 10). This implies that conditioning on

conservation-related annotations had a major impact on our
primary analysis. Consistent with this finding, we observed
substantial correlations (up to r= 0.24) between allelic-effect
annotations and conservation-related annotations (Supplemen-
tary Fig. 7). These results can be viewed as a proof-of-concept that
allelic-effect annotations can uncover biological signals.

We investigated the k-mer composition of regions proximal to
the BasenjiΔ-H3K4me3-Max annotation. For each of all 682
possible k-mers with 1 ≤ k ≤ 5 (merged with their reverse
complements), we assessed the weighted k-mer enrichment in
1kb regions around each SNP in the annotation (Methods). Many
CpG-related k-mers (k ≥ 3) attained Bonferroni-significant
enrichments, with the largest and most significant enrichments
attained by CGCGC (4.1x and P= 3.5−e10) and CGGCG (4.1x
and P= 3.6e–10) (Supplementary Table 11); these were far larger
and more statistically significant than enrichments for simple
GC-rich motifs such as the 2-mer CpG (1.2x and P= 0.3), ruling
out a systematic GC artifact as an explanation for our findings.
We note that the CGCG motif is known to correlate with
nucleosome occupancy34,35, which may potentially be expected
since active promoters tend to have well-positioned nucleosomes
marked by H3K4me3. Although the 5-mers CGCGC and
CGGCG are too small to associate to known transcription factor
binding motifs, we determined that the 9-mer GCGGTGGCT,
which was enriched for heritability of blood-related traits in a
previous study36 and is associated with the ZNF33A transcription
factor binding motif, was enriched in the BasenjiΔ-H3K4me3-
Max annotation (Supplementary Table 12).

As an alternative to conditional analysis using S-LDSC, we
analyzed various sets of annotations by training a gradient
boosting model to classify 12,296 SNPs from the NIH GWAS
catalog23 and assessing the AUROC, as in ref. 13,16 (Methods);
although this is not a formal conditional analysis, comparing the
AUROC achieved by different sets of annotations can provide an
indication of which annotations provide unique information for
disease. Results are reported in Supplementary Table 13. We
reached three main conclusions. First, the aggregated DeepSEAΔ
and BasenjiΔ annotations were informative for disease
(AUROC = 0.584 and 0.592, respectively, consistent with
enrichments of these annotations (DeepSEAΔ: 1.50x, BasenjiΔ:
1.75x) for NIH GWAS SNPs; Supplementary Table 14). Second,
including tissue-specific DeepSEAΔ and BasenjiΔ annotations for
all 127 tissues slightly improved the results (AUROC= 0.602 and
0.611, respectively; lower than AUROC= 0.657 and 0.666
reported in ref. 16 because our analysis was restricted to
chromatin marks and did not consider transcription factor
binding site (TFBS) or cap analysis of gene expression (CAGE)
data). Third, the disease informativeness of the baseline-LD
model plus 7 non-tissue-specific annotations from Supplementary
Fig. 6) (AUROC = 0.762) was not substantially impacted by
adding the aggregated DeepSEAΔ and BasenjiΔ annotations
(AUROC = 0.766 and 0.769, respectively). These findings were
consistent with our S-LDSC analyses; in particular, the slightly
higher AUROC for Basenji and DeepSEA allelic-effect annota-
tions (across all analyses) was consistent with our S-LDSC results
showing higher enrichments and a conditionally significant signal
for Basenji annotations. Although a key limitation of the NIH
GWAS catalog is that it consists predominantly of marginally
associated variants that have not been fine-mapped, which thus
form a noisy SNP set, these analyses show that it does contain
useful signal.

We conclude that allelic-effect DeepSEA and Basenji annota-
tions that were aggregated across tissues were enriched for
heritability across the 41 traits (with higher enrichments for
Basenji), and that one Basenji allelic-effect annotation was
conditionally informative.
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Fig. 2 Disease informativeness of non-tissue-specific allelic-effect deep
learning annotations. a Heritability enrichment, conditioned on the non-
tissue-specific variant-level joint model. Horizontal line denotes no
enrichment. b Standardized effect size τ⋆ conditioned on either the non-
tissue-specific variant-level joint model (marginal analysis: left column,
white) or the variant-level joint model plus 1 non-tissue-specific allelic-
effect Basenji annotation (BasenjiΔ-H3K4me3-Max) (non-tissue-specific
final joint model: right column, dark shading. Results are meta-analyzed
across 41 traits. Results are displayed only for the allelic-effect annotation
(BasenjiΔ-H3K4me3-Max) with significant τ⋆ in marginal analyses after
correcting for 106 (variant-level + allelic-effect) non-tissue-specific
annotations tested (P < 0.05/106), along with the corresponding variant-
level annotation; the correlation between the two annotations is 0.43. For
non-tissue-specific final joint model (right column), **P < 0.05/106. Error
bars denote 95% confidence intervals. Numerical results are reported in
Supplementary Table 6 and Supplementary Table 8.
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Basenji brain-specific H3K4me3 is informative for disease. We
evaluated the informativeness of blood-specific allelic-effect
annotations across 11 blood-related traits (Supplementary
Table 3), and the informativeness of brain-specific allelic-effect
annotations across 8 brain-related traits (Supplementary Table 3).

As in the all-tissues analysis, we first evaluated tissue-specific
variant-level annotations. The blood-specific variant-level Deep-
SEAV and BasenjiV annotations were highly enriched for
heritability across 11 blood-related traits, but we determined that
none of them were conditionally informative (Supplementary
Figs. 8–11 and Supplementary Note). The brain-specific variant-
level DeepSEAV and BasenjiV annotations were also highly
enriched for heritability across 8 brain-related traits; surprisingly,
two of these annotations (DeepSEAV-H3K4me3-brain-Max and
BasenjiV-H3K27ac-brain-Max) were conditionally informative
(Supplementary Figs. 12–15 and Supplementary Note). This is a
surprising result, because the brain-specific variant-level deep
learning annotations simply predict measured brain-specific
variant-level annotations from Roadmap that were also included
in the model and suggests unique information can be retrieved for
brain tissues from de-noising of epigenomic signal using deep
learning models. A possible reason for this may be poorer
representation of brain tissues in the Roadmap data compared to
the blood cell types.

We evaluated the informativeness of 8 blood-specific Deep-
SEAΔ and 8 blood-specific BasenjiΔ annotations (Table 1) for
disease heritability by applying S-LDSC to the 11 blood-related
traits. These analyses were conditioned on the the the baseline
model plus 7 non-tissue-specific annotations from Supplementary
Fig. 6, 6 blood-specific Roadmap and ChromHMM annotations
from Supplementary Fig. 11 and BasenjiΔ-H3K4me3-Max (the
1 significant non-tissue-specific allelic-effect annotation; Fig. 2
and Supplementary Table 6).

A summary of the results is provided in Fig. 1 (Blood cell types,
Blood traits column); numerical results in Supplementary Table 5.
In our marginal analysis of disease heritability, all blood-specific
allelic-effect annotations were enriched for disease heritability.
Furthermore, blood-specific BasenjiΔ annotations were much
more enriched for disease heritability (4.57x) than blood-specific
DeepSEAΔ annotations (2.20x), despite similar annotation sizes
(Supplementary Table 15). However, none of the blood-specific
allelic-effect annotations attained a Bonferroni-significant stan-
dardized effect size (τ⋆) (Supplementary Table 15). (When we did
not condition on the 11 conservation-related annotations of the
baseline-LD model (Supplementary Table 9), this remained the
case (Supplementary Table 16). In contrast, when we did not
condition on BasenjiΔ-H3K4me3-Max, 0 blood-specific Deep-
SEAΔ annotations and 1 BasenjiΔ annotation attained a
Bonferroni-significant τ⋆ (Supplementary Table 17); when we
did not condition on BasenjiΔ-H3K4me3-Max or the 6 blood-
specific annotations from Supplementary Fig. 11, 0 blood-specific
DeepSEAΔ annotations and 6 blood-specific BasenjiΔ annota-
tions attained a Bonferroni-significant τ⋆ (Supplementary
Table 18).

We also analyzed various sets of blood-specific allelic-effect
annotations by training a gradient boosting model to classify
8,741 fine-mapped autoimmune disease SNPs24 (relevant to
blood-specific annotations only) and assessing the AUROC
(analogous to Supplementary Table 13). Results are reported in
Supplementary Table 19. We reached three main conclusions.
First, the aggregated blood-specific DeepSEAΔ and BasenjiΔ
annotations were informative for disease, with Basenji being more
informative (AUROC = 0.613 and 0.672, respectively, consistent
with moderate enrichments (DeepSEAΔ: 1.71x, BasenjiΔ: 2.37x)
of these annotations for the fine-mapped SNPs; Supplementary
Table 20). Second, including cell-type-specific allelic-effect

DeepSEAΔ and BasenjiΔ annotations for all 27 blood cell types
slightly improved the results (AUROC = 0.633 and 0.684,
respectively). Third, the disease informativeness of the blood-
specific variant-level joint model plus BasenjiΔ-H3K4me3-Max
(AUROC = 0.848) was not substantially impacted by adding the
aggregated blood-specific DeepSEAΔ and BasenjiΔ annotations
(AUROC = 0.847 and 0.851, respectively). These findings were
consistent with our S-LDSC analysis.

We evaluated the informativeness of 8 brain-specific Deep-
SEAΔ and 8 brain-specific BasenjiΔ annotations (Table 1) for
disease heritability by applying S-LDSC to the 8 brain-related
traits. These analyses were conditioned on the baseline-LD model
plus 7 non-tissue-specific annotations from Supplementary Fig. 6,
DeepSEAV-H3K4me3-brain-Max and BasenjiV-H3K27ac-brain-
Max (the 2 significant brain-specific variant-level annotations;
Supplementary Fig. 12) plus 4 additional brain-specific annota-
tions from Supplementary Fig. 15 plus BasenjiΔ-H3K4me3-Max
(the 1 significant non-tissue-specific allelic-effect annotation;
Fig. 2 and Supplementary Table 6).

A summary of the results is provided in Fig. 1 (Brain tissues,
Brain traits column); numerical results in Supplementary Table 5.
In our marginal S-LDSC analysis, brain-specific BasenjiΔ
annotations were more enriched for disease heritability (2.53x)
than brain-specific DeepSEAΔ annotations (1.94x), despite
similar annotation sizes. Two brain-specific BasenjiΔ annotations
(BasenjiΔ-H3K4me3-brain-Max and BasenjiΔ-H3K4me3-brain-
Avg) attained a Bonferroni-significant standardized effect size
(τ⋆) (Fig. 3 and Supplementary Table 21). (When we did not
condition on the 11 conservation-related annotations of the
baseline-LD model (Supplementary Table 9), 8 brain-specific
DeepSEAΔ and 6 brain-specific BasenjiΔ annotations attained a
Bonferroni-significant τ⋆ (Supplementary Table 22). In addition,
when we did not condition on BasenjiΔ-H3K4me3-Max, 0 brain-
specific DeepSEAΔ annotations and 3 brain-specific BasenjiΔ
annotations attained a Bonferroni-significant τ⋆ (Supplementary
Table 23); when we did not condition on BasenjiΔ-H3K4me3-
Max or the 6 brain-specific annotations from Supplementary
Fig. 12 and Supplementary Fig. 15, 7 brain-specific DeepSEAΔ
annotations and 7 brain-specific BasenjiΔ annotations attained a
Bonferroni-significant τ⋆ (Supplementary Table 24).

Despite the high correlation between variant-level and allelic-
effect annotations (r= 0.48; Supplementary Fig. 1), the corre-
sponding variant-level annotations (BasenjiV-H3K4me3-brain-
Max and BasenjiV-H3K4me3-brain-Avg) did not produce
significant signal (Fig. 3 and Supplementary Table 25), consistent
with our variant-level analysis (Supplementary Fig. 12). However,
when we did not condition on these two variant-level annota-
tions, 4 brain-specific DeepSEAΔ annotations and 6 brain-specific
BasenjiΔ annotations attained a Bonferroni-significant τ⋆ (Sup-
plementary Table 26).

We jointly analyzed the two annotations, BasenjiΔ-H3K4me3-
brain-Max and BasenjiΔ-H3K4me3-brain-Avg, that were
Bonferroni-significant in marginal analyses (Fig. 3) by performing
forward stepwise elimination to iteratively remove annotations
that had conditionally non-significant τ⋆ values after Bonferroni
correction (based on the 80 variant-level and allelic-effect brain-
specific annotations tested in marginal analyses). Of these, only
BasenjiΔ-H3K4me3-brain-Max was jointly significant in the
resulting brain-specific final joint model, with τ⋆ very close to
0.5 (Fig. 3, Supplementary Table 21 and Supplementary Table 27);
annotations with τ⋆ ≥ 0.5 are unusual, and considered to be
important36. A k-mer enrichment analysis (analogous to above)
indicated that BasenjiΔ-H3K4me3-brain-Max was enriched for
the k-mers CGCGC (6.2x and P= 1.1e-25) and CGGCG (6.1x
and P= 4.9e-25) (far larger and more statistically significant than
enrichments for simple GC-rich motifs such as the 2-mer CpG
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(1.4x and P= 0.32)), analogous to BasenjiΔ-H3K4me3-Max
(Supplementary Table 11). The 9-mer GCGGTGGCT (which
was enriched for heritability of blood-related traits in a previous
study36, is associated with the ZNF33A transcription factor
binding motif, and was enriched in the BasenjiΔ-H3K4me3-Max
annotation; see above) was not enriched in the BasenjiΔ-
H3K4me3-brain-Max annotation (Supplementary Table 12).

We did not consider secondary analyses of fine-mapped SNPs
for brain-related traits, due to the lack of a suitable resource
analogous to ref. 24.

We conclude that blood-specific allelic-effect annotations were
very highly enriched for heritability but not uniquely informative
for blood-related traits, whereas one brain-specific allelic-effect
annotation was uniquely informative for brain-related traits.
Blood-specific and brain-specific allelic-effect Basenji annotations
generally outperformed DeepSEA annotations, yielding higher
enrichments and the sole conditionally significant annotation,
similar to our non-tissue-specific allelic-effect analyses.

Discussion
We have evaluated the informativeness for disease of (variant-
level and) allelic-effect annotations constructed using two
previously trained deep learning models, DeepSEA13,15 and
Basenji16. We evaluated each annotation’s informativeness using
S-LDSC5,19; as a secondary metric, we also evaluated the accuracy
of gradient boosting models incorporating deep learning anno-
tations in predicting disease-associated or fine-mapped SNPs23,24,
as in previous work13,16. In non-tissue-specific analyses, we
identified one allelic-effect Basenji annotation that was uniquely
informative for 41 diseases and complex traits. In blood-specific
analyses, we identified no deep learning annotations that were
uniquely informative for 11 blood-related traits. In brain-specific
analyses, we identified brain-specific variant-level DeepSEA and
Basenji annotations and a brain-specific allelic-effect Basenji
annotation that were uniquely informative for 8 brain-related
traits. We caution that-because we conditioned on a broad set of
known functional annotations, in contrast to previous studies-the
improvements provided by deep learning annotations were very
small in magnitude, implying that further work is required to
achieve the full potential of deep learning models for complex
disease.

Our results imply that the informativeness of deep learning
annotations for disease cannot be inferred from metrics such as
AUROC that evaluate their accuracy in predicting underlying
regulatory annotations derived from experimental assays. Instead,
deep learning annotations must be evaluated using methods that
specifically assess their informativeness for disease, conditional on
a broad set of other functional annotations. The S-LDSC method
that we applied here is one such method, and the accuracy of
gradient boosting models incorporating both deep learning
annotations and other functional annotations can also be a useful
metric. We emphasize the importance of conditioning on a broad
set of functional annotations, in order to assess whether deep
learning models leveraging DNA sequence provide unique (as
opposed to redundant) information. Previous work has robustly
linked deep learning annotations to disease12–16, but those ana-
lyses did not condition on a broad set of other functional
annotations.

Our work has several limitations, representing important
directions for future research. First, our analyses of deep learning
annotations using S-LDSC are inherently focused on common
variants, but deep learning models have also shown promise in
prioritizing rare pathogenic variants15,37,38. The value of deep
learning models for prioritizing rare pathogenic variants has been
questioned in a recent analysis focusing on Human Gene Muta-
tion Database (HGMD) variants39, meriting further investigation.
Second, our analyses of allelic-effect annotations are restricted to
unsigned analyses, but signed analyses have also proven valuable
in linking deep learning annotations to molecular traits and
complex disease16,40,41. However, genome-wide signed relation-
ships are unlikely to hold for the regulatory marks (DNase and
histone marks) that we focus on here, which do not correspond to
specific genes or pathways. Third, we focused here on deep
learning models trained to predict specific regulatory marks, but
deep learning models have also been used to predict a broader set
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Fig. 3 Disease informativeness of brain-specific allelic-effect deep
learning annotations. a Heritability enrichment, conditioned on the brain-
specific variant-level joint model and the 1 significant non-tissue-specific
allelic-effect annotation (BasenjiΔ-H3K4me3-Max). Horizontal line denotes
no enrichment. b Standardized effect size τ⋆ conditioned on either the brain-
specific variant-level joint model and BasenjiΔ-H3K4me3-Max (marginal
analysis: left column, white) or the same model plus 1 brain-specific allelic-
effect annotation (BasenjiΔ-H3K4me3-brain-Max) (brain-specific final
joint model: right column, dark shading). Results are meta-analyzed across
8 brain-related traits. Results are displayed only for the 2 allelic-effect
annotations with significant τ* in marginal analyses after correcting for
80 (variant-level + allelic-effect) brain-specific annotations tested (P <
0.05/80), along with the corresponding variant-level annotations; the
correlation between the two allelic-effect annotations is 0.78, and the
average correlation between the two pairs of variant-level (Basenji) and
allelic-effect (BasenjiΔ) annotations is 0.44. For brain-specific final joint
model (right column), **P < 0.05/80. Error bars denote 95% confidence
intervals. Numerical results are reported in Supplementary Table 21 and
Supplementary Table 27.
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of regulatory features, including gene expression levels and
cryptic splicing15,16,38, that may be informative for complex
disease. We have also not considered the application of deep
learning models to TFBS, CAGE and ATAC-seq data16,41, which
is a promising future research direction. Fourth, we focused here
on deep learning models trained using human data, but models
trained using data from other species may also be informative for
human disease41,42. Fifth, the forward stepwise elimination pro-
cedure that we use to identify jointly significant annotations19 is a
heuristic procedure whose choice of prioritized annotations may
be close to arbitrary in the case of highly correlated annotations.
Nonetheless, our framework does impose rigorous criteria for
conditional informativeness. Finally, beyond deep learning
models, it is of high interest to evaluate other machine learning
methods for predicting regulatory effects43–47.

Methods
Genomic annotations and the baseline-LD model. We define a functional
annotation as an assignment of a numeric value to each SNP; annotations can be
either binary or continuous-valued (Methods). Our focus is on continuous-valued
annotations (with values between 0 and 1) trained by deep learning models to
predict biological function from DNA sequence. We define a genomic annotation
as an assignment of a numeric value to each SNP in a predefined reference panel
(e.g., 1000 Genomes Project25; see Data availability). Continuous-valued annota-
tions can have any real value; our focus is on continuous-valued annotations with
values between 0 and 1. Annotations that correspond to known or predicted
function are referred to as functional annotations. The baseline-LD model (v.2.1)
contains 86 functional annotations (see Data Availability). These annotations
include binary coding, conserved, and regulatory annotations (e.g., promoter,
enhancer, histone marks, TFBS) and continuous-valued linkage disequilibrium
(LD)-related annotations.

DeepSEA and Basenji annotations. Tissue-specific deep learning annotations
were derived using two pre-trained Convolutional Neural Net (CNN) models:
DeepSEA13,15 (architecture from ref. 15) and Basenji16 (see Code Availability).
DeepSEA is a classification based model trained on binary peak call data from
2, 002 cell-type specific TFBS, histone mark and chromatin accessibility annota-
tions from the ENCODE21 and Roadmap Epigenomics11 projects. Basenji is a
Poisson likelihood model trained on original count data from 4, 229 cell-type
specific histone mark, chromatin accessibility and FANTOM5 CAGE48,49 anno-
tations. Additionally, Basenji uses dilated convolutional layers that allow scanning
much larger contiguous sequence around a variant (≈130 kb) compared to
DeepSEA (1 kb). We restricted our analyses to DNase-I Hypersensitivity Sites
(DHS) and 3 histone marks (H3K27ac, H3K4me1 and H3K4me3) that are known
to be associated with active enhancers and promoters50.

For each SNP with minor allele count ≥5 in 1000 Genomes, we applied the pre-
trained DeepSEA and Basenji models to the surrounding DNA sequence (based on
the reference allele) to compute the predicted probability of a tissue-specific
chromatin mark (DNase, H3K27ac, H3K4me1, H3K4me3) to generate the
corresponding variant-level annotation. To generate the corresponding allelic-
effect annotation, we compute the predicted difference in probability between the
reference and the alternate alleles. The Basenji annotations were quantile-matched
to corresponding DeepSEA annotations to ensure a fair comparison of the two
approaches. We aggregated these probabilistic annotations across all 127 Roadmap
tissues by taking either the average (Avg) or maximum (Max) to generate non-
tissue specific annotations, yielding 8 DeepSEA annotations and 8 Basenji
annotations. Similarly, we aggregated over 27 blood cell types (respectively 13 brain
tissues) to generate blood (respectively brain) specific annotations for each
chromatin mark.

BiClassCNN annotations. We trained a deep learning model, BiClassCNN, to
prioritize SNPs within non-tissue-specific annotations; analyses of BiClassCNN
annotations are described in the Supplementary Note. BiClassCNN analyzes 1kb of
human reference sequence around each SNP (analogous to DeepSEA). The positive
training set for BiClassCNN consists of 1kb of reference sequence around SNPs
that are known to have the functionality of interest (e.g., coding); we included all
such sequences in the positive training set. The negative training set consists of 1kb
of reference sequence around SNPs that are 1kb away from all SNPs with the
functionality of interest; we included a subset of such sequences in the negative
training set, so as to match the overall size, GC content and repeat element content
of the positive set (as in ref. 43,51). We used a shallow Convolutional Neural Net
architecture for training (see Supplementary Fig. 16).

We ran two training models, one for the even chromosomes and one for odd
chromosomes, and used the trained model on even (respectively odd)
chromosomes to assign a predicted probability of functionality (e.g. coding), based
on sequence context, to each SNP on odd (respectively even) chromosomes. Unlike

DeepSEA and Basenji, BiClassCNN annotations were restricted to regions of
known functionality (e.g., coding) by setting annotation values to 0 outside those
regions; thus, BiClassCNN prioritizes SNPs within regions of known functionality
(e.g., coding). (BiClassCNN annotations that were not restricted in this fashion
were far less informative for disease.)

We restricted S-LDSC analyses of BiClassCNN annotations to annotations for
which the BiClassCNN AUROC value was at least 0.6 (Table 1 and Supplementary
Table 4). This eliminated three annotations (Intron, H3K27ac and UTR-3’), leaving
a total of 12 BiClassCNN annotations.

Other annotations. We also considered:

● (Supplementary Table 32) 8 Roadmap annotations11 (analogous to DeepSEA
and Basenji annotations) imputed using ChromImpute20.

● (Supplementary Table 32) 40 ChromHMM annotations21,22 based on 20
ChromHMM states across 127 Roadmap tissues11, again aggregated using the
average (Avg) or maximum (Max) across tissues.

● (Supplementary Table 33) 12 annotations consisting of CpG-island, local
CpG-content and local GC-content annotations, as well as these annotations
restricted to coding, repressed and TSS regions (for which BiClassCNN
produced conditionally significant signals). The CpG-island annotation was
retrieved from the UCSC genome browser52. Local CpG-content and local
GC-content denote the proportion of CpG and G + C dinuclotides in ±1 kb
regions around each variant of the genome, computed using the hg19
reference genome fasta file. By definition, the LocalGCcontent annotation is of
larger size than the LocalCpGcontent annotation.

● (Supplementary Table 33) 3 annotations consisting of a pLI annotation, as well
as this annotation restricted to coding and TSS regions. The pLI annotation
was defined by annotating each SNP in a 5 kb window around a gene with the
pLI score of that gene53. We did not consider the pLI annotation restricted to
repressed regions because unlike TSS and coding, repressed regions are not
directly linked to a gene.

● (Supplementary Table 33) 2 coding annotations, SIFT54 and Polyphen55,56,
which have been analyzed in previous work57,58.

Stratified LD score regression. Stratified LD score regression (S-LDSC) is a
method that assesses the contribution of a genomic annotation to disease and
complex trait heritability5,19. Let acj be the value of annotation c for SNP j, where
acj may be binary (0/1), continuous or probabilistic. S-LDSC assumes a linear
model for Y on the normalized genotype matrix X:

YN´ 1 ¼ XN´MβM ´ 1 þ ϵN ´ 1; ð1Þ
where β ¼ β1; β2; � � � ; βM

� �
is the genotype effect size and ϵ denotes environ-

mental noise. S-LDSC assumes that the per-SNP heritability for each SNP j can be
decomposed as

var βj

� �
:¼

X

c

acjτc; ð2Þ

where τc is the per-SNP contribution of one unit of annotation ac to heritability.
Under this model assumption, the GWAS summary χ2 statistics can be linked to τc
as follows:

E χ2j

h i
¼ N

X

c

lðj; cÞτc þ 1; ð3Þ

where lðj; cÞ ¼ P
kackr

2
jk is the stratified LD score of SNP j with respect to anno-

tation c and rjk is the genotypic correlation between SNPs j and k.
We assess the informativeness of an annotation c using two metrics. The first

metric is enrichment (E), defined as follows (for binary and probabilistic
annotations only):

Ec ¼
h2g ðcÞ
h2gP
j
acj

M

; ð4Þ

where h2gðcÞ is the heritability explained by the SNPs in annotation c, weighted by
the annotation values.

The second metric is standardized effect size (τ⋆) defined as follows (for binary,
probabilistic, and continuous-valued annotations):

τ?c ¼
τcsdc
h2g
M

; ð5Þ

where sdc is the standard error of annotation c, h2g the total SNP heritability and M
is the total number of SNPs on which this heritability is computed (equal to
5, 961, 159 in our analyses). τ?c represents the proportionate change in per-SNP
heritability associated to a 1 standard deviation increase in the value of the
annotation. The main difference between enrichment and τ⋆ is that τ?c quantifies
effects that are unique to the focal annotation c (after conditioning on all other
annotations), whereas enrichment quantifies effects that are unique and/or
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non-unique to the focal annotation. We computed the statistical significance (p-
values) of the enrichment and τ⋆ of each annotation via block-jackknife over 200
blocks5; for τ⋆, we assumed that τ?

seðτ?Þ � Nð0; 1Þ.

Weighted k-mer enrichment analysis. We performed weighted k-mer enrich-
ment analyses of the deep learning annotations that were conditionally informative
for disease heritability, for all 682 possible k-mers with 1 ≤ k ≤ 5 (merged with their
reverse complements). Results of these analyses are reported in Supplementary
Table 11 and Supplementary Table 50.

For each k-mer i, we computed k-mer counts κðiÞs in the 1kb regions around
each SNP s in the genome.

For each deep learning annotation D, for each k-mer i, we computed the

weighted average WðiÞ
D of k-mer counts κ(i), weighted by values of the probabilistic

annotation:

WðiÞ
D :¼

X

s

Dsκ
ðiÞ
s : ð6Þ

We compared WðiÞ
D with WðiÞ

Dnull , where Dnull is defined as the probabilistic
annotation with all values uniformly equal to �D, the average value (annotation size)
of annotation D.

We computed the weighted k-mer enrichment of annotation D with respect to k-
mer i as

WKEðiÞ
D :¼ WðiÞ

D =WðiÞ
Dnull ð7Þ

We assessed the statistical significance of the weighted k-mer enrichment via a
permutation test in which we randomly permuted the values of the deep learning

annotation D across SNPs and compared WKEðiÞ
D to values of WKEðiÞ

Dperm for each
permuted annotation Dperm. We computed p-values by fitting a Gaussian

distribution to the values of WKEðiÞ
Dperm across 10,000 such permutations.

Classification of disease-associated or fine-mapped SNPs. As an alternative to
conditional analysis using S-LDSC, we evaluated the efficacy of various sets of
annotations for classifying 12,296 disease-associated SNPs from the NIH GWAS
catalog23 (as in refs. 13,16) or 8,741 fine-mapped autoimmune disease SNPs24

against the same number of control SNPs, matched for minor allele frequency. We
used XGBoost, a machine learning technique based on gradient tree boosting59,60.
To optimize classification performance, we selected XGBoost parameter settings to
minimize overfitting, as in refs. 6162,63.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All deep learning annotations and other annotations used in this paper as well as relevant
codes are available online at https://data.broadinstitute.org/alkesgroup/LDSCORE/
DeepLearning/. This work used summary statistics from the UK Biobank study (http://
www.ukbiobank.ac.uk/). The summary statistics for UK Biobank used in this paper are
available at https://data.broadinstitute.org/alkesgroup/UKBB/. The 1000 Genomes
Project Phase 3 data are available at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/
20130502. The baseline-LD annotations are available at https://data.broadinstitute.org/
alkesgroup/LDSCORE/.

Code availability
This work primarily uses the S-LDSC software (https://github.com/bulik/ldsc). We used
publicly available software for DeepSEA (https://github.com/FunctionLab/ExPecto) and
Basenji (https://github.com/calico/basenji) to generate annotations for these respective
models. Codes for training and evaluating the BiClassCNN model are provided here:
https://data.broadinstitute.org/alkesgroup/LDSCORE/DeepLearning/.
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