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Neuropathic pain results from neuroplasticity in nociceptive neuronal networks. Here we demonstrate that
control of alternative pre-mRNA splicing, through the splice factor serine-arginine splice factor 1 (SRSF1), is
integral to the processing of nociceptive information in the spinal cord.
Neuropathic pain develops following a partial saphenous nerve ligation injury, atwhich time SRSF1 is activated in
damaged myelinated primary afferent neurons, with minimal found in small diameter (IB4 positive) dorsal root
ganglia neurons. Serine arginine protein kinase 1 (SRPK1) is the principal route of SRSF1 activation. Spinal SRPK1
inhibition attenuated SRSF1 activity, abolished neuropathic pain behaviors and suppressed central sensitization.
SRSF1 was principally expressed in large diametermyelinated (NF200-rich) dorsal root ganglia sensory neurons
and their excitatory central terminals (vGLUT1 + ve) within the dorsal horn of the lumbar spinal cord.
Expression of pro-nociceptive VEGF-Axxxa within the spinal cord was increased after nerve injury, and this was
prevented by SRPK1 inhibition. Additionally, expression of anti-nociceptive VEGF-Axxxb isoforms was elevated,
and this was associated with reduced neuropathic pain behaviors. Inhibition of VEGF receptor-2 signaling in
the spinal cord attenuated behavioral nociceptive responses to mechanical, heat and formalin stimuli, indicating
that spinal VEGF receptor-2 activation has potent pro-nociceptive actions. Furthermore, intrathecal VEGF-A165a
resulted in mechanical and heat hyperalgesia, whereas the sister inhibitory isoform VEGF-A165b resulted in
anti-nociception. These results support a role for myelinated fiber pathways, and alternative pre-mRNA splicing
of factors such as VEGF-A in the spinal processing of neuropathic pain. They also indicate that targeting pre-
mRNA splicing at the spinal level could lead to a novel target for analgesic development.

Crown Copyright © 2016 Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Insults to the peripheral nervous system usually result in pain and
hypersensitivity to noxious (hyperalgesia) and innocuous (allodynia)
stimuli. These abnormal sensations arise due to neuronal plasticity
leading to alterations in sensory neuronal excitability. These alterations
include peripheral sensitization (Djouhri et al., 2006), with enhanced
evoked and on-going activity in primary afferents, and central sensitiza-
tion, responsible for the generation and maintenance of chronic pain.
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The most widely accepted model for establishment of central sensitiza-
tion is that ectopic firing/increased activity in C-nociceptive afferents
drives altered spinal sensory processing, particularly the processing of
A-fiber inputs, resulting in secondary hyperalgesia and allodynia (pain
remote from an area of damage) (Li et al., 1999; Woolf and King,
1990; Woolf, 2011) (Kramer and Doring, 2013; Torebjörk et al., 1992;
Ziegler et al., 1999a). C-nociceptor changes are reported in themajority
of studies of animal or human neuropathies (Ali et al., 1999; Chen and
Levine, 2007; Djouhri et al., 2006; Khan et al., 2002; Kirillova et al.,
2011; Serra et al., 2012; Serra et al., 2014; Shim et al., 2007; Zhu and
Henry, 2012) (although not all e.g. (Chen and Levine, 2007; Khan et
al., 2002)). Central sensitization can also occur through neuro-immune
interactions, following injury-induced local immune cell infiltration and
cytokine production/release (Uceyler and Sommer, 2008). After nerve
injury there is activation of spinal glia, disruption of the blood-spinal
cord barrier, and consequent infiltration of immune cells (Clark et al.,
2013). These events can alter the central processing of peripheral in-
puts, implicated in the development of chronic pain (Geranton et al.,
2009; Kim et al., 2001; Torsney, 2011b). There is, however still debate
nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.nbd.2016.09.009&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.nbd.2016.09.009
mailto:Lucy.Donaldson@nottingham.ac.uk
http://dx.doi.org/10.1016/j.nbd.2016.09.009
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/09699961
www.elsevier.com/locate/ynbdi


187R.P. Hulse et al. / Neurobiology of Disease 96 (2016) 186–200
on how the processing of A or C fiber inputs is differentially regulated to
form the neuronal basis of chronic pain.

During chronic pain, changes in the complement of proteins result in
alterations in sensory neuron excitability, as recently demonstrated
whereby expression of voltage gated potassium channels in the DRG is
altered in ATF3 positive sensory neurons following nerve injury
(Tsantoulas et al., 2012). Furthermore, alternativemRNA splicing allows
for functionally distinct proteins to arise from a single gene. This pro-
vides a vast repertoire of actions from a limited source of transcripts,
allowing for cell-specific and stimulus-induced alteration in cellular
function. Targeting regulation and expression of alternative RNA tran-
scripts, and hence proteins, has been proposed as a potential route for
novel drug discovery (Tavares et al., 2015), but this has not beenwidely
investigated with respect to nociception/analgesia.

We recently demonstrated the analgesic effect of targeting alterna-
tive mRNA splicing, by inhibition of peripheral serine-arginine rich
protein kinase 1, SRPK1 (Hulse et al., 2014). SRPK1 controls phosphory-
lation of serine-arginine rich splice factor 1 (SRSF1), which is
fundamental to the control of the vascular endothelial growth factor A
(VEGF-A) family alternative splicing (Amin et al., 2011; Bates et al.,
2013; Nowak et al., 2010; Nowak et al., 2008). Inactive SRSF1 is located
in the cytoplasm, but when phosphorylated by SRPK1 it translocates to
the nucleus. There are two VEGF-A isoform families, VEGF-Axxxa and
VEGF-Axxxb (Harper and Bates, 2008) where xxx refers to the number
of amino acids encoded, and a and b denote the terminal amino acid
sequence. SRSF1 phosphorylation results in preferential production of
the proximal splice site isoforms, VEGF-Axxxa (Nowak et al., 2010). Little
is understood about the contribution of VEGF-A proteins to nociceptive
processing. VEGF receptor-2 (VEGFR2), the principal receptor activated
by both isoform families, has been implicated in nociceptive processing
in animal (Grosios et al., 2004; Hulse et al., 2014; Liu et al., 2012), and
clinical studies (Langenberg et al., 2011). VEGF-A isoforms and
VEGFR2 are present in the spinal cord (Bates et al., 2002a), and contrib-
ute to neuroregeneration and neuroprotection (Verheyen et al., 2012).

We therefore tested the hypothesis that the SRPK1/SRSF1 system
contributes to spinal nociceptive processing in rodent models of
neuropathic pain, concentrating on the effects of SRPK1 inhibition,
and VEGF-Axxxa/VEGFR2 signaling in central terminals of myelinated
afferents.

2. Materials and methods

2.1. Animals

Adult male Wistar rats (total 72; 250–350 g, Harlan UK) and adult
male 129Ola mice (total 20; 25–30 g inbred strain) were used. Animals
were provided food and water ad libitum. All animal procedures were
carried out in laboratories at the University of Bristol in accordance
with the U.K. Animals (Scientific Procedures) Act 1986 plus associated
U.K. Home Office guidance, EU Directive 2010/63/EU, with the approval
of the University of Bristol Ethical Review Group.

2.2. Nociceptive behavior

Nociceptive behavioral testing was carried out as previously
described (Hulse et al., 2014). All animals were habituated to both
handling by the tester and the testing environment on the day prior to
testing. Two days of baseline testingwere carried out prior to any inter-
vention (either drug or surgical) followed by testing post-intervention
at discrete time-points as detailed in each experiment. Stimuli were
applied to the partially innervated medial aspect of the plantar surface
of the hindpaw, an area innervated by the saphenous nerve.Mechanical
withdrawal thresholds were calculated from von Frey hair force re-
sponse curves. Animals were housed in Perspex holding chambers
with metal mesh floors (Ugo Basile) and allowed to habituate for
10min. A range of calibrated von Frey hairs were applied to the plantar
surface of the hind paw (for a maximum of five seconds or until paw
withdrawal), with a total of five applications per weighted hair. From
these data, force response curves were generated and withdrawal
values were calculated as the weight at which withdrawal frequency=
50%. Tactile allodynia was assessed in the metal mesh floored enclo-
sures using a brush moved across the plantar surface of the hind paw
where awithdrawal scored one,with no response zero. Thiswas repeat-
ed a total of five times giving a maximum score of five per session. Cold
allodynia: a single drop of acetone was applied to the plantar surface of
the hind paw using a 1 ml syringe a maximum of five times giving a
maximum score of five if the animal exhibited licking/shaking behavior
in response to each application. Thermal hyperalgesia (Hargreaves test
(Hargreaves et al., 1988): animals were held in Perspex enclosures
with a glass floor. A radiant heat source was positioned under the
hind paw, and the latency was recorded for the time taken for the ani-
mal to move the hind paw away from the stimulus. This was repeated
three times and a mean value calculated for each test.

Formalin Testing: animals were habituated to glass floored testing
enclosures as above. A single 50 μl injection of 5% formalin was admin-
istered to the plantar surface of the right hind pawby intradermal injec-
tion. Immediately following formalin injection, animals were placed
into the testing enclosures. Time (seconds) spent exhibiting pain-like
behaviors and the total number of pain-like behaviors was recorded in
five minute bins for sixty minutes. Data are shown as the classical
biphasic response with behavioral responses pooled for the first phase
0–15 min and second phase 20–60 min. Blinding of nociceptive
behavioral studies are routine in the laboratory however where animal
welfare/experimental design prohibits this, it cannot be implemented.
For instance, in nerve-injured animals blinding is not possible as
controls are naïve. The lack of blinding may have introduced some
subjective bias into these experiments, which is in part mitigated by
behavioral data is supported by the inclusion of experiments in which
measurements are not subjective (e.g. in vivo noxious e.m.g. recording,
expression analysis, and neuronal activation using c-fos).

2.3. Electromyographic experiments

Awell-defined method for minimally invasive preferential selection
of either C- or A- fiber mediated nociceptive pathways was used
(Yeomans et al., 1996; Yeomans and Proudfit, 1996). Noxious
withdrawal responses to A- and C-nociceptor selective stimulation
were carried out as previously described (Leith et al., 2014; Leith et al.,
2007; McMullan et al., 2004), by measurement of electromyographic
activity in biceps femoris. Animals were anesthetized using isoflurane
induction (4% in oxygen), and the external jugular vein and trachea
were cannulated to allow maintenance of airway and anesthesia. Fol-
lowing surgery, anesthesia was switched to alfaxalone (~30 mg/kg/h
i.v.), and animals were maintained at a steady level of anesthesia by
continuous pump perfusion via the jugular vein for the remainder of
the experiment. Bipolar electrodesweremadewith Teflon coated stain-
less steel wire (Advent Research Materials, Oxford UK) implanted into
the bicep femoris. EMG recordings were amplified and filtered by a
combination of in-house built and Neurolog preamplifier and band
pass filters (Digitimer Neurolog System). Animals were maintained at
a depth of anesthesia where a weak withdrawal to noxious pinch
could be elicited for the duration of the experiment. A- and C-cutaneous
nociceptors were preferentially activated to elicit withdrawal reflex
EMGs using a well-characterized contact heating protocol (Leith et al.,
2014; Leith et al., 2007; McMullan et al., 2004). Two different rates of
heating (2.5 °C/s and 7.5 °C/s) were applied to the dorsal surface of
the left hind paw as these are known to preferentially activate slow/C-
nociceptors (2.5 °C·s−1) and fast/A nociceptors (7.5 °C·s−1) respective-
ly. Contact skin temperature at the time of onset of the EMG response
was taken as the threshold. A cutoff of 58 °C for A-nociceptors, 55 °C
for C-nociceptors was put in place to prevent sensitization if no re-
sponsewas elicited. If awithdrawal responsewas not elicited, threshold
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was taken as cut-off +2 °C (Drake et al., 2014). Three baseline record-
ings were performed before i.t. drug injection with a minimum 8 min
inter-stimulus interval, and alternating heating rates, to prevent sensiti-
zation or damage to the paw. Digitized data acquisition, digital to
analogue conversion, and offline analyses were performed using a
CED Micro1401 Mark III and Spike2 version 7 software (Cambridge
Electronic Design, UK).

2.4. Nerve injury model

The partial saphenous nerve ligation injury (PSNI) model was used
to induce mechanical and cold allodynia, as described previously
(Hulse et al., 2010; Walczak et al., 2005). Under isoflurane anesthesia
(3% in O2,), the saphenous nerve was exposed via an incision made
along the inguinal fossa region of the right hind leg. Approximately
50% of the nerve was isolated and tightly ligated using 4.0 silk suture,
and the incision was closed using size 4.0 sterile silk suture.

2.5. Drugs and drug delivery

I.t. injectionswere carried out under isoflurane (4% in oxygen) anes-
thesia, using 0.5 ml insulin syringes (29 gauge, Terumo) in rats and
mice. For i.t. administration, 10 μl injections were made in the midline
of the vertebral column through the intervertebral space between lum-
bar vertebrae five and six. The injectionwas deemed to be in the correct
place when it evoked a tail flick response. Rats were used for i.t. anti-
VEGF-Axxxb experiments, as the 56/1 mouse monoclonal antibody had
not been validated in mice at that time. All nociceptive behavioral
testing was carried out one hour after intrathecal injection as initial
experiments indicated that responses to i.t. PTK peaked at 1 h, and
returned to normal by 2 h after injection.

All drugs were made up as stock concentrations and then diluted to
working concentration in phosphate buffered saline (PBS) as described
in each experiment. Vehicle controls were used for each drug. PTK787
(LC laboratories, USA) was dissolved in polyethylene glycol (PEG)
300/PBS, with the final PEG 300 concentration at 0.002%. ZM323881
(Tocris, UK) was made up in DMSO/PBS and given intrathecally at a
final concentration of 100 nM ZM323881/0.001% DMSO. Mouse
monoclonal VEGF-A165b antibody 56/1 (AbCam ab14994; MRVL56/1),
recombinant human (rh)VEGF-A165A (R&D systems, UK) and
rhVEGF-A165b (R&D Systems UK) were all dissolved in PBS. SRPIN340
(N-[2-(1-piperidinyl)-5-(trifluoromethyl)phenyl]isonicotinamide;
SRPK inhibitor (Gammons et al., 2013) purchased from Ascent Scientific,
Bristol, UK)was dissolved in DMSO and diluted to final concentrations in
PBS (to a final DMSO concentration of 0.03%). All peptides and concen-
trations used have been previously shown to exert functional effects in
neurons and/or other biological systems (Beazley-Long et al., 2013;
Hulse et al., 2014; Oltean et al., 2014). SRPIN340 has been used in several
other studies, different pathological states, and was used at a known
functional concentration (10 μM), as previously described (Amin et al.,
2011; Hulse et al., 2014; Mavrou et al., 2015).

2.6. Immunohistochemistry

Rats were terminally anesthetized with sodium pentobarbital over-
dose (i.p. 60 mg/kg) and were perfused transcardially with saline
followed by 4% paraformaldehyde. The L3-4 segments of the lumbar en-
largement, containing the central terminals of saphenousnerve neurons
(Phillips and Park, 1993), and L3-L4 dorsal root ganglia were removed,
post fixed in 4% paraformaldehyde for 2 h and cryoprotected in 30%
sucrose for 12 h. Tissue was stored in OCT embedding medium at
−80 °C until processing. A cryostat was used to cut spinal cord
(20 μm) and dorsal root ganglia (8 μm) sections that were thaw
mounted onto electrostatic glass slides. Slides were washed in phos-
phate buffered saline (PBS) solution 3 times for 5 min per incubation,
and incubated in PBS 0.2% Triton X-100 for 5min. Sectionswere blocked
(5% bovine serum albumin, 10% fetal bovine serum, 0.2% Triton X-100 in
PBS) for 2 h at room temperature, and then incubated in primary anti-
bodies diluted in blocking solution overnight at 4 °C. Sections were
washed three times in PBS washes and incubated for 2 h in secondary
antibody (e.g. biotinylated or alexafluor-conjugated; 0.2% Triton X-100
in PBS). For the third stage (i.e. streptavidin-alexfluor conjugate), incu-
bations andwasheswere as described for the secondary antibody. Slides
were washed in PBS 3 times prior to coverslipping in Vectorshield
(H1000 or H1200 containingDAPI for nuclear staining, Vector Laborato-
ries). Images were acquired on either Nikon Eclipse E400 and a DN100
camera or Leica TCS SPE confocal microscope using Leica application
suite (Tumor and Vascular Biology Laboratories' imaging suite UoN).

Primary antibodies used were as previously reported (Amin et al.,
2011; Nowak et al., 2010): anti-ATF3 (rabbit polyclonal; 2 μg/ml:
Santa Cruz), anti-c-fos (rabbit polyclonal; 2 μg/ml: Santa Cruz), anti-
SRSF1 (goal polyclonal; 2 μg/ml; sc-10,255 Santa Cruz), anti-vGLUT1
(rabbit polyclonal, 60 pg/ml, Synaptic Systems), anti-NF200 (mouse
monoclonal; 1.4 μg/ml; N0142 Sigma-Aldrich), anti-NeuN (mouse
monoclonal, 1 in 100,Millipore). Use of anti-VEGF-A and SRSF1 antibod-
ies for both immunolocalization and immunoblotting has been previ-
ously reported (Amin et al., 2011; Bates et al., 2013). Secondary
antibodies (1 in 1000 dilution and from Invitrogen unless stated):
Alexafluor 488 goat anti-mouse, Alexafluor 488 chicken anti-goat,
Alexafluor 555 donkey anti-goat, Alexafluor 555 donkey anti-rabbit;
biotinylated anti-rabbit (Stratech Scientific), Extravidin CY3 (Sigma-
Aldrich). Dorsal root ganglia neuronal cell counts were performed
using ImageJ analysis to measure neuronal area (μm2) (Schneider et
al., 2012). The saphenous nerve is approximately equally derived from
lumbar DRGs 3 and 4 in rat and human (Baron et al., 1988; Phillips
and Park, 1993; Zhong et al., 2003); the mean number of neurons per
sectionwas quantified from 10 non-sequential random L4DRG sections
per animal. Data are presented as themean number of neurons per sec-
tion and the experimental unit is the animal. The number of activated
SRSF1-positive neurons (defined as those showing nuclear localization
of SRSF1) was calculated as a percentage of total neurons as designated
by size (small b 600 μm2,medium600 μm2–120 0 μm2, large N 1200 μm2)
(Tsantoulas et al., 2012). The total number of DRG neurons quantified
was ~5000 (100 neurons per section, 10 per animal, 3 per group). Deter-
mination of SRSF1 spinal cord expression/localization was determined
from 5 non-sequential random spinal cord sections per animal using
Image J analysis. Images were converted to an 8-bit/grayscale image
then thresholding was applied across all acquired images to determine
the area of positive staining. Areas of positive staining were then quan-
tified across all sections and groups. Colocalization was determined via
coloc2 plugin in ImageJ. Controls for VEGF-A and SRSF1 immunofluores-
cence consisted of incubationwith only secondary antibody (‘no prima-
ry’ control) or substitution of the primary antibody with a species
matched IgG.

2.7. Western blotting

Naïve and PSNI rats (treated with i.t. vehicle or SRPIN340) were ter-
minally anesthetized (i.p. 60mg/kg sodiumpentobarbital) and perfused
with saline solution. The lumbar region of the spinal cordwas extracted
and frozen immediately on dry ice, then stored at −80 °C. Protein
lysates (80 μg/well) were prepared using lysis buffer (RIPA buffer,
Sigma-Aldrich) with protease inhibitors (Sigma-Aldrich) and samples
were homogenized. Protein extracts were stored at −80 °C until re-
quired. Samples were run on a 4% stacking gel/12% running SDS-PAGE
gel (90 V, 1 h 30 min) and transferred (wet transfer) to nitrocellulose
membrane for 1 h@100V.Membraneswere then incubatedwith either
α-SRPK1 (mouse; 1 μg/ml; Sigma-Aldrich), α-SRSF1 (ASF/SF2; rabbit;
0.5 μg/ml; Abcam), α-SRSF1 (ASF/SF2; mouse; 0.5 μg/ml; SantaCruz),
α-Actin (SantaCruz; 2 μg/ml) α-VEGF-A165b (mouse; 4 μg/ml;
Abcam), α-pan-VEGF-A (rabbit; Santa Cruz A20; 2 μg/ml) or α-tubulin
(mouse; 1 in 4000; Sigma-Aldrich) antibodies and visualized with



189R.P. Hulse et al. / Neurobiology of Disease 96 (2016) 186–200
Femto chemoilluminescence kit (exposure between 1 s and 1 min,
Thermo Scientific) or Licor IRdye secondary antibodies (as previously
reported (Amin et al., 2011; Gammons et al., 2013; Nowak et al., 2010)).

2.8. Statistical analysis

All data are represented as means ± SEM. Data were extracted and
analyzed using Microsoft Excel 2010, Graphpad Prism v6 and ImageJ
(Schneider et al., 2012). Nociceptive behavioral analyses were
between-subjects designs comparing effects of drugs by two way
ANOVA with post-hoc Bonferroni tests. In those experiments involving
intrathecal and intraperitoneal administration of drugs in naïve animals,
both hind paws were included in the analysis as replicates. EMG
experiments used a within-subjects design and immunofluorescence
experiments a between-subjects design with the effects of drug
treatment compared to baseline values using one-way ANOVA with
post-hoc Bonferroni tests. Immunofluorescence analysis of spinal cord
(c-fos quantification) was taken from entirety of dorsal horn. DRG
(SRSF1 + ve) and spinal cord (c-fos) neuron counts were ascertained
from multiple representative images, at least 10 per animal and the
mean value of those 10 calculated. Coloc2 analysis (Image J plugin)
was used to ascertain the pixel intensity spatial correlation (co-localiza-
tion) of SRSF1 and vGLUT1 staining in the spinal cord. This provides an
automated measure of the correlation of pixel intensity for the two
independent immunofluorescence channels for each sample, given as
the Pearson's correlation co-efficient (Costes et al., 2004; Li et al.,
2004). Western blot analyses of SRSF1 and VEGF-A family expression
Naive

[E]PSNI
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DAPI SRSF1

PSNI
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Fig. 1. SRSF1 expression and activation in DRG sensory neurons following PSNI injury. [A–C] SRS
neurons in naïve animals. [D] Replacement of the primary antibodywith a speciesmatched IgG
DAPI in DRG sensory neurons following PSNI injury (arrows). In some neurons cytoplasmic S
staining. [I & J] Representative examples of ATF3 expression in NeuN-co-labeled DRG sensory
was significantly increased in the L4 from PSNI animals (unpaired t-test, n = 5/group). [L–O]
(white arrows). **p b 0.001. Scale bars = 50 μm low magnification and 20 μm high magnificat
were determined from ImageJ densitometry analysis (gel analysis plug
in) and compared using Mann Whitney U tests. All F test statistics are
described as a column factor with reference to drug/experimental
grouping. NS designates not significant.

3. Results

3.1. SRSF1 is predominantly expressed in myelinated neurons in rats

SRPK1 and SRSF1 are key factors in the control of VEGF-Axxxa prefer-
ential splicing particularly in disease (Amin et al., 2011; Nowak et al.,
2010). SRSF1 is expressed in the cytoplasm of dorsal root ganglia
(DRG) neurons in naïve animals (Hulse et al., 2014)(Fig. 1A–C). Upon
activation (phosphorylation), SRSF1 is known to translocate from the
cytoplasm to the nucleus (Amin et al., 2011; Nowak et al., 2010),
where it is involved in pre-mRNA processing. Following PSNI, SRSF1
immunoreactivity in sensory DRG neurons was found to be nuclear
(Fig. 1E-G) in somebut not all neurons.Matched IgG (Fig. 1D) and omis-
sion of primary antibody (Fig.1H) controls showedno signal. PSNI injury
induces activating transcription factor 3 (ATF3) expression in injured
DRG sensory neurons (Beazley-Long et al., 2013). Therewas an increase
in ATF3-positive DRG neurons after PSNI (Fig. 1I–K), with 43% of DRG
neurons expressing ATF3 post-PSNI compared to only 1% in naïve ani-
mals (Fig. 1K). After PSNI, all nuclear localized SRSF1-positive (Fig. 1L)
DRG neurons (Fig. 1M) were also ATF3 positive (Fig. 1N), indicating
nuclear SRSF1 was exclusively found in damaged neurons (Fig. 1O).
This represents that 45% of ATF3 -positive neurons were also SRSF1
SRSF1
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control DRG image resulted in no staining. [E–G] SRSF1was co-localizedwith nuclear stain
RSF1 is still evident (arrowheads). [H] Omission of the primary antibody resulted in no
neurons in [I] naïve and [J] PSNI animals. [K] The number of ATF3 positive DRG neurons
High magnification representative images of SRSF1/ATF3/NeuN co-labeled DRG neurons.
ion.
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positive, with the remaining 55% of ATF3 positive neurons negative for
SRSF1.

SRSF1 was expressed predominantly in the cytoplasm of 96% of
larger (cross sectional area N 1200 μm2) neurofilament-200 (NF200)
positive DRG neurons in naïve animals (Fig. 2A–C, L), and 71% of medi-
um (area 601–1200 μm2) neurons, but was in only a small proportion
(14%) of neurons of area b600 μm2 (small, b30 μm diameter). NF200
is a marker for myelinated neurons indicating that SRSF1 expression is
principally found in the somata of A-fiber DRG neuronal population,
but it was also found in peripheral sensory nerve fibers in PSNI animals
(Fig. 2I–K). Following PSNI, activated (nuclear) SRSF1 co-localized with
ATF3 and NF200 in DRG sensory neurons (Fig. 2D–F), The size distribu-
tion of activated (nuclear) SRSF1 in injured neurons was similar to that
in natives, −69% of large cells, 21.5% of medium cells but a small
proportion (1.7%) of small neurons. In contrast, only a minority of the
IB4-binding, largely unmyelinated DRG neurons from nerve-injured
animals were positive for SRSF1 (Fig. 2G–H). The size distribution
profile of DRG sensory neurons indicated that SRSF1-positive neurons
are medium/large in size (Fig. 2L).

SRSF1 immunofluorescence was also identified in the lumbar region
of the spinal cord of PSNI rats,where itwas co-localizedwith themarker
of myelinated primary afferent central terminals, the vesicular gluta-
mate transporter 1 (vGLUT1, Fig. 3A–C) (Brumovsky and Hökfelt,
2007; Neumann et al., 2008; Yasaka et al., 2014). There was an increase
in SRSF1 expression in the central sensory terminals 2 days after PSNI, as
assessed by immunofluorescence (Fig. 3D–I) and quantified byWestern
blot (Fig. 3J–K; p = 0.055). Co-localization analysis of vGLUT1 and
SRSF1 staining showed a stronger colocalization in the PSNI animals
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Fig. 2. SRSF1 expression in NF200 sensory neurons. [A–C] SRSF1 expression in the cytoplasm
cytoplasmic localization of the SRSF1 (arrows). [D–F] Following PSNI, clear SRSF1 nuclear tra
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(indicative of increased SRSF1 expression) in PSNI (Fig. 3L). vGLUT1 is
found in large diameter myelinated neurons, and is not found in either
the peptidergic or IB4-binding C-nociceptor populations (Brumovsky
and Hökfelt, 2007; Oliveira et al., 2003). Furthermore, SRSF1 (Fig. 3M)
was co-localized with vGLUT1 (Fig. 3M-O) in DRG sensory neurons.
Therewas no SRSF1 expression in the contralateral dorsal horn of either
naïve or PSNI rats, although vGLUT1 expression was evident, indicating
that the increased spinal SRSF1 expressionwas associatedwith injury to
peripheral neurons and not a systemic response (Fig. 3P–S).

3.2. Attenuation of SRSF1mediated alternative splicing prevents A-nociceptor
mediated neuropathic pain in rats

The increased SRSF1 immunoreactivity in vGLUT1-positive central
terminals after PSNI (Fig. 3) was accompanied by an increase in total
VEGF-A expression in spinal cord (Fig. 4A–F) assessed with the pan-
VEGF-A antibody A20 (Amin et al., 2011). VEGF-A was also co-localized
with SRSF1 in some, but not all central terminals (Fig. 4G–I). VEGF-Axxxb
remained unchanged in spinal cord after PSNI whereas total (pan)-
VEGF-A significantly increased (Fig. 4J & K). This indicates an increase
in the expression of VEGF-Axxxa isoforms, resulting in a decrease in
VEGF-Axxxb as a proportion of total-VEGF-A (Fig. 4L).

These results suggest that SRSF1 phosphorylation and activation at
the level of the spinal cord is induced by PSNI, and is accompanied by
a change of the balance of VEGF isoforms toward VEGF-Axxxa. As
VEGF-A165a has been shown to be pro-nociceptive, and VEGF-A165b
anti-nociceptive (Hulse et al., 2014), it is therefore possible that changes
in SRSF1 and VEGF-A expression at the level of the spinal cord are
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associated with the development of neuropathic pain behaviors. SRSF1
activity is activated through phosphorylation by serine-arginine-rich
protein kinase SRPK1 (Amin et al., 2011). To test the hypothesis
that PSNI neuropathic pain is dependent upon SRSF1 activation,
we inhibited SRPK1 in the spinal cord of rats, with intrathecal (i.t)
injection of the SRPK1 antagonist, SRPIN340 (N-[2-(1-piperidinyl)-5-
(trifluoromethyl)phenyl] isonicotinamide, Ascent Scientific, Bristol
UK) (Fukuhara et al., 2006) (10 μM i.t. injection) at the time of nerve in-
jury surgery (time point day 0). SRPIN340 has been used extensively to
inhibit SRPK1 activity and a multitude of studies have demonstrated its
involvement with controlling alternative splicing for VEGF-A isoforms
(Amin et al., 2011; Mavrou et al., 2015; Nowak et al., 2010), through
suppression of SR protein phosphorylation and stabilization (Fukuhara
et al., 2006). SRPIN340 inhibits both SRPK1 and SRPK2 at concentrations
equal or b10 μM (Fukuhara et al., 2006), and this has been shown pre-
viously to inhibit VEGF-Axxxa production in vitro (Nowak et al., 2010)
and in vivo (Amin et al., 2011). PSNI induced a reduction in mechanical
withdrawal thresholds in the ipsilateral hind paw as expected, and this
was blocked by i.t. SRPIN340 (Fig. 5A; PSNI + vehicle n = 9,
PSNI + SRPIN n = 6). Tactile and cooling allodynia which also devel-
oped in the ipsilateral hind paw (Figs. 5B & C) were also inhibited by
SRPIN340. Contralateral hind paws from vehicle and SRPIN340 treated
groups did not differ from each other, indicating no effect of central
SRPK1 inhibition on noxious processing from uninjured tissue. The
PSNI model does not in itself lead to the development of heat
hyperalgesia (Hulse et al., 2010), but Hargreaves latencies did increase
as a result of SRPIN340 treatment compared to vehicle treated PSNI
animals, both ipsilateral (Fig. 5D) and contralateral (Fig. 5E) to the
nerve injury, indicating a possible contribution of SRPK1/SRSF1 in
normal nociceptive processing. SRPIN340 treatment also resulted in a
significant inhibition of the increase in SRSF1 immunoreactivity in the
central terminals of the dorsal horn of the spinal cord induced by PSNI
(Fig. 6A–H). Furthermore, the administration of SRPIN340 resulted in
increased distal splice site, anti-nociceptive isoform VEGF-Axxxb with
no overall change in total VEGF-A expression (Fig. 7A), indicating a
switch from proximal to distal splice site transcripts following SRPIN
treatment in peripheral nerve injury (Fig. 7B–C). Intrathecal SRPIN340
not only blocked the development of nociceptive behaviors and altered
alternative splicing in the dorsal horn, it also blocked indicators of
central sensitization. The number of c-fos positive neurons in the spinal
cord, a marker of central sensitization (Hunt and Evan, 1987) as
assessed by immunofluorescent staining (Fig. 7D), was increased after
PSNI and was significantly reduced by i.t. SRPIN340 (Fig. 7E–F). SRPK1
protein expression within the spinal cord was not significantly altered
following nerve injury alone (Fig. 6G).

3.3. VEGF-R2 activation at the level of spinal cord contributes to nociceptive
processing

VEGF-Axxxa and VEGF-Axxxb differ only in their terminal 6 amino
acids. The C-terminal sequence determines the efficacy of VEGFR2 sig-
naling of the isoforms and their functional properties (Cébe Suarez et
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al., 2006). On binding to VEGFR2, VEGF-Axxxa leads to full phosphoryla-
tion and activation of VEGFR2, whereas VEGF-Axxxb activates only
partial VEGFR2 phosphorylation, leading to receptor degradation
(Ballmer-Hofer et al., 2011). VEGF-A165b also antagonizes VEGF-Axxxa
binding (Woolard et al., 2004). The different C-terminal sequences
also determine the anti- or pro-nociceptive effects of the VEGF-A165b
and VEGF-A165a isoforms respectively (Hulse et al., 2014) but both iso-
forms promote neuroprotection (Beazley-Long et al., 2013; Sondell and
Kanje, 1999). Our findings above show that VEGF-A alternative splicing
is altered in neuropathic states (Fig. 3–5), and this is associated with
pain behaviors. These results suggest that spinal cord VEGFR2 activation
by different VEGF isoforms could contribute to nociceptive processing.
Despite evidence from clinical studies that demonstrate an involvement
of VEGF receptors in pain (Langenberg et al., 2011; McCarthy and
McCrory, 2013), and experimental evidence showing that spinal VEGF
levels are associated with pain (Nesic et al., 2010), there are few pub-
lished findings on the effects of VEGF-A in spinal nociceptive processing.
As spinal VEGF-A splicing and isoform expression, and therefore by
inference VEGFR2 activation, were altered in PSNI we determined the
effect of VEGFR antagonism on central nociceptive processing.

PTK787 (or vatalanib) is a tyrosine kinase inhibitor that has non-se-
lective inhibitory actions on VEGFR1 and 2. It is 18-fold more selective
for VEGFR1 and 2 over VEGFR3, and has slight selectivity for VEGFR2
(IC50 b 50 nM) over VEGFR1 (IC50 ~ 100 nM) (Wood et al., 2000). In
naïve rats, systemic VEGFR antagonism with PTK787 (30 mg/kg, i.p.)
increased thermal withdrawal latencies to heat (Fig. 8A n = 5/group)
indicating an analgesic effect. To determine the effect of PTK787 on
one aspect of central nociceptive processing, we used the formalin
test. Injection of formalin into the hind paw allows for the investigation
of two distinct phases of acute nociceptive behavior. The initial phase
(0–15min) is largely mediated by peripheral nerve activation, whereas
the secondhas both a peripheral and central component. One hour prior
to formalin injection, rats were treated with either (i.p.) vehicle or
PTK787. The acute phase was unaffected (0–15 min) by PTK787
treatment (Fig. 8B–E; n = 7/group). In contrast the second phase (20–
60 min) was significantly reduced by systemic PTK787 treatment for
both the time of flinching (Fig. 8B & D) and the number of flinches
(Fig. 8C & E). These results suggest a central component of VEGFR inhi-
bition. To determine the targets of VEGF-A/VEGFR signaling in naïve
rats, given the effects of the VEGFR antagonist on the second phase of
the formalin test, we recorded electromyographic nociceptive with-
drawals to selective nociceptor activation. Fast heating (fast heating
rates ~ 7.5 °C/s) preferentially activates myelinated A-nociceptors and
slow heating activates unmyelinated C-nociceptors, both inducing a
withdrawal from the stimulus. To determine VEGFR2 specific actions,
ZM323881 (5-[[7-(benzyloxy) quinazolin-4-yl]amino]-4-fluoro-2-
methylphenol) was used locally. ZM323881 which has sub-nanomolar
potency and specificity for VEGFR2 (IC50 b 2 nM) (Whittles et al.,
2002), with an IC50 N50 μM for VEGFR1 and PDGFR (Whittles et al.,
2002). I.t. ZM323881 (100 nM, specific VEGFR2 inhibitor, (Whittles et
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al., 2002) led to a prolonged (up to 60min) increase in the temperature
at which the rats withdrew during A-nociceptor stimulation (Fig. 8F,
n = 3–5 per group). ZM323881 did not have a significant effect on
C-nociceptor withdrawals (Fig. 8F). These results show that
VEGFR2 signaling is mediated, at last in part, by A-nociceptor activa-
tion in the spinal cord.

Taken together, these results are consistent with the hypothesis that
the VEGF-A isoforms may have different functions in the spinal cord, as
in the periphery (Hulse et al., 2014). We tested this by giving VEGF
agonists and antagonists intrathecally (i.t.), and measuring pain behav-
iors in mice and rats. PTK787 increased both mechanical withdrawal
thresholds (Fig. 9A; n = 3 mice/group, 6 hind-paws treated as
replicates) and heat nociceptive withdrawal time (Fig. 9B) compared
with vehicle treated mice. In contrast injection of 2.5 nM VEGF-A165a
reduced mechanical withdrawal thresholds (Fig. 9C; n = 4 mice/
group, 8 hind-paws treated as replicates) and heatwithdrawal latencies
(Fig. 9D), indicating a central pro-nociceptive action of VEGF-A165a in
naïve mice. Conversely, 2.5 nM VEGF-A165b increased mechanical
thresholds (Fig. 9E n=4mice group, 8 hind-paws treated as replicates)
and heat withdrawal latencies (Fig. 9F) indicating a central anti-noci-
ceptive effect. In rats, administration of a neutralizing antibody against
VEGF-Axxxb had a similar effect to that of VEGF-A165a, decreasing with-
drawal thresholds to mechanical stimulation (Fig. 9G; n= 3 rats group,
6 hind-paws treated as replicates) and the time taken for withdrawal
from heat (Fig. 9H), indicating that loss of endogenous VEGF-Axxxb
from the spinal cord is painful in naïve animals.

3.4. Attenuation of central VEGFR2 signaling leads to alleviation of
neuropathic pain

Wemimicked the effect of spinal SRPK1 inhibition by increasing the
proportion of spinal VEGF-A165b with exogenous protein, 2 days after
the onset of neuropathic pain behavior in rats. Intrathecal VEGF-A165b
reversed both mechanical (Fig. 10A) and cold allodynia (Fig. 10B) and
increased thermal withdrawal latencies both ipsilaterally (Fig. 10C)
and contralaterally (Fig. 10D). IP (30mg/kg) PTK787 led to the increase
in withdrawal latencies to heat both ipsilateral (Fig. 10E) and contralat-
eral (Fig. 10F) in PSNI injured rats.

4. Discussion

We show that the splicing factor kinase SRPK1 is a key regulator of
spinal nociceptive processing in naïve and nerve injured animals. We
present evidence for a novel mechanism in which altered SRSF1 locali-
zation/function in neuropathic pain results in sensitization of spinal
cord neurons. Inhibiting the splicing factor kinase SRPK1 can control
alternative splicing of VEGF-A isoforms in spinal cord, and can prevent
the development of neuropathic pain.
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4.1. Alternative splicing and pain

The development of neuropathic pain and associated neuronal exci-
tation, results from alterations in neuromodulatory protein function,
leading to sensitization of peripheral and central nociceptive systems.
Both short and long term changes occur in the expression and function
of ion channels, receptors, excitatory and inhibitory neurotransmitters/
modulators and second/third messenger systems (Cheng and Ji, 2008;
Tsantoulas and McMahon, 2014; Tsantoulas et al., 2012) leading to the
regulation of neuronal excitability through modulation of excitatory
and/or inhibitory networks. Many of these alterations can be attribut-
able to altered protein expression (e.g. (Obara and Hunt, 2014; Saab,
2012). Alternative pre-mRNA splicing is a rapid, dynamic process,
recognised to be important in many physiological processes, including
in nociception (Kalsotra and Cooper, 2011). Such splicing ofmany chan-
nels and receptors particularly calciumchannels, is altered in pain states
(Asadi et al., 2009; Nakae et al., 2013), but prior to our studies the
control of mechanisms of alternative pre-mRNA splicing had not been
considered as a contributory factor in nociceptive processing (Hulse et
al., 2014).
4.2. Inhibition of SRPK1 alleviates neuropathic pain and reduces SRSF1
activation

The splicing kinase SRPK1, a member of the serine-arginine-rich
kinases, controls alternative pre-mRNA splicing of a relatively small
number of identified RNAs (Hulse et al., 2014). To date, there is strong
evidence for the involvement of only one of these, VEGF-A, in
nociception (Hulse et al., 2014; Lin et al., 2010; Liu et al., 2012; Ropper
et al., 2009; Verheyen et al., 2012). SRPK1 controls the activity of splice
factor SRSF1 that is fundamental to the processing of pre-mRNA tran-
scripts (Ghosh and Adams, 2011), their cellular localization/transport
(Bjork et al., 2009), and it may also be involved in translational repres-
sion (Delestienne et al., 2010). Phosphorylation and activation of
SRSF1 results in nuclear translocation in a number of cell types (Amin
et al., 2011; Nowak et al., 2010). After nerve injury activated SRSF1
was only found in the nuclei of injured (ATF-3 positive) large excitatory
(vGLUT1 positive) neurofilament-rich DRG neurons whereas it was
found in the cytoplasm of uninjured DRG neurons. Interestingly, SRSF1
was also seen in the central terminals of myelinated neurons after
injury, but was not in central terminals in naïve animals. The nuclear lo-
calization suggests that neuronal SRSF1 is activated inmRNAprocessing
in injured myelinated neurons (Amin et al., 2011). The redistribution of
cytoplasmic SRSF1 to central terminalsmay reflect a change in neuronal
function or mRNA transport (Tripathi et al., 2012). Little is understood
of this function of SRSF1 in sensory neurons, although mRNA transport
is closely linked to splicing, and specific mRNA splice variants can be
targeted to axons (Minis et al., 2014).

After traumatic nerve injury, injured DRG neurons (e.g. ATF3
positive) demonstrate ectopic and/or increased evoked activity. These
neuronal phenomena arise due to expression changes in key mediators
of sensory neuronal excitability, ultimately underlying chronic
pain phenotypes (Djouhri et al., 2006; Tsantoulas et al., 2012). Local
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neuro-immune interactions resulting from damage to neurons alter the
properties of adjacent ‘uninjured’ afferents (Djouhri et al., 2006;
Tsantoulas et al., 2012), including sensitization of A-fiber afferents
(Zhu and Henry, 2012), and together these drive excitability changes
in the spinal cord (Costigan et al., 2009). Mechanisms such as SRPK1/
SRSF1-mediated alternative pre-mRNA splicing could underpin this
‘phenotypic switch’ change in properties, for example by controlling
relative expression of ion channel splice variants in damaged neurons
(Asadi et al., 2009; Tsantoulas et al., 2012). Increased release of neuro-
transmitters and modulators from primary afferent central terminals
is seen in the spinal cord following nerve injury (Gardell et al., 2003).
The cellular SRSF1 redistribution also suggests that phosphorylated
SRSF1 could act to transport RNAs to the central terminals in nerve inju-
ry, and hence enable translation of specific isoforms (e.g. VEGF-A165a) in
the nerve terminals (Gardell et al., 2003). This reduction in the amount
of SRSF1 present in afferent central terminals following intrathecal
SRPK1 inhibition could be due to increased degradation of the SRPK1-
SRSF1 complex and/or reductions in transport of mRNA to the central
terminals of primary afferents.

In addition to peripheral sensitization, PSNI results in mechanical
and cold hypersensitivity (Hulse et al., 2010) and central sensitization
(Walczak et al., 2005). Intrathecal administration of the SRPK1 inhibitor
SRPIN340 abolished pain behaviors including mechanical allodynia and
hyperalgesia, and cold allodynia, and the central sensitization indicated
by spinal c-fos expression. Central hyperalgesic priming of primary
afferent nociceptors is dependent on local protein translation in central
terminals (Ferrari et al., 2015), so we speculate that SRPK1/SRSF1
actions on RNA localization or protein translation (Bjork et al., 2009;
Delestienne et al., 2010) may also contribute to this sensitization
mechanism. As heat hyperalgesia was also reduced but PSNI animals
did not display sensitization to radiant heat (Hulse et al., 2008;
Walczak et al., 2005), this suggests that central SRPK1 inhibition not
only prevents central sensitization, but also reduces activation of non-
sensitized spinal nociceptive networks.

4.3. VEGF splicing and VEGF-dependent nociceptive processing in spinal
cord

SRPK1/SRSF1 controls the splice site choice in the alternative splic-
ing of the vascular endothelial growth factor A (VEGF-A) family, leading
to increased expression of VEGF-Axxxa isoforms (Amin et al., 2011;
Gammons et al., 2013; Nowak et al., 2010). VEGF-Axxxa isoforms are
widely known as pro-angiogenic/cytoprotective factors and this splic-
ing pathway is strongly associated with solid tumor development
(Amin et al., 2011). Peripheral administration of VEGF-A165a resulted
in pain, as did, somewhat surprisingly, VEGFR2 blockade (Hulse et al.,
2014). These findings are supported by observations that systemic
VEGF-A receptor blockers result in pain in clinical studies (Burger et
al., 2007; Langenberg et al., 2011) and painful experimental neuropathy
(Verheyen et al., 2012). In contrast, given intrathecally, the VEGF-R2 an-
tagonist, PTK787 decreased hypersensitivity in naïve and neuropathic
rodents (Fig. 8, and Liu et al., 2012), but VEGF-A165a again increased
hypersensitivity in naïve (Fig. 8) and spinal cord injury rats (Nesic et
al., 2010). This latter increase in pain was associated with aberrant
myelinated fiber sprouting in dorsal horn and dorsal columns that
may be VEGF-A dependent (Nesic et al., 2010). In contrast, van Neervan
and colleagues (van Neerven et al., 2010) found only very small anti-
nociceptive effects of intrathecal VEGF-A165a on pain, and no effect on
neuronal function. Observed differences in VEGF-A effects could be at-
tributable to different concentrations used, the source of VEGF-A165a,
the degree of injury, or different endogenous isoform complement
(Bates et al., 2002a). Clinically, elevated levels of VEGF-A in the spinal
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number (F(11,132) = 4.015) of formalin-induced pain behaviors within the second phase (two way ANOVA with post-hoc Bonferroni test, *p b 0.05, **p b 0.01, n = 7/group). Area
under the curve analysis of [D] duration (F(1,12) = 5.874) and [E] number (F(1,12) = 8.739) for the two phases of nociceptive behaviors shown in B & C (**p b 0.01, ***p b 0.001 two
way ANOVA with post-hoc Bonferroni test). [F] Intrathecal injection of 200 nM of VEGFR2 antagonist ZM323881 led to an increase in EMG response threshold only to A-nociceptor
stimulation versus baseline and vehicle groups (**p b 0.01; two way ANOVA with post Bonferroni) (n = 3–5/group).
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cord of neuropathic pain patients correlate with reported pain
(McCarthy and McCrory, 2013). VEGF-A and VEGF-A receptor 2 are
present in both peripheral and central nervous systems including
spinal cord (Bates et al., 2002b; Beazley-Long et al., 2013; Sondell
et al., 2000). rhVEGF-A165a has consistent pro-nociceptive actions
peripherally (Hulse et al., 2014) and centrally, and our findings dem-
onstrate that the different VEGF-A isoform subtypes have opposing
actions on nociception in the spinal cord, as they do in the periphery
(Hulse et al., 2014). We are the first to show that the alternatively
spliced isoform, VEGF-A165b has anti-nociceptive actions in the
spinal cord.

Taken together our observations of: increased spinal splicing factor
expression, increased spinal pro-nociceptive VEGF-A165a but un-
changed VEGF-A165b expression, and blockade of pain behavior and
VEGF-A expression changes by SPRK1 inhibition, suggest that exoge-
nous and endogenous VEGF-A isoforms modulate spinal nociceptive
processing in naïve animals and after peripheral nerve injury. The
sites of ligand/receptor expression, the differences in peripheral and
central administration, and the current clinical use of many anti-VEGF
treatments to treat varied diseases highlight the importance of recog-
nizing the different functions and sites of action of the alternative
VEGF-A isoforms.
4.4. Myelinated afferents and neuropathic pain

We found that VEGFR2 blockade resulted in inhibition of A fiber
nociceptor-mediated nociception, suggesting that endogenous VEGF is
involved in spinal processing of A fiber nociceptor inputs. Irrespective
of the animal model or human condition of neuropathic pain, the
prevailing evidence is that afferents are sensitized (Djouhri et al.,
2006; Hulse et al., 2010) both C-fiber (Ali et al., 1999; Chen and
Levine, 2007; Djouhri et al., 2006; Khan et al., 2002; Kirillova et al.,
2011; Serra et al., 2012; Serra et al., 2014; Shim et al., 2007; Zhu and
Henry, 2012) and A-fiber nociceptors (Ueda, 2006; Zhu and Henry,
2012), increasing the afferent barrage to the spinal cord through
enhanced stimulus-evoked responses and/or increases in spontane-
ous/ongoing firing. Other mechanisms, such as neuro-immune interac-
tions, can also contribute to changes in spinal excitability (Uceyler and
Sommer, 2008). The result of increased input to and excitability of
spinal neurons is central sensitization (Li et al., 1999) leading to
hyperalgesia and allodynia. It has been hypothesized that central
sensitization allows low threshold A-fiber afferents to “access” pain
pathways (Liljencrantz et al., 2013; Tsantoulas et al., 2012) although
precise mechanisms are unknown. Early reports of low threshold Aβ
fiber mechanoreceptors (LTMs) sprouting into superficial laminae
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Fig. 9. Alteration of spinal VEGFR activation attenuates nociceptive behavior in naïve mice and rats. [A] Intrathecal administration of 200 nM PTK787 increased mechanical withdrawal
thresholds (F(1,10) = 12.47) and [B] increased withdrawal latency to heat in mice (F(1,12) = 8.165, n = 4/group vehicle, (8 hind paws used as replicates), n = 3/group PTK787, (6
hind paws used as replicates), **p b 0.01 two-way ANOVA with post-hoc Bonferroni test). [C] Intrathecal VEGF-A165a reduced mechanical thresholds (F(1,12) = 17.18) and [D] heat
(F(1,12) = 18.61) withdrawal latencies in mice (n = 4/group (8 hind paws used as replicates). [E] Intrathecal VEGF-A165b increased mechanical thresholds (F(1,12) = 25.26) and [F]
thermal (F(1,16) = 5.631) response latencies in mice (n = 4 vehicle group (8 hind paws used as replicates), n = 5 VEGF group, (10 hind paws used as replicates)). [G] Treatment of
rats with a VEGF-A165b neutralizing antibody decreased both mechanical thresholds (F(1,15) = 18.66) and [H] thermal latencies (F(1,15) = 1.400, n = 3 group (6 hind paws used as
replicates), two way ANOVA with post-hoc Bonferroni test, ***p b 0.001).
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(Woolf et al., 1992) are still debated (Hughes et al., 2003;Woodbury et
al., 2008). A-fiber nociceptive afferents, as opposed to LTMs, have simi-
lar central terminals in superficial dorsal horn laminae (I and IIo) in both
naïve and nerve injured animals (Woodbury et al., 2008) and may rep-
resent the afferents expressing SRSF1. What is clear is that altered cen-
tral processing of myelinated nociceptor information contributes to
neuropathic pain (Molander et al., 1994; Torsney, 2011a; Ziegler et al.,
1999b), such as secondary dynamic allodynia (Koltzenburg et al.,
1994). Both C-fiber (unmyelinated) and A-fiber (myelinated) pathways
can contribute to chronic pain (Liljencrantz et al., 2013; Ziegler et al.,
1999b), but this is the first time that VEGFR2 has been implicated in
the processing of information in these pathways. If VEGFR2 is involved
in A-fiber nociceptive pathways, then this provides a potential new
mechanism for the modulation of nociception.
5. Conclusion

Here we identify a novel pathway of nociceptive processing through
a SRPK1-SRSF1-VEGF-Axxxa axis in myelinated nociceptors that is
involved in nociception at the level of the spinal cord. During neuro-
pathic pain development SRPK1 drives expression of pro-nociceptive
VEGF-Axxxa at the level of the spinal cord. Therefore the development
of SRPK1 targeted therapy, or other controls for alternative splicing,
would be interesting targets for novel analgesic agent development
(Donaldson and Beazley-Long, 2016). These findings highlight the
importance of understanding control of RNA function, including alter-
native splicing in relation to pain, and considering specific interactions
of splice factors in excitatory networks following peripheral nerve
trauma.
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Fig. 10. Attenuation of VEGFR2 signaling leads to alleviation of neuropathic pain in rats. Intrathecal application of VEGF-A165b two days after PSNI surgery abolished [A] mechanical
(F(2,10) = 32.39) and [B] cooling (F(2,20) = 14.03) allodynia (n = 6 per group), and increased withdrawal latencies to heat in both [C] ipsilateral (F(2,20) = 4.201) and [D]
contralateral hind paws (F(2,10) = 3.476, two way ANOVA with post-hoc Bonferroni test, *p b 0.05, **p b 0.01, ***p b 0.001, n = 6 per group). Contralateral hind-paws from both
groups did not differ in nociceptive behavioral response to [A] mechanical and [B] cooling stimulation. IP 30 mg/kg PTK787 led to increased withdrawal latencies to heat in the [E]
ipsilateral (F(2,12) = 2.45) and [F] contralateral limb (F(2,12) = 1.38) (two way ANOVA with post-hoc Bonferroni test, **p b 0.01, n = 4 per group).
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