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Abstract

Coffee is predicted to be severely affected by climate change. We determined the thermal tolerance of the coffee berry
borer , Hypothenemus hampei, the most devastating pest of coffee worldwide, and make inferences on the possible effects
of climate change using climatic data from Colombia, Kenya, Tanzania, and Ethiopia. For this, the effect of eight temperature
regimes (15, 20, 23, 25, 27, 30, 33 and 35°C) on the bionomics of H. hampei was studied. Successful egg to adult
development occurred between 20-30°C. Using linear regression and a modified Logan model, the lower and upper
thresholds for development were estimated at 14.9 and 32°C, respectively. In Kenya and Colombia, the number of pest
generations per year was considerably and positively correlated with the warming tolerance. Analysing 32 years of climatic
data from Jimma (Ethiopia) revealed that before 1984 it was too cold for H. hampei to complete even one generation per
year, but thereafter, because of rising temperatures in the area, 1-2 generations per year/coffee season could be completed.
Calculated data on warming tolerance and thermal safety margins of H. hampei for the three East African locations showed
considerably high variability compared to the Colombian site. The model indicates that for every 1°C rise in thermal
optimum (Tope), the maximum intrinsic rate of increase (rmax) Will increase by an average of 8.5%. The effects of climate
change on the further range of H. hampei distribution and possible adaption strategies are discussed. Abstracts in Spanish
and French are provided as supplementary material Abstract S1 and Abstract S2.
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Introduction

The impact of climate change on natural systems has emerged
as one of the most critical issues faced by humankind. According to
the Intergovernmental Panel on Climate Change (IPCC) [1], an
increase in the mean global temperature of 1.4° to 5.8° C is
expected by the end of the 21* century [2]. IPCC [1] provides an
overview of our scientific understanding on climate change, and
this assessment offers evidence of impact on, among others, natural
biological systems [1]. Global climate change is likely to directly
influence the dynamics of all trophic levels and further disrupt the
multitrophic interactions among the different communities [3,4].

In addition, climate change represents an immediate and
unprecedented threat to agriculture. A 10-20% decline in overall
global crop yields is predicted by 2050 [1]. This is of particular
importance for crops such as coffee, which serves as the economic
foundation for many countries in the tropics, and on which
millions of people depend for their subsistence. Out of 103 species
in the genus Cyffea (Rubiaceae), only two are commercially traded:
C. arabica L. and C. canephora Pierre ex A. Frochner [5,6]. In terms
of monetary value, coffee is the most heavily traded commodity in
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the world after oil [7]. Around 70% of the world’s coffee is
produced by small-scale farmers, with over 20 million coffee-
farming families — equivalent to more than 100 million people -
depending on its production for their subsistence [8]. Recent
studies from Brazil, Mexico and Uganda show that even minimal
increases in the mean temperature due to climate change will have
disastrous consequences for coffee production, in some cases
reducing the area presently suitable for coffee production by up to
95% [9-11]. Coffea canephora (widely known as robusta coffee) is
native to humid forests or the lowland forests of the Congo River
Basin, an area with elevations ranging from 0-1,200 meters above
sea level (m.a.s.l.) [5], and an average temperature of 24-26°C
[12]. Coffea arabica, regarded as the highest quality coffee, is native
to the highlands of South Western Ethiopia where it grows
naturally as an understory tree in forests at elevations ranging from
1,600-2,800 m.a.s.l. [5], and an average temperature of 18-21°C
[13]. Above or below these temperatures the yield and quality of
C. arabica is greatly reduced [14,15]. Of the total world coffee
production, 60% is arabica coffee [16]. Since the vast majority of
C. arabica and C. canephora are grown in the tropics they are
especially vulnerable to global climate change [17]. Climate-
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induced stress may render plants more vulnerable to opportunistic
herbivores [18]. Furthermore, the direct effects of temperature on
herbivores are likely to be larger and more important than any
other factor associated with climate change like drought, COq
levels, etc. [19-21]. Effects of climate change on insect herbivores
can be direct, through impacts on their life history traits and
number of generations per year [22], phenology [23], winter
mortality [24] and distribution range [25], or indirect, e.g., when
host-parasitoid interactions are affected [26] or when insects
respond to climate-induced changes on the host plant [27].

Knowledge on thermal tolerance is essential to predict the
effects of climate change in an organism [28]. Such information
has never been used to predict the effects of climate change, i.e.,
global warming on the coffee berry borer Hypothenemus hampei
Ferrari (Coleoptera: Curculionidae: Scolytinae) the most impor-
tant pest of coffee throughout the world [29,30] (Fig. 1). In this
paper, we determine the thermal tolerance for H. hamper and make
some inferences on the effects of climate change on the pest and on
coffee production in the tropics, using climatic data from four
coffee producing areas in Africa and South America. In addition,
the original host plant and the possible area of origin of H. hampei
as well as the reasons for the absence of the H. hampei in the
presumed area of origin of (. arabica are discussed.

Results

Effect of temperature on the colonization of coffee
berries and mortality of H. hampei colonizing females

The proportion of colonizing H. hampei females in the different
positions inside the berries and their mortality/survival as a
function of temperature are presented in Fig. 2. Across
temperatures, <25% of colonizing females failed to penetrate
the berries (position A) (Fig. 2a). In general the Logistic Model
gave a good fit to the data for both the position of the colonizing
females inside the berries (x14°=2662.19, P<0.0001) and
mortality cases (x;>=211.87, P<0.0001).

The position of the H. hampei females in the berries was
significantly affected by temperature (x;>=953.92, (7, N =5099)
P<0.0001). The highest proportion of H. hampe: females found in
position D was recorded at 25°C (74.0%), followed by 23°C
(54.2%), 20°C (52.3%) and 33°C (49.7%) (Fig. 2). At 15°C and
35°C there was no oviposition and the proportion of females found
in the position B and C were 19.8%, 76.9% and 93.3%, 3.0%,
respectively, indicating that at 15°C the colonizing females
reached the endosperm but did not oviposit. On the other hand
at 35°C the colonizing females did not reach the endosperm and
remained in position B (Fig. 2a). Likewise, the temperature
significantly affected the mortality/survival (y;”=546.15, (7,
N =5099) P<0.0001). The highest numbers of live females were
found at 15°C (93.4%), followed by 25°C (83.8%) and 20°C
(75.4%) (Fig. 2b). The highest numbers of dead H. hampei females
were recorded at 35°C followed by 33°C (41.9% and 26.0%,
respectively). In general, the proportion of surviving H. hampei
females was high from 15 to 25°C; at higher temperatures (27 and
30°C), survival started to decrease considerably (Fig. 2b).

Effect of temperature on the developmental rate of H.
hampei

None of the H. hampei life stages developed successfully at 15 and
35°Cl. The youngest life stages (egg and LI) developed between
20-33°C, whereas second instar larvae, prepupa, pupa and adult
developed only between 20-30°C: (Table 1). For all H. hampei life
stages, the development time decreased significantly with temper-
ature (between 20-30°C for egg, larvae 1 and 2; and 20-27°C for
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Figure 1. Female of the coffee berry borer (a), and female
Hypothenemus hampei penetrating a coffee berry (b); (Photos:
(a) Eric Erbe (USDA, ARS); (b) Gonzalo Hoyos CENICAFE).
doi:10.1371/journal.pone.0006487.g001

later life stages). At 33°C females oviposited but subsequent
dissections revealed that 95% of the L1 died after eclosion. The
developmental time of H. hamper immature stages was significantly
influenced by temperature (Table 1). The duration of all immature
stages except L1 (I 15 =4.92, P=0.0161), was significantly longer
at 20°C than at 23, 25, 27 and 30°C, i.e. for egg (Fy 15=29.51,
P<0.0001), L2 (Fy 15=39.0, P<0.0001), pre-pupa (Fy 5=8.65,
P=0.0021), pupa (Fy 5=22.40, P<0.0001). Egg to adult
developmental time differed significantly at all temperatures tested
(Fy, 15=2305.88, P<0.0001) (Table 1).

For all beetle life stages, significant relationships between the
developmental rate and temperatures were recorded (Table 2). In
egg, pre-pupa, pupa and egg to adult time, the relationships were
strongly linear, whereas a weaker relationship was recorded for L1,
and linear regressions did not yield a good fit for development of
the L2 (Table 2). For egg to adult, the lower developmental
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Figure 2. Hypothenemus hampei colonizing females, % in positions inside the berry (a); % mortality or failure to penetrate the coffee
berry (b).
doi:10.1371/journal.pone.0006487.9002

Table 1. Mean (*se) developmental time (in days) of Hypothenemus hampei life stages at different temperatures.

Life stages Temperature (°C)
15*% 20 23 25 27 30 S35 35%

Eggs - 12.0*0.6a 7.7+0.3b 53*0.3c 4.3+0.3dc 3.3%+0.3d 4.7+0.3dc -
Larva | - 6.3*+1.3a 3.3+0.9b 2.8+0.5b 2.0+0.1b 1.7£03b 9.0+0.6¢ -
Larva Il - 9.0+0.6a 6.0+0.6b 58*1.1b 5.0+0.6b 4.0+0.6b - -
Pre-pupa = 12.7+0.7a 7.7+1.2b 6.0+0.4b 5.0+0.6b 53*1.2b = =
Pupa - 16.3+1.4a 6.5+0.3b 6.3+0.5b 5.2+0.3b 6.0+0.7b - -
Egg to adult = 53.7+0.7a 31.2+0.4b 26.6+0.5c 21.8+0.3d 23.3%0.3e = =

Within a row, means followed by the same letter are not significantly different (P=0.05), Student-Newman-Keuls test.
“H. hampei oviposition was not recorded at these temperatures.

"H. hampei oviposition took place at this temperature but the first instar larvae died after eclosion.
doi:10.1371/journal.pone.0006487.t001
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Table 2. Estimates of the linear regression analyses (N =15), lower thermal thresholds and the thermal constants for

Life stages Linear range (°C) Regression Equations 7 F P>F To" Kc©
Eggs 20-30 Y =—0.37713+0.02265*T 0.91 15291 <0.0001 16.7 4415
Larva | 20-30 Y = —0.78949+0.04815*T 0.57 21.05 0.0004 16.4 20.77
Larva II* Y= —0.13038+0.01249*T 0.30 7.39 0.0166 10.4 80.06
Pre pupae 20-27 Y=—-0.27788+0.01791*T 0.75 38.08 <0.0001 155 55.83
Pupa 20-27 Y = —0.29549+0.01861*T 0.66 50.46 <0.0001 15.9 53.73
Egg-adult 20-27 Y =-0.05689+0.00381*T 0.97 861.15 <0.0001 14.9 262.47

° ower development threshold (°C).

“Thermal constant (in day degrees).

“linear regressions did not yield a good fit for development of the L2.
doi:10.1371/journal.pone.0006487.t002

threshold was 14.9°C and the thermal requirement for completion
of the pre-reproductive phase was calculated as 262.47 degree-
days above the lower developmental threshold (Table 2).
Developmental rates increased linearly between 15 and 27°C for
prepupa, pupa and adult, and between 15 and 30°C for eggs and L1
(Fig. 3). In general, the non-linear model gave a good fit to the data
sets within a range of 20-27°C for L1, pre-pupae, pupae and egg to
adult development, and between 20-30°C for eggs and L1 (Fig. 3).
The fitted parameters of the model are presented in Table 3.
Based on the non-linear models, the optimum temperature for the
development of H. hampei egg and L1 was estimated as 30-32°C
and for L2, pre-pupa, pupa and adult between 27-30°C. The
lower and upper developmental threshold for all life stages was
estimated as 14.9 and 32°C, respectively (Table 2 and Fig. 3).

Life table parameters of H. hampei

Life table parameters are presented in Table 4. The intrinsic rate
of increase (r,,,) was significantly higher at 25 and 27°C. Similarly,
the reproductive rate (Ry) significantly differed among temperatures
tested, and was highest at 25°C! followed by 27°C. The lowest
reproductive rate was recorded at 30°C. With 68.0 and 11.8 days,
the maximum generation time (G) and the doubling time (),
respectively, were obtained at 20°C.. The finite rate of increase (A)
remained almost constant at all temperatures tested (Table 4).

Effect of temperature on fecundity of H. hampei

Pre-oviposition period and total H. hamper fecundity were
significantly affected by temperature (£, 14 =8.08, P=0.0035) and
(F4, 14=40.97, P<0.0001), respectively. The longest pre-oviposi-
tion periods were recorded at 20°C and 23°C. Total fecundity
measured as number of eggs laid by colonizing females before
oviposition of the F1 females was significantly higher at 20°C
(296.9 eggs) and lowest at 30°C (64.3 eggs) (Table 5). No
differences were recorded in sex ratio, which ranged from 0.84 to
0.9 for all temperatures tested.

Estimated number of H. hampei generations, warming
tolerance and thermal safety margins in four coffee
growing locations in East Africa and South America
Based on the number of degree-days in the four sites in Colombia,
Kenya, Ethiopia and Tanzania (Table S1), the estimated number of
generations of H. hampel per year ranged from 0.0 to 4.71. The
calculated number of H. hamper generations for Kilimanjaro

(Tanzania) and Chinchina (Colombia) were very similar, ranging
from 2.39 to 4.71, and 2.95 and 4.30, respectively. The number of H.
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Calculated after Campbell et al. [53], where X is the temperature (°C) and Yis the developmental rate (1/developmental time).

hampei generation per year ranged between 2.03-3.13 for Kisii,
Kenya (Fig. 4). With 0.0-2.02 the lowest number of beetle
generations per year was estimated for Jimma, Ethiopia (Fig. 4).

The Gaussian times a Gompertz model gave a good fit to the r,,
vs. temperature data sets within the range of 10-33°C (*=0.98,
F=1592.28 P<0.0001; Fig. 5). The fitted parameters of the model
were estimated as 7. =0.14 (s¢ =0.003), p=1.17 (se =0.496),
Top=26.7 (se=0.421), A=0.02 (se=0.004). These analyses
suggest that the r, is strongly influenced by temperature.

Calculated data on warming tolerance (W'T) and thermal safety
margins (I'SM) of the insect for the three East African locations
showed considerably high variability compared to the Colombian
site (Table S2). The two variables were strongly and positively
related (r=—0.936, P=0.0001). However, the intrinsic rate of
increase was significantly negatively correlated with the TSM for
the period between 1975 and 2004. For every 1°C rise in T,
Tmax Will increase by an average of 8.5%.

Discussion

Global warming is already affecting the bionomics of arthropods.
Detailed studies from the temperate zones on several species report
mainly positive effects on insect fitness and distribution range
[31,19,22,32]. On the other hand, surprisingly, the potential impact
of global warming in tropical insects has only been studied in
hematophagous insects such as malaria-transmitting Anopheles spp.
(Diptera: Culicidae) [33] and the tsetse fly Glossina pallidipes Austen
(Diptera: Glossinidae) [34]. In this paper, we report the first detailed
analysis on the potential effects of climate change on the bionomics
of H. hamper, the most devastating pest of coffee throughout the
world. In a recent paper Deutsch et al. [28] predicted losses in
tropical ectotherm biodiversity due to global warming.

In the absence of available long-term abundance data of H.
hampet from the field in coffee producing areas of Africa and the
Americas, we resorted to detailed laboratory studies on the effect
of temperatures on the bionomics of the beetle. Previous studies on
the basic biology of the insect were either carried out in the field
[35-37], or in the laboratory with only one temperature regime
[e.g., 38-40]. Using a recently developed experimental protocol
[41] we were able to study the effects of eight different temperature
regimes on the bionomics of H. hamper. According to Stevens’ [42]
climatic variability hypothesis, the thermal tolerance of an insect is
directly proportional to the climatic variability the organism is
exposed to. Our study shows that the prediction of Steven’s
hypothesis was supported by the case of H. hampei. The estimated
extremes for H. hampei survival are 15 and 32°C. Although our
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Figure 3. Effect of temperature on the developmental rates of
Hypothenemus hampei.
doi:10.1371/journal.pone.0006487.g003
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Table 3. Fitted parameters of the non-linear modified Logan
model [84,85] for Hypothenemus hampei life stages.

Life
stages Parameters
P Tmax A A 7 F P>F

Eggs 0.0153 355 1198  —1.2806 090 7551  <0.0001
Larva | 0.0254 349 0.1537 —1.4805 070 1892  <0.0001
Pre pupae 0.0135 34133 1.23 —1.2296 056 5.02 0.0176
Pupa 0.0374 43.7705 10.2205 —1.5557 063 1576  0.0001
Egg-adult  0.00358 34.2548 0.1537 —1.0551 097 33031 <0.0001

doi:10.1371/journal.pone.0006487.t003

model predicts fastest development of the insect between 27-30°C,
there is clear trade-off between development time and reproduc-
tive success as previously shown for other insects [43]. The highest
rate of survival in colonizing females was recorded at the lowest
temperature tested (Table 1).

H. hamper attacks and successfully develops on both C. arabica
and C. canephora [44]. Moreover, the coffee berry borer is one of
the few herbivores feeding on the endosperm of coffee due to its
ability to detoxify caffeine [45,46]. Coffea arabica is believed to have
originated in the south-western highlands of Ethiopia, south-east
Sudan (Boma Plateau) and the area around Mt. Marsabit in
Kenya where it naturally grows as an understory tree in forests [3].
In this area, mean air temperatures range between 18-22°C [13].
In contrast, C. canephora is native to a vast area that covers West
and West-Central Africa (Cameroon, Congo, Central African
Republic, Democratic Republic of Congo, Gabon), North-East
and East Africa (Sudan, Tanzania, Uganda), and Southern Africa
(Angola). Yet, the exact limit of the centre of origin is difficult to
determine because of introduction and naturalization [5]. In this
area, mean annual air temperatures are higher than in the
Ethiopian highlands [12]. For many years, there has been
controversy in the literature about the geographic origin of the
pest [47-49] and its original host plant(s) [50,51]. Resolving this
mystery might have important implications for future breeding for
host plant resistance in coffee, as well as better targeted
explorations for natural enemies of the coffee berry borer. Based
on our estimates on the thermal tolerance of H. hampei it is unlikely
that the beetle is endemic to the area around Jimma (Ethiopia) due
to the low annual minimum temperatures prevalent there. During
an extensive survey, Davidson [51] did not find H. hampe: in
Ethiopia and Damon [29] later speculated that the absence of the
pest is due to either specialized natural enemies, resistant varieties
of C. arabica or exceptionally clean harvest practices in Ethiopian
plantations. However, our analysis of 32 years of climatic data
from Jimma indicate that before 1984 it was too cold for the insect
to complete even one generation per year, but thereafter, because
of rising temperatures in the area, the pest is now able to complete
1-2 generations per year/coffee season. This may explain why in a
more recent study Mendesil et al. [52] reported widespread
occurrence of the coffee berry borer in southwestern Ethiopia.

Campbell et al. [53] emphasized the usefulness of the lower
threshold of development and the thermal constant of an insect to
elucidate its potential distribution. Similar to C. arabica, C. canephora
is an understory tree of lowland forests. Climatological data from
shaded coffee plantations in Central America [54,55] and East
Africa [56] indicate a reduction in temperature between 2-6°C
depending on the region, when compared to coffee grown without
shade. Considering these findings with our data on thermal
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Table 4. Average (+ se) population growth parameters of Hypothenemus hampei at five constant temperatures.

Climate Change & Coffee

Parameter Temperature (°C)
20 23 25 27 30
Im 0.060.002a 0.10+0.007a 0.14+0.008b 0.140.0053b 0.10+0.028a
Ro 54.0+7.4a 67.9+20.2a 146.6+31.8a 84.5+26.38ab 23.1£12.9b
68.0+1.2 40.9+0.24 35.5+1.0 32.76+2.82 30.6+0.8
A 1.060.002 1.10%0.01 1.15+0.009 1.14%0.01 1.10%0.031
t 11.8+0.24 6.8+0.45 49+03 5.1*£0.2 6.8+2.0

doi:10.1371/journal.pone.0006487.t004

Means followed by the same letter within rows are not significantly different (P =0.05, Student-Newman-Keuls sequential test). r,, intrinsic rate of natural increase; Ry,
net reproductive rate; G, mean generation time (days); A, finite rate of increase; t, doubling time (days).

Table 5. Mean (*se) of pre-oviposition period, total fecundity, daily fecundity and sex ratio of Hypothenemus hampei at constant

temperatures.
Parameters Temperature (°C)

20 23 25 27 30
Pre-oviposition period (days) 5.7*0.3a 4.0%0.0ab 3.3*0.3b 3.7+0.3b 3.0+0.6b
Total fecundity* 296.94+9.4a 199.6+13.8b 201.5%£19.4b 160.0+11.6b 64.3+8.4c
Sex ratio** 0.9+0.07a 0.85*0.03a 0.9+0.004a 0.84*0.2a 0.9*0.1a

“Total number of eggs laid per female at a given temperature.
“Calculated as the proportion of H. hampei females in the total population.
doi:10.1371/journal.pone.0006487.t005

tolerance of H. hampei and the annual mean temperatures in the area
of origin of C. canephora [5], we hypothesize that the original host
plant of H. hampei is likely to be robusta coffee. Since the two coffee
species naturally occur in relative proximity in Central and Eastern
Africa [5] it could have been possible that the coffee berry borer
actively or passively dispersed from its original host plant C. canephora
to the closely related C. arabica. Moreover, in life table studies in the

5
45
4
3.5
3
2:5 4
o
15
1
0.5

Number of CBB generations

Means followed by the same letter within rows are not significantly different (P=0.05, Student-Newman-Keuls sequential test).

laboratory H. hampei performed significantly better on robusta
compared to arabica coffee (J. Jaramillo, unpublished data).

How do the findings reported in this paper relate to potential
climate change effects on the coffee berry borer? Bale et al. [19]
suggest that direct effects of temperature are likely to be stronger
and more important than other factors related to climate change
such as COy levels, rainfall pattern, etc. Moreover, data on
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Figure 4. Generations of Hypothenemus hampei in study sites in Colombia, Ethiopia, Tanzania, and Kenya.

doi:10.1371/journal.pone.0006487.9g004
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thermal tolerance of an insect is crucial to predict the possible
effects of climate change [e.g., 57, 21, 22, 58]. In the case of H.
hampei, average daily temperatures >26°C could lead to a
reduction of the maximum intrinsic rate of increase, and,
consequently, reduced pest activity in coffee plantations. Over
the last three decades, the average daily temperature per year
ranged between 17.3-22.3°C: for Ethiopia, 18.7-24.5°C for
Kenya, 22.3-29.8°C for Tanzania and for Colombia 15.5—
29.3°C (data from 1989 to 2007, as H. hampei was introduced in
1988 into the country). The potential number of H. hamper
generations per year was in average 3.4 for Colombia, 3.1 for
Kenya, 3.1 for Tanzania and 1.3 for Ethiopia. According to our
predictive model, in regions where the actual average daily
temperature has not yet reached 26.7°C, every 1°C increase,
would also increase the actual r towards the maximum value by an
average of 8.5%. Since population growth of H. hamper is
exponentially related to temperature (see Fig. 5), an increase of
this magnitude may profoundly influence the pest population
dynamics. Thus, areas with higher seasonal temperature close to
the optimum development of H. hampe: would experience high pest
pressure as indicated by the higher number of generations of pests
during its active period of the year. Because the coffee berry is a
finite resource, this could lead to increased borer dispersal, as more
females may be competing for oviposition sites. Such a scenario
could have devastating effects in coffee growing areas like
Colombia where, because of well distributed precipitation leading
to multiple flowering of the plants, there is yearlong supply of
coffee berries [59]. The problem would be less severe in East
Africa where there is a marked and prolonged dry period, with
consequent absence of berries in the field for extended periods.
According to Hodkinson [60] the eco-physiology of both insect
and plants will predict the future distribution of insect pests when
both host plant and herbivore are in close synchrony. Thus, in the
case of a highly specialized herbivore like H. hampei, the effects of
climate change on the insect and the plant cannot be separated.
Assad et al. [10] for Brazil, Gay et al. [11] for Mexico and Grid [9]
for Uganda predict that even a small increase in temperature due
to climate change, will have serious consequences for coffee
production in these countries, in some cases rendering production
very difficult. Under a climate change scenario, species like /.
hampei, whose distribution are restricted by both temperature and
the availability of their host plants, will follow plant distribution
[61]. Coffee is mainly grown in the tropics from 20-25°N to 24°S
[61]. Reactions of insects to climate change include, among others,
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Figure 5. Hypothenemus hampei intrinsic rate of increase (r,,)
estimated as function of temperature (°C) using a Gaussian
times a Gompertz model.

doi:10.1371/journal.pone.0006487.9005
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acclimation [62,63], and changes in latitudinal and altitudinal
distribution [64,65,66,26]. A latitudinal expansion in C. arabica and
C. canephora is problematic because both species are highly
susceptible to changes in photoperiod, with effects ranging from
a marked reduction of their growth phase to an inhibition of flower
development [67]. Yet to date coffee is grown in, among others,
Nepal (http://www.plantecnepal.com/) and the Yunnan province
of China (http://www.yunnancoffee.org/), both areas outside the
before mentioned tropical distribution range of C. arabica and C.
canephora. Our data on thermal tolerance of H. hampei on the other
hand would predict that the pest is well capable to thrive also
under sub-tropical conditions. An altitudinal expansion as a
coping strategy in a climate change environment is potentially
feasible, though there are few areas in the tropics where coffee
production could expand in altitude (e.g. the Kilimanjaro area of
Tanzania, Mt. Kenya, and the mountain ranges of Colombia),
considering that other requirements for successful coffee produc-
tion like soil type and appropriate rainfall patterns have to be met
[6]. For instance, Jaramillo [68] estimated that for the coffee
growing area in Colombia an increase in temperature of 1°C
would require to move the plantations by 167m in altitude to
maintain the same productivity and quality in arabica coffee.
Recent data from Uganda and Indonesia show that the coffee
berry borer has already expanded its altitudinal distribution range
and is now attacking coffee plantations at sites as high as 1,864
m.a.sl. (Dr. Africano Kangire, National Agricultural Research
Organization, Uganda & Dr. Surip Mawardi, Indonesian Coffee
and Cocoa Research Institute, pers. comm.)

A proven strategy to alleviate the potentially negative effects of
climate, especially warmer temperatures, on coffee production is
the introduction of shade trees in coffee plantations [67,69]. Shade
trees mitigate microclimatic extremes and can buffer coffee plants
from microclimate variability [70], reduce high solar radiation and
buffer detrimental diurnal changes in air temperature and
humidity [55,71], leading to a decrease in the temperature around
the coffee berries by up to 4°C [71] under low altitude conditions
(i.e., <700 m.a.s.l.), and by up to 2°C under mid to high altitude
conditions (i.e., >1,100 m.a.s.l.) [56]. Moreover, Teodoro et al.
[72] recently demonstrated that densities of the coffee berry borer
were significantly lower in shaded versus un-shaded coffee
plantations, possibly because shade coffee agro-ecosystems can
serve as a refuge for beneficial arthropods (native and introduced),
leading to higher levels of biological control of H. hamper [73,74].
Finally despite lower yields of shaded compared to un-shaded
coffee, the berry weight is higher and the quality of coffee
produced under shade is better [75], with overall favorable
economics for small-scale producers [76].

Our findings indicate that . hampei can survive and reproduce
within a broad temperature regime and that the potential number
of generations as an indicator of the pest status varies profoundly
with daily seasonal temperature. The lower number of generations
found in Ethiopia is probably a result of the lower temperature
prevalent in the sampling area. Thus we believe the most
appropriate way for coffee production systems to cope with
climate change is to come back to the origins of coffee as an
understory tree in the forests of Africa.

Materials and Methods

Insects

Females of the coffee berry borer were obtained from an H.
hampet stock culture established in July 2005 with beetle-infested
coffee berries collected from an organic coffee plantation located
in South Kisii (Gucha), Western Kenya (0° 45’ 49.85” S, 34° 43’
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1.76” E). The colony is maintained at the International Center of
Insect Physiology and Ecology (ictpe), Nairobi, Kenya, where the
insects are reared on ca. 150 days old coffee berries (C. arabica var.
Ruiru 11) kept at room temperature (25*1°C), 70% *5%
relative humidity [RH], and a 12:12 h (L:D) photoperiod.
Infested berries were kept inside square plastic containers
(40x40x20 cm) with perforated lids (55 mm diameter) covered
with insect gauze. The bottom of each container was layered with
a 1.5 cm mixture of plaster of Paris and activated charcoal to
maintain humidity and prevent the desiccation of the berries and
the insects [41].

Experimental setup and data assessment

The study was conducted at uipe laboratories. Organically
produced coffee berries (C. arabica var. Ruiru 11) ca. 150 days old
were collected from the Kiambu district of Central Kenya (1° 10’
S, 36° 49’ 60 E, 1,723 m.a.s.l.). Once in the laboratory, berries
were surface sterilized using the following protocol [77]: the
berries were washed with detergent for 15 min, rinsed with tap
water, then dipped in a 2% sodium hypochlorite solution for
10 min, rinsed again with sterile distilled water, soaked in a 2%
potassium sorbate solution and finally rinsed with sterile distilled
water. Subsequently the excess of water was removed with a
paper towel and the coffee berries were allowed to dry at room
temperature. Afterwards, the berries were placed in round plastic
containers (23 cm diameter X6.8 cm depth) (approx. 150 berries
per container) and exposed to large numbers of H. hampei females
from the stock culture. After 2 h of exposure, berries that had
been bored by one female were selected and transferred
individually into each well of a 12-well microtiter plate (Costar®
3526, Corning Inc., Corning, NY, USA). Each well (23 mm
diameter; 20 mm deep) was filled with a 0.5 cm layer of a
mixture of plaster of Paris and charcoal [41]. Twelve holes
(15 mm dia), coinciding with the wells, were perforated in the lid
of every multiwell plate and covered with mesh to allow aeration
of the experimental units and to prevent escape of the beetles.
The multiwell plates were then transferred to temperature
controlled climate chambers (SANYO® MIR-553, Sanyo Elec-
trical Ltd., Japan) set at eight different constant temperatures (15,
20, 23, 25, 27, 30, 33 and 35°C), 80 =5% RH, and a 12:12 h (L:
D) photoperiod. To keep up the humidity inside the experimental
units, distilled sterile water was added to each well every two,
three days or daily for multiwell plates kept at 20-30°C, 15°C
and 33-35°C, respectively.

Numbers of live and dead H. hampei colonizing females as well as
their position inside the berries (see below) and number of borer
life stages (i.e., eggs, larvae, prepupae, pupae and adults) were
assessed daily for periods between 30 and 60 days depending on
the temperature.

Four different positions based on the insect location within the
berry have been identified by Bustillo et al. [78] as follows: (A),
when the female is starting to colonize a new berry but the
penetration in the exocarp has not taken place; (B), when the
female has penetrated the berry but has not yet reached the
endosperm; (C), when the female has started to bore into the
endosperm but not to oviposit; and (D), when the female has
produced a gallery in the endosperm, and one or more of its
immature stages are found inside the gallery.

The evaluations concluded when egg laying by the F2
generation was observed, 1.e., between 30 and 60 days after the
infestation of the berries depending on the temperature. The
coffee berries were dissected under a 10X stereomicroscope and
the position of the colonizing female inside the berry was recorded
and the numbers of H. hampe: immature stages were counted. On a
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daily basis, five berries per temperature and per replicate were
destructively sampled and dissected under the stereomicroscope.
The experiment was repeated four times over time for insects kept
at 15 and 25°C, and three times for insects kept at 20, 23, 27, 30,
33 and 35°C. A total of 5,925 berries/ H. hampei colonizing females
were used, divides as follows: 1,200 for each 15 and 25°C
(evaluations for a period of 60 days); 900 for 20°C (evaluations for
a period of 60 days); 600 for each 23 and 27°C (evaluations for a
period of 40 days); 525 for 30°C (evaluations for a period of 35
days); and 450 for each 33 and 35°C (evaluations for a period of 30
days).

Climatic data and estimated number of generations of H.
hampei at four locations in Africa and South America

Daily climatic data were obtained for four coffee growing
areas, with three locations in East Africa (Jimma, Ethiopia; Kisii,
Kenya; and Kilimanjaro, Tanzania) and one location in South
America (Chinchina - Colombia) (Fig. SI 1). Precipitation data
were used to estimate the yearly blossoming period of the main
coffee harvest in the different locations. A single heavy rain
(>10 mm rain), followed by a prolonged dry period usually
triggers the blossoming of a coffee tree [79]. The physiological
development of a coffee berry from flowering to the harvest of the
ripe berry takes around 32 weeks or 240 days [80]. H. hampei
females start to search for suitable coffee berries around 100 days
after flowering and oviposit inside the berries usually 20 days
later [37]. In the absence of H. hampe: population dynamics data
in all four locations, the findings of [79] and [37] were used to
estimate the probable time of H. hampei oviposition in the
different locations in East Africa and Colombia. Therefore, long-
term daily data on temperature (Fig. SI 1) and precipitation (data
not shown) in the different locations only for the period between
120-240 days of coffee berry development, together with our
laboratory derived data on degree-days for H. hampei, were used
to estimate the number of potential H. hampe: generations per
year and location.

Statistical analysis

The mortality/survival and the positions of the colonizing /.
hamper female inside the coffee berry (A, B, C and D) at each
temperature were analyzed using logistic regression (PROC
LOGISTIC) [81].

Differences in developmental times, survivorship and life history
parameters between temperatures were analyzed by analysis of
variance (ANOVA), using the general linear model (PROC GLM)
[81]. An F'test was used to test the significance of mean differences
and mean values were separated using the Student Newman Keuls
(SNK) test. The significance level was set at P<0.05. Percentages
were transformed to arcsine values before analysis. The signifi-
cance level was set at P=0.05, but back-transformed data are
presented in the tables. For estimation of the lower developmental
threshold (7)) which is the intercept over the slope of the
regression, i.e., the numbers of day-degrees to complete the pre-
reproductive phase and the thermal constant (A¢) which is defined
as one over the slope, a regression over the linear range of the
relationship between temperature (T) and developmental rates [R
(T)] of the insect was used [53].

R(T)=a+b*T (1)

A modified Logan model [82] by Lactin et al. [83] was used to
describe the relationship between temperature and development
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rate,

R(T) =T _e[meax —(Tmax —T)/A] + (2)

Where e is the exponential function, T is the temperature in
degrees Celsius (°C), p, Tmax, A and A are fitted coefficients.

All parameters in nonlinear models were estimated by
minimization of the sum of squared residuals. Parameters were
tested against 0, based on non-overlap of 95% confidence
intervals.

Life table statistics were calculated according to Hulting et al.
[84] using SAS, with calculation of confidence intervals for all
estimated parameters [85]. The two-sided #tests values, as well as
their respective P values were computed, and mean values were
separated using a pairwise comparison between populations.

For Kilimanjaro (Tanzania), Jimma (Ethiopia), Kisii (Kenya),
and Chinchina (Colombia), the historical degree-days were
calculated between 120 and 240 days after flowering. The number
of degrees above the threshold degree-days, for a single day are
calculated as follows:

Degrees —days(DD) = 1/2 * (max. +min. Temperature) — 7,

Where Max. and Min. are daily maximum and minimum
temperature (°C). If Min. temperature was lower than the
minimum threshold 7, (see Table 2), then Min. temperature
was set to minimum threshold. If Max. temperature was higher
than the maximum threshold 33°C (see Table 2), then Max.
temperature was set to 33°C. The estimated number of H. hampei
generations per year was calculated by dividing historical
cumulative degree-days per year and location by the experimental
estimation of Ac.

Warming Tolerance and Thermal Safety Margins of H.
hampei

Warming tolerance (average amount of environmental warming
an ectotherm can tolerate before performance drops to fatal levels)
and thermal safety margins (temperature at which the perfor-
mance of the organism will start to decrease) were calculated
according to Deutsch et al. [28] as follows:

Warming Tolerance (WT) = CTyax — Thap

and

Thermal Safety Margin (TSM) = T, — Thap
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Where CT,,. is the critical thermal maximum of H. hampei,
Tope is H. hampei thermal optimum and Ty, is the current
climatological temperature of the organism’s habitat.

The intrinsic rate of increase Rm(T) was fitted to the climatic
data of the four locations using a Gaussian times a Gompertz
function to predict the physiological consequences of climate
change on the fitness of H. hampe::

Rn(T) =rmax *exp(— exp (p* T — T, ) —6)—A* (T — T(,,,t)A2)

Where ryax and Ty, are the predictions where the insect has a
maximal fitness, p represents the increasing part of the population
growth rate curve and A the declining part of the curve.
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