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Abstract: Thin shells are found across scales ranging from biological blood cells to engineered
large-span roof structures. The engineering design of thin shells used as mechanisms has occasionally
been inspired by biomimetic concept generators. The research goal of this paper is to establish the
physical limits of scalability of shells. Sixty-four instances of shells across length scales have been
organized into five categories: engineering stiff and compliant, plant compliant, avian egg stiff, and
micro-scale compliant shells. Based on their thickness and characteristic dimensions, the mechanical
behavior of these 64 shells can be characterized as 3D solids, thick or thin shells, or membranes. Two
non-dimensional indicators, the Föppl–von Kármán number and a novel indicator, namely the gravity
impact number, are adopted to establish the scalability limits of these five categories. The results
show that these shells exhibit similar mechanical behavior across scales. As a result, micro-scale
shell geometries found in biology, can be upscaled to engineered shell geometries. However, as the
characteristic shell dimension increases, gravity (and its associated loading) becomes a hindrance
to the adoption of thin shells as compliant mechanisms at the larger scales-the physical limit of
compliance in the scaling of thin shells is found to be around 0.1 m.
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1. Introduction

Thin shells, whether stiff or flexible, are curved solids with two large dimensions and a third
one that is very small (thickness). In contrast to plates whose initial configuration is planar, shells
are controlled by geometry and defined by their curvature. Shells built for stiffness are designed
to maximize the material efficiency and reduce the overall weight-to-span ratio. By choosing an
appropriate geometry for the given boundary conditions and given load case, a stiff shell experiences
mostly membrane forces that can be resisted by using little material. The displacements resulting from
the applied loads are practically nonexistent. In contrast, shells built for flexibility use geometry and
inextensibility of materials to convert bending stresses into tuned, reversible large displacements. The
use of shells as mechanisms is part of the broader, growing trend in compliant mechanisms to deform
a large portion of a structure to produce movements (distributed compliance) [1–6] instead of lumped
compliant hinges or common rigid body hinges.

However, when it comes to bio-inspiration, the question of scalability of natural structures
becomes common. For instance, a closed shell, such as an avian egg, can rest on a plane without being
damaged at a small scale. When scaled up, the shell’s self-weight, and thus the impact of gravity,
increases. Under the same support conditions as the small-scale structure, the large upscaled shell
could be subject to localized deformation such as buckling [7]. While this action of gravity is easily
understood in this example of an egg-like shell, the question remains open to determine at which
scale the action of gravity becomes too great for compliant shells to operate reliably. Shell structures
span over 10 orders of magnitude across both biology and engineering. Shell mechanics are used to
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describe the large shape transitions of viruses [8], and of red blood cells [9], and are the mechanical
system for some of the fastest repeatable plant movements [1]. Their flexibility allows the movement
in engineered compliant structures such as hingeless joints [10], or active piezoelectric actuators [11].
All these flexible structures are elastically deformed, which makes them susceptible to undergo large
stresses. However, similarly to their stiff counterparts, the geometry of compliant shells influences
the magnitude of those stresses [12]. With advances in the modeling of large deformations [13,14],
the use of shells as mechanisms is now made possible. While biologically compliant shells appear at
the smallest of the 10 length scales cited above, the use of those structures in biology has started to
inform the design of engineered mechanisms at larger scales. Examples of flexible shells observed in
nature have inspired engineered scale adaptive structures [15–18] at the meter scale, but the question
of whether such structures could be scaled up even further still remains open and drives this study.
This succinct literature review shows that there is a clear gap of knowledge as to what the limiting
scale of compliant shells is and what the defining parameter is that determines this scale.

The main hypothesis guiding this study is that the lack of large-scale compliant shells is due
to the limiting effect of gravity-induced body forces on the shell’s movements. Therefore, the goal
of this paper is to gain insight in the influence of gravity-induced forces on the ability of shells
to perform as mechanisms through an order-of-magnitude approach. To achieve this goal, we are
guided by the following four research tasks. First, we identify and catalogue the dimensions and
mechanical characteristics of shell instances across 10 orders of magnitude of span. Second, we apply
the non-dimensional Föppl–von Kármán number [19] to each of those shells to characterize the most
likely deformation mode (i.e., bending or stretching). Third, in order to characterize the influence
of gravity forces on a shell, we introduce a new non-dimensional number called the gravity impact
number (Gi), which is the ratio of the elastogravity length scale [20,21] to the characteristic dimension
of the shell. The elastogravity length scale determines the limit at which bending deformations due to
gravity appear in the shell. Finally, using this newly introduced parameter, we measure the scale at
which compliant shells become highly susceptible to gravity induced deformations.

This paper presents an order-of-magnitude study on the behavior of shells. The main parameter
used to describe the scale of the shells is their characteristic dimension (R), also referred to as span in
engineering practice. The thickness (H) of the shells is related to R by the definition of thin and thick
shells. The definition of a shell comes from the ratio of span to thickness. This ratio is found between 8
and 20 for thick shells and between 20 and 100,000 for thin shells [22]. Other geometric parameters
can be used to measure the order-of-magnitude of the size. The radius of curvature or the length of a
geodesic line could also be used in the context of this study. However, two reasons led to the choice of
the span as controlling scale parameter: both the radii of curvature and the length of geodesic line are,
in most cases, of the same order of magnitude as the span of shell, and the characteristic dimension is
much more accessible in scientific literature than the two other parameters.

The main contributions of the paper are (1) the cataloguing of stiff and compliant shells across
scales of 10 orders of magnitude, (2) the use the Föppl–von Kármán number to characterize the
mechanical behavior of those shells, (3) the introduction of the gravity impact number to describe
the scale at which the pull of gravity becomes a dominant factor in the analysis of shells, and (4) the
determination that this scale is ~0.1 m.

In Section 2, the typologies of shells are introduced. In addition, the assumptions and calculation
methodologies for each non-dimensional number are presented. In Section 3 of the paper, the respective
values of the Föppl–von Kármán number and the gravity impact number are reported for each category
of shells. In Section 4, the results are discussed, and further analysis is provided to understand the
trends in data from Section 3. In Section 5, conclusions are drawn from the paper and recommendations
for the use of shells as mechanisms are provided. The complete list of shells used in the study is
documented in the appendices. In addition to providing the list of all the structures included, the
appendices also list the principal dimensions as well as the material properties of each one of the
shell instances.
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2. Methodology

In this section, the typologies of shells featured in the study are presented and the assumptions
for the non-dimensional numbers used to characterize their mechanical behavior are detailed. The
comparison of the shells is done using two non-dimensional numbers: the Föppl–von Kármán number
and the gravity impact number. In this section, the hypotheses for the use of each number is presented.
The Föppl–von Kármán number, γFvK, describes the type of deformation that dominates the mechanical
behavior of a thin shell. The gravity impact number (Gi) characterizes the influence of the gravitational
force on the shell. The thin shells are considered isotropic elastic in this study.

2.1. Sample of Fixed and Compliant Shells

Across 10 orders of magnitude, 64 shell instances are selected from an extensive literature review
that reported their mechanical behavior (Figure 1). The dimensions and references to all 64 shells are
recorded in the section supplemental material (Appendix A). This study excluded several large scale
compliant shells [23] for space applications since the forces due to gravity is reduced around earth’s
orbit. The five categories of shells are:

• Engineered stiff shells [15]. 25 large scale reinforced concrete (high Young’s modulus) thin shells
used in buildings and architecture, their shape is fixed and can carry external applied loads. Their
characteristic dimension (R) is in the

[
6× 10

◦

m; 8× 101 m
]

range, while their thickness H is in

the
[
5× 10−2 m; 4× 10−1 m

]
range

• Engineered compliant shells [12,16–18,24–32]. 18 shells designed for use as mechanisms, they are

very flexible. Materials are varied but all have high Young’s modulii. R in
[
2× 10−2 m; 8× 100 m

]
and H in

[
1.2× 10−4 m; 9× 10−4 m

]
• Plant compliant shells [33–35]. 8 plant structures that can be described as thin shells and exhibit

fast and repeated motions. The material is a living tissue of low Young’s modulus (∼ 106 N/m2).
R in

[
1.5× 10−4 m; 1× 10−2 m

]
and H in

[
3× 10−5 m; 4× 10−4 m

]
• Avian egg stiff shells [36–38]. 8 stiff bird eggshells. The geometry is rigid and the material is

carbon silicate of various mechanical properties detailed in [38]. R in
[
3× 10−2 m; 1.55× 10−1 m

]
and H in

[
2.2× 10−4 m; 2.55× 10−3 m

]
• Micro-scale compliant shells [8,19,39–42]. 5 types of shells from red blood cells to virus. They have

been described mechanically as a shell and deform significantly in operation. They are highly
flexible. R in

[
2× 10−8 m; 5× 10−4 m

]
and H in

[
2× 10−9 m; 1× 10−6 m

]
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Figure 1. Varying size/scale (R) of the five types of shells included in the study. The number of 
typologies for each type of shell is shown in blue. 
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shell has free edges (and only exceptionally if the surface is closed) [44]. For thin shells, the strain 
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[45]. For equal energy levels, bending deformations can be much larger than stretching 
deformations. Therefore, bending allows the shell to deform with less impact on the overall elastic 
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2.2. Quantification of Bending versus Stretching Deformation

Shells used as mechanisms rely on the property of very thin curved bodies to deform without
distortion of their surface metric, i.e., without stretching. This type of deformation known as
inextensional bending, or isometric bending [7,43,44] minimizes the strain energy because it does not
stretch the material. The minimization of elastic strain energy is the core energy objective of compliant
mechanisms. Smooth deformations without stretching are geometrically possible if the shell has free
edges (and only exceptionally if the surface is closed) [44]. For thin shells, the strain energy density
W includes stretching and bending. Bending in this context includes both bending and torsion. The
stretching energy density Wstretching is proportional to the shell’s thickness H, while the bending energy
density Wbending is proportional to the cube of the shell’s thickness H3 [45]. For equal energy levels,
bending deformations can be much larger than stretching deformations. Therefore, bending allows
the shell to deform with less impact on the overall elastic strain energy compared to stretching. Since
isotropic thin shells are considered, the general form for the surface strain energy density W is given
by the equation [45]

W = Wstreching + Wbending (1)

with the stretching and bending energy densities defined as

Wstretching ∼
YH

(1− ν2)
ε2 (2)

Wbending ∼
YH3

12(1− ν2)
κ2 (3)

where is Young’s modulus, ν is Poisson’s ratio, ε is average in-plane strain, and κ is average variation
of shell curvature.

In order to measure and compare the tendency of bending-only-deformations in thin shells, the
dimensionless γFvK, number [19] is used. This number measures the ratio of stretching to bending
strain energy densities and is given by

γFvK =
YHR2

D
(4)

with R the characteristic length of the thin shell (in general of same order of magnitude as the principal
curvature radii [46]) and D the bending modulus (also called the flexural stiffness),

D =
YH3

12(1− ν2)

such that after simplifications the γFvK number becomes proportional to R2/H2

γFvK =
YHR2

D
= 12

(
1− ν2

) R2

H2 (5)

The γFvK number predicts the type of deformation a shell will experience. Very large values of γFvK
indicate that the shell behaves similarly to a membrane. Such shells accommodate elastic compressive
strain by wrinkling and if very thin, crumpling [47]. The shells with high values of γFvK exhibit large
bending and low stretching. Lower values of γFvK correspond to thicker shells that have a high bending
stiffness. Such shells have both bending and stretching deformations and require large applied loading
to be deformed. The ideal behavior for a thin shell used as a mechanism is characterized by a small
actuation force that results in both bending deformations and preservation of the smoothness of the
surface (i.e., no crumpling or wrinkling). This force can only be made small if it activates is low stiffness
deformation mode of the shell [16]. This ideal behavior occurs if the shell is stiff enough to have a
bending stiffness that preserve the continuity of the material under loading and flexible enough to
allow large elastic out-of-plane deformation. The instances of compliant shells selected in this study fit
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this description, their γFvK values can be considered as characteristic for compliant shells. The range
of γFvK values in this study is 103 to 108 (see Section 3). However, physically, the maximum value of
the γFvK number is γFvK ≈ 1014. This value does not occur for shells since it describes the behavior of
a 200 µm square sheet of graphene [48]. Graphene is one-atom thick membrane with high in plane
Young’s modulus (Y = 500 GPa). It has no bending stiffness and therefore is not relevant for this study.
Since there is nothing thinner than a single layer of atoms, graphene constitutes the limit of physically
feasible structures.

2.3. Influence of Gravity Body Forces on Shells

To establish the scale limits for compliant shell, the force resulting from gravity needs to be
considered as a limiting factor for their movement. A non-dimensional number, called the gravity
impact, Gi, number is introduced in this paper to quantify the gravitational impact on a shell’s behavior.
The Gi number is defined as the ratio of the elastogravity length scale leg [20,21] to the characteristic
dimension of the shell R.

The gravitational potential energy density (Wgravity) scales as

Wgravity ∼ gρδ2 (6)

With g being the acceleration of gravity, ρ being the volumetric mass density of the material, and
δ being the deformation due to gravity. From a dimensional point of view, the variation of average
curvature κ can be expressed as a function of δ as κ ∼ δ/R2. The gravitational pull causes the shell
to bend when the bending energy and the gravitational potential energy are of the same order of
magnitude, i.e., Wbending ≈Wgravity. This situation occurs for R ∼ leg. Equating Equations (3) and (6)
yields Equation (7)

leg ∼

(
D
gρ

)1/4

(7)

Therefore, the nondimensional Gi number for a thin shell is

Gi =
leg

R
=

(
D

gρR4

)1/4

(8)

Therefore, if Gi is larger than one, the characteristic dimension of a thin shell is smaller than leg: the
gravity effect on the behavior of the compliant shell can be ignored. The nondimensional Gi number
determines the tendency of a compliant shell to be affected by the gravitational pull as a function of its
scale. Values of Gi lower than unity indicate that gravitational forces exert a large influence on the
shell’s mechanical behavior. In contrast, Gi values over one indicate gravitational forces are not of key
importance in the deformation. The gravitational pull increases as the characteristic dimension of the
shell increases. Compliant thin shells of large dimensions are rare but there are some examples of such
shells where the characteristic dimension is in the order of magnitude of 100 m or below. Therefore,
the Gi number is used in this study to detect and highlight the scaling limits of compliant thin shell.

3. Results

3.1. Föppl–von Kármán Number Values Across Scales

The 64 thin shells included in this study are plotted by thickness H and characteristic dimension R
in Figure 2. γFvK describes whether stretching and/or bending deformations control the deformed state
of the shell. Being a non-dimensional number, it applies to any shell, independent of the magnitude of
its characteristic dimension R. The average values of γFvK shown in Table 1 are within the range 103 to
108. To understand the variability observed in Table 1, we need to define precisely the subcategories of
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solids that appear on Figure 2. In this study the ratio R/H for a thin shell is adopted from [22] and
given by

20 ≤
R
H
≤ 100, 000 (9)Biomimetics 2020, 5, x FOR PEER REVIEW 8 of 22 
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Table 1. Average values of γFvK for the five types of shells.

Shell Type Average γFvK

Stiff Engineered 3.95 × 106

Compliant Engineered 1.33× 107

Stiff Avian Egg 1.98× 105

Compliant Plant 3.84× 103

Compliant Micro-Scale 2.54× 104

In comparison, thick shells have a larger R/H ratio also defined in [22] and given by

8 ≤
R
H thickShell

≤ 20 (10)
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All stiff shells and compliant engineered shells in this study fall within the range of R/H ratios
defined in Equations (9) and (10), respectively. The 3D solids with R/H values less than 8 are rigid
bodies that cannot be described as having two spatial dimensions much larger than the third one.
Therefore, they are not considered shells and Equations (3) and (9) do not apply to them, those
structures appear on the left-hand side of Figure 2. In contrast, when the R/H ratio is larger than 100,000,
shells become extremely thin. They lose any bending stiffness and can only experience in-plane forces
(stretching). They can no longer be called shells and are referred to as membranes. (right-hand side of
Figure 2). The average values of γFvK in Table 1 indicate a mechanical behavior dominated by bending
deformation for both stiff and compliant shells. Overall, since thin shells have R/H ratios in the range
of [20; 100, 000], their γFvK values are bounded by lower (γFvK ∼ 103) and upper bounds (γFvK ∼ 108).
This observation indicates that thin shells—whether they are engineered stiff or compliant, plant
compliant, micro scale compliant, or egg stiff—exhibit similar mechanical behavior, which is dominated
by bending deformations across scales.

Of the 64 thin shell typologies recorded in this study, 95% have values of γFvK between 103 and
108, as shown in Figures 2 and 3. In the sample of shells selected for this study, only some of the
compliant plant shells present values of γFvK lower than 103 (Figure 3). Those same instances are on
the border of the range of R/H ratios that characterizes shell structures (Figure 2). The main simplifying
hypothesis of this study is that the material of the structures selected is isotropic elastic. In the case
of the plant structures, the complex nature of the plant material (referred to as plant tissue) requires
further justification for being included in this study. Biological tissues that constitute the moving
organs of the plants instances included in the study are a hierarchized, non-homogeneous material [1].
As a living material, not all parts of tissue perform structural functions [49]. The structural layers of
the tissue are thinner than the overall tissue [1] therefore in the cases presented in the study, the ratio
R/H of the plants despite being loaer than other examples of shells are still accepted.
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A specific example of this behavioral similarity can be found in the Algeciras Market Hall’s
reinforced concrete shell [15] and red blood cells. Both of those structures have similar Föppl–von
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Kármán number γFvK ∼ 105, which indicates a similar tendency to bending deformation over stretching
deformations for both structures. This high γFvK indicates a high in-plane stiffness compared to the
out-of-plane bending stiffness. Therefore, bending deformations are more likely to occur than stretching
for both structures. In theory, the structure of the Algerciras Market hall should be able to undergo
similar reversible large shape changes as red blood cells. The market hall is a stiff concrete shell
considered a model of shell design [15]. While in pure mechanical terms the concrete structure could
be used as a compliant shell, the actual Algerciras Market Hall is dominated by dead-load’s vertical
action and subjected to edge boundary conditions.

3.2. Impact of Gravity on Shell Mechanical Behavior Across Scales

The thickness and the characteristic dimension of the shells are related by the ratio R/H discussed
in Section 3.1. Therefore, the characteristic dimension will be taken as the reference indicator of a
shell’s geometry going forward. The relationship between the Gi number and geometry is shown
in Figure 4. The Figure shows that stiff engineered thin shells have the largest values of Gi, while
micro-scale compliant shells have the lowest values.
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The scale for both axes is logarithmic. The horizontal dotted line indicates values Gi = 1 for which the
gravitational force becomes predominant in the equilibrium of the shell. The red dotted line at R = 0.1
m represent the approximate limit at which thin shells start to be constrained by gravity.

In accordance with Equation (8), the gravitational force is larger (in magnitude) as the scale of the
shell increases. This is appears in Figure 4 with thin shell of larger characteristic dimensions having
low values of Gi such as for example façade shading shells [16,17,28]. Shells with a characteristic
dimension R lower than 0.1 m tend to have Gi > 1. For these shells, large deformation caused by
gravity does not occur. The relationship Gi > 1 only occurs for one-third of compliant engineered
shells, which means that most engineered shells must deal with the influence of gravity. All studied
stiff engineered shells have an elastogravity length scale shorter than their characteristic dimension R.
This observation indicates that for these shells the gravitational forces due to self-weight dominate the
elastic bending resistance. The average value of Gi is found to be 0.109 for stiff engineered shells, 0.610
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for compliant engineered shells, 2.465 for plant compliant shells, 0.822 for the egg shells, and 7.739 for
the micro-scale compliant shells.

In addition, shells with a characteristic dimension larger than 0.1 m consistently have values of Gi
lower than one (Figure 4). This scale is displayed by the red dotted line on Figure 4. No structure to
the right of this line has a gravity impact number larger than one.

There is not a clear division defined by Gi between compliant and stiff thin shells. Some engineered
compliant thin shells are used as mechanisms but have a lower Gi value than the one of stiff shells. A
high value of Gi can also indicate a shell with large thickness H with a corresponding low γFvK value.
The plant compliant shells have relatively high Gi values, which means the shell does not deform
under the influence of gravity. The larger plant compliant shells have Gi values comparable to those
of stiff engineered shells, indicating that the shell would be susceptible to the influence of gravity.
However, for the living tissues, the ratio of volumetric mass density ρ to Young’s modulus Y is ∼ 103

times lower than that for engineered shells, which explains some of the low values of Gi despite the
small characteristic dimensions R.

4. Discussion

Thin shells have a tendency to deform in bending rather than in stretching across scales. Most
thin shells studied have values of the Föppl–von Kármán number γFvK between 103 and 108. This
non-dimensional number is significant because it unifies the behavior of shells across scales. This
outcome is in line with the bio-inspiration approach that distills geometries of a plant or micro-scale
shell and scales them up for engineering applications [1,16]. As long as the ratio of characteristic
dimension R over thickness H is kept high, the mechanical behavior of the compliant shell is similar at
the large engineered scale and the observed biological scale. The five categories of thin shells presented
in this paper (i.e., engineered stiff, engineered compliant, plant compliant, micro-scale compliant, and
egg stiff) have instances with γFvK in the range of 104 to 105. This observation exemplifies the that shells
used as mechanisms appear at all scales Figure 5. Thin shell can have a similar mechanical behavior
dominated by bending deformation across 10 orders of magnitude of their characteristic dimension R.
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Compliant shells found in plants are made from living tissues, a multileveled arrangement of cells.
In this material, the transport of water generated by electro-chemical reactions increases the water
pressure in select part of the tissue, thus generating actuation [1]. Plant tissues are a self-actuating
material. As discussed in Section 3.1, despite being classified as thick shell or almost 3D solids, plant
mechanisms still feature in this study due to the properties of the thin structural layers of the motile
plant organs being the main structural component of the mechanisms. For plants, the elastogravity
length leg scale is large compared to their characteristic dimension R. In the genus Stylidium for example,
the characteristic dimension R of the mechanism is 4.3 times larger than the elastogravity length scale
leg, which indicates that the plant’s movement is quasi unaffected by gravity. In general, plants can
move without having the deformed geometry being influenced too much by gravity. The orientation of
their mobile parts with respect to the gravitational pull does not obstruct or favor the shell movement.

Large-span stiff engineered shells use engineered materials with high Young’s moduli Y and
are designed to have a fixed shape that minimizes bending stresses and can thus be made very thin.
In contrast, compliant shells must repeat elastic deformations reliably at a low actuating cost. The
scale at which shells’ compliant deformations start to be affected by gravity is R ∼ 0.1 m. Below
that scale, compliant shells operate independent of gravity. For instance, the adaptive air inlet for
aeronautic applications described in [12] must be able to function under any orientation of the airplane.
In contrast, a compliant shell for adaptive shading of buildings does not have the same constraints as
it operates in a position aligned with gravity’s vertical orientation and can therefore be up scaled to
larger sizes [16–18].

5. Conclusions

When upscaling stiff and compliant shells from small scale biology to large scale engineered
applications, the pull of gravity needs to be accounted for. The first contribution of this paper is the
identification and logging of the dimensions and mechanical characteristics of 64 shell instances across
10 orders of magnitude of span. The shells listed are drawn from micro-biology, plant biology, animal
biology, and engineering. Using the non-dimensional Föppl–von Kármán number, bending was shown
to be more likely to occur than stretching as the dominating deformation mode for shells across all
scales. Stiff engineered shells are shaped so that this tendency is neutralized but compliant shells take
advantage of it to deform (second contribution). In order to characterize the influence of gravity on
those compliant shells across scales, Gi was introduced in this paper. This non dimensional number
determines at what scale gravity becomes relevant in the study of shell mechanics (third contribution).
In particular, Gi is defined as the ratio of the elastogravity length scale to the characteristic dimension of
the shell and measures whether the scale at which bending deformation due to self-weight appears in
a shell is larger or smaller than the actual size of the shell. The fourth contribution is the identification
of the scale at which shells become influenced by gravity. Based on the characteristics of the 64 listed
shells and using Gi, it is shown that the effect of gravity on compliant shells sets on at a scale of ~0.1 m.
Compliant shells at larger scales (R > 0.1 m) are prone to self-weight deformation under gravity load.
This deformation can hinder their function depending on the nature of the application. A mechanism
based on compliant shells that needs to perform reliably under varying orientation (e.g., airplane wing)
will not be able to be scaled to large scales. However, if the application does not demand a change
of orientation, the structure can be scaled up providing that the orientation of gravity is taken into
account in the design of the compliant shell.

The following strategies can be used for compliant thin shells to circumvent Gi < 1 while having a
high γFvK.

• The mobile part of the shell is designed to possess enough stiffness to be cantilevered. In most
compliant shell building shading systems [16–18], this stiffness is provided by curvature and
built-up stresses.

• The mechanism is oriented to limit the increase of cantilevered length during the movement.
For example, the façade of the Yoesu Expo 2012 Pavilion was designed so that the flexible shell
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elements do not create large overhangs during the out-of-plane buckling deformation [28]. The
longest elements are 8 m tall and still able to be elastically deformed repeatedly.

• The bending deformation of thin shells can be predicted by studying the possible isometric
deformation of their geometry [44]. The deformation of very curved surfaces could lead to
mechanisms being able to withstand gravity better due to their doubly-curved geometry [26].

• The final strategy to create large-scale compliant thin shells is to operate in outer space. The
behavior of shells is similar across scales. Bending deformation modes dominate stretching modes
when shells are thin enough. Being able to remove gravity forces could lead to large shells being
used as compliant mechanisms.

Determining the limits of scalability of shell used as mechanisms will allow designers to expand
the use of those structures, using the geometry of small-scale thin shells for inspiration in engineered
applications. To support this development, further work should be carried on form finding applied
to large displacements of shells. Throughout this paper, parallels have been made between the
design of stiff shells and the design of compliant shells. There is a well-established field of structural
research dedicated to the search for optimal forms for stiff shells. The development of tools for finding
appropriate and custom flexible shell geometries could lead to structural designers departing from a
pure mimetic based approach that upscales geometries to a generative approach that is able to generate
appropriate flexible shapes for kinematic problems.
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Abbreviations

R Characteristic dimension of shells
H Thickness
Y Young’s Modulus
γFvK Föppl–von Kármán number
Gi Gravity impact number
W Strain energy density
Wstretching Stretching strain energy density
Wbending Bending strain energy density
ν Poisson’s ratio
ε Average in-plane strain
κ Average variation of shell curvature
leg Elastogravity length scale
δ Deformation due to gravity
g Acceleration due to gravity
ρ Volumetric mass density
D Bending modulus (or flexural stiffness)

Appendix A. Sample of Cross-Scale Stiff and Compliant Thin Shells Instances

This appendix references the thin shells included in the study. Large scale thin shell structures found in
literature are mostly stiff. In contrast, compliant thin shell structures present a characteristic dimension in the
order-of-magnitude 100 m or below.
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Appendix A.1. Stiff Engineered Thin Shells

Most structures considered in this section were constructed with concrete or reinforced concrete. This
material gives a good order of magnitude for the material properties used in large scale engineered thin shells. The
material properties needed for the calculation of the γFvK and the Gi numbers are Young’s modulus, volumetric
mass density and Poisson’s Ratio. Those values are taken from the Eurocode 2 [50] and presented in Table A1.
The values reflect commonly used values of concrete in design. They are indicative of order-of-magnitude for the
parameters considered.

Table A1. Material properties used in the calculation of γFvK and Gi numbers for the engineered
thin shells.

Material Property Value

Volumetric mass density (kg·m−3) 2500
Modulus of Elasticity (GPa) 35

Poisson’s ratio 0.20

The structures selected for this study have been built throughout the 20th and 21st centuries. They have
been extensively described in [15]. Their dimensions are reported in Table A2.
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Table A2. Dimensions of large scale engineered thin shells included in the study. The structures are described in [15].

Id Name/Location Designer Ref.
Span (m) Thickness (m)

Min. Max. Avg. Min. Max. Avg.

1 Aichtal Balz, Isler [15] 42.0 42.0 42.0 0.090 0.120 0.105
2 Algeciras Sanchew Arcas, Torroja [15] 47.5 47.5 47.5 0.089 0.457 0.273
3 Bacardi Candela [15] 36.8 36.8 36.8 0.040 0.040 0.040
4 Bundesgartenschau SBP [15] 10.0 26.0 18.0 0.012 0.015 0.014

5 Lomas De
Cuernavaca Candela [15] 18.0 31.0 24.5 0.040 0.040 0.040

6 Milagrosa Candela [15] 11.0 21.0 16.0 0.040 0.040 0.040
7 San Jose Obrero Candela [15] 30.0 30.0 30.0 0.040 0.040 0.040
8 Cosmic Rays Candela [15] 12.0 12.0 12.0 0.015 0.050 0.033
9 Deitingen Isler [15] 31.6 31.6 31.6 0.090 0.090 0.090

10 Florelite Isler [15] 41.0 41.0 41.0 0.080 0.080 0.080
11 GiessHauss Henschel [15] 16.0 16.0 16.0 0.175 0.320 0.248
12 Gringrin Sasaki [15] 70.0 70.0 70.0 0.400 0.400 0.400
13 Heimberg Isler [15] 48.5 48.5 48.5 0.090 0.100 0.095
14 Hippo SBP [15] 29.0 29.0 29.0 0.040 0.060 0.050
15 Hyperthreads Zaha Hadid [15] 6.0 6.0 6.0 0.080 0.080 0.080
16 Jeronimo De Castillo, de Boitaca [15] 10.0 10.0 10.0 0.070 0.100 0.085
17 Kakamigara Ito, Sasaki [15] 20.0 20.0 20.0 0.200 0.200 0.200
18 Kitagata Isozaki, Sasaki [15] 25.0 25.0 25.0 0.150 0.150 0.150
19 Kresge Saarinen, B&H, A&W [15] 48.8 48.8 48.8 0.075 0.455 0.265
20 Los Manantiales Candela [15] 42.5 42.5 42.5 0.040 0.040 0.040

21 Mapungubwe Rich, Ochsendorf,
Ramage [15] 5.0 14.0 9.5 0.300 0.300 0.300

22 Rolex SANAA, Sasaki [15] 80.0 80.0 80.0 0.040 0.080 0.060
23 Rio Warehouse Candela [15] 15.3 15.3 15.3 0.040 0.040 0.040
24 Sicli Hiberer, Isler [15] 58.0 58.0 58.0 0.100 0.100 0.100
25 Teshima Nishizawa, Sasaki [15] 43.0 60.0 51.5 0.250 0.250 0.250
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Appendix A.2. Compliant Engineered Thin Shells

More than any other type of shell structures in this study, engineered compliant thin shells have very
different material properties from one to the other. Tables A3 and A4 present those material properties and the
characteristic dimensions.

Table A3. Material properties of the compliant engineered thin shells included in the study.

Id Description Ref. Material Poisson’s
Ratio

Young’s Modulus
(N/m−2)

Volumetric Mass
Density (kg/m−3)

1 Aldrovanda Half
Sphere [16] CFRP 0.3 7.60 × 1010 1800

2 Snap Curved
Helicoid [24] Polycaprolactone 0.4 3.53 × 108 1145

3 Snap Curved
Cylinder [24] PET 0.4 5.00 × 109 1380

4 Flectofin [18] GFRP 0.4 2.50 × 1010 1800
5 Flectofold [17] GFRP 0.4 1.15 × 1010 1100

6 Gravity Compliant
Shell [26] PETG 0.4 2.35 × 109 1300

7 Multistable-Corrugated
Shells [27] copper–beryllium 0.3 1.31 × 1011 8950

8 Multistable Inlet [12] CFRP 0.3 7.60 × 1010 1800
9 Yoesu One Ocean [28] GFRP 0.4 2.50 × 1010 1800

10 Scoliosis Brace Helix [29] CFRP 0.3 7.60 × 1010 1800

11 Scoliosis Brace
Cantilever [29] Polycarbonate 0.4 2.90 × 109 1270

12 Tape Spring [31] Steel 0.3 2.10 × 1011 7800
13 Stiffness Study Shell 1 [32] Acrylic 0.4 3.20 × 109 1180
14 Stiffness Study Shell 2 [32] PETG 0.4 2.06 × 109 1270
15 Antenna Tape Spring [30] CFRP 0.3 3.56 × 1010 1440
16 Collapsible Booms [25] CFRP 0.3 7.60 × 1010 1800
17 Deformable Mirrors [51] CFRP 0.3 7.60 × 1010 1800

Table A4. Dimensions of the compliant engineered thin shells included in the study

Id Description Ref.
Span (m) Thickness (m)

Min. Max. Avg. Min. Max. Avg.

1 Aldrovanda Half Sphere [16] 0.800 1.000 0.900 5.00 × 10−4 8.00 × 10−4 6.50 × 10−4

2 Snap Curved Helicoid [24] 0.025 0.035 0.030 1.00 × 10−3 1.00 × 10−3 1.00 × 10−3

3 Snap Curved Cylinder [24] 0.025 0.035 0.030 1.20 × 10−4 1.20 × 10−4 1.20 × 10−4

4 Flectofin [18] 0.250 0.250 0.250 2.00 × 10−3 2.00 × 10−3 2.00 × 10−3

5 Flectofold [17] 1.100 1.100 1.100 1.25 × 10−3 1.25 × 10−3 1.25 × 10−3

6 Gravity Compliant Shell [26] 0.050 0.100 0.075 9.00 × 10−4 9.00 × 10−4 9.00 × 10−4

7 Multistable-Corrugated
Shells [27] 0.100 0.250 0.175 1.25 × 10−4 1.25 × 10−4 1.25 × 10−4

8 Multistable Inlet [12] 0.040 0.100 0.070 2.50 × 10−4 2.50 × 10−4 2.50 × 10−4

9 Yoesu One Ocean [28] 1.300 8.000 4.650 9.00 × 10−3 9.00 × 10−3 9.00 × 10−3

10 Scoliosis Brace Helix [29] 0.050 0.050 0.050 3.50 × 10−3 3.50 × 10−3 3.50 × 10−3

11 Scoliosis Brace Cantilever [29] 0.070 0.100 0.085 3.00 × 10−3 3.00 × 10−3 3.00 × 10−3

12 Tape Spring [31] 0.021 0.050 0.036 2.00 × 10−4 2.00 × 10−4 2.00 × 10−4

13 Stiffness Study Shell 1 [32] 0.100 0.150 0.125 2.00 × 10−3 2.00 × 10−3 2.00 × 10−3

14 Stiffness Study Shell 2 [32] 0.015 0.075 0.045 5.00 × 10−4 5.00 × 10−4 5.00 × 10−4

15 Antenna Tape Spring [30] 0.050 0.050 0.050 2.25 × 10−4 3.00 × 10−4 2.63 × 10−4

16 Collapsible Booms [25] 0.011 0.036 0.023 2.00 × 10−4 2.00 × 10−4 2.00 × 10−4

17 Deformable Mirrors [51] 1.000 1.000 1.000 2.00 × 10−4 3.00 × 10−4 2.50 × 10−4

Appendix A.3. Compliant Plant Thin Shells

The material properties of plant mechanisms are presented in Table A5. Their characteristic dimensions are
presented in Table A6. In plants, parenchyma cells are alive and constitute the bulk of tissue in the thin shell [49].

Table A5. Material properties used in the calculation of γFvK and Gi numbers for the compliant plant
thin shells [34].

Material Property Value

Volumetric mass density (kg·m−3) 1300
Modulus of Elasticity (MPa) 5

Poisson’s ratio 0.5
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Table A6. Dimensions of the compliant plant thin shells included in the study.

id Name Ref
Span (m) Thickness (m)

Min. Max. Avg. Min. Max. Avg.

1 Stylidium
crossocephalum [33] 1.00 × 10−3 1.00 × 10−3 1.00 × 10−3 5.00 × 10−4 5.00 × 10−4 5.00 × 10−4

2 Stylidium
graminifolium [33] 1.00 × 10−3 1.00 × 10−3 1.00 × 10−3 5.00 × 10−4 5.00 × 10−4 5.00 × 10−4

3 Stylidium piliferum [33] 1.00 × 10−3 1.00 × 10−3 1.00 × 10−3 5.00 × 10−4 5.00 × 10−4 5.00 × 10−4

4 Aldrovanda vesiculosa [34] 2.60 × 10−3 2.60 × 10−3 2.60 × 10−3 4.00 × 10−5 7.00 × 10−5 5.50 × 10−5

5 Dionea muscipula [34] 1.00 × 10−2 1.00 × 10−2 1.00 × 10−2 4.00 × 10−4 4.00 × 10−4 4.00 × 10−4

6 Utricularia Sp. [35] 1.00 × 10−4 2.00 × 10−4 1.50 × 10−4 2.00 × 10−5 4.00 × 10−5 3.00 × 10−5

7 Utricularia vulgaris [35] 1.00 × 10−4 3.00 × 10−4 2.00 × 10−4 2.00 × 10−5 4.00 × 10−5 3.00 × 10−5

8 Utricularia australis [35] 3.30 × 10−4 7.20 × 10−4 5.25 × 10−4 2.00 × 10−5 4.00 × 10−5 3.00 × 10−5

Appendix A.4. Compliant Micro-Scale Thin Shells

The material properties of micro-scale compliant shells are presented in Table A7. Their characteristic
dimensions are presented in Table A8.

Table A7. Material properties of the compliant micro-scale thin shells included in the study.

Id Description Ref. Poisson’s Ratio Young’s Modulus
(N/m−2)

Volumetric Mass
Density (kg/m−3)

1 Red Blood Cell [40] 0.5 3.10 × 106 1000

2 Artificial
Capsules [19,39] 0.5 1.00 × 109 1000

3 Virus [8,19] 0.5 3.10 × 106 1000
4 Vesicle 1 [41] 0.5 1.00 × 109 1000
5 Vesicle 2 [41] 0.5 1.00 × 109 1000

Table A8. Dimensions of the compliant micro-scale thin shells included in the study.

Id Description Ref.
Span (m) Thickness (m)

Min. Max. Avg. Min. Max. Avg.

1 Red Blood Cell [40] 4.00 × 10−6 1.00 × 10-5 7.00 × 10−6 9.00 × 10−8 9.00 × 10−8 9.00 × 10−8

2 Artificial Capsules [19,39] 1.00 × 10−6 1.00 × 10−3 5.01 × 10−4 1.00 × 10−6 1.00 × 10−6 1.00 × 10−6

3 Viruses [8,19] 1.50 × 10−8 3.00 × 10−8 2.25 × 10−8 2.00 × 10−9 2.00 × 10−9 2.00 × 10−9

4 Vesicle 1 [41] 2.40 × 10−5 3.00 × 10−5 2.70 × 10−5 5.00 × 10−7 5.00 × 10−7 5.00 × 10−7

5 Vesicle 2 [41] 3.20 × 10−5 4.00 × 10−5 3.60 × 10−5 5.00 × 10−7 5.00 × 10−7 5.00 × 10−7

Appendix A.5. Stiff Eggshells

The material properties of micro-scale compliant shells are presented in Table A9. Their characteristic
dimensions are presented in Table A10.

Table A9. Material properties of the avian egg thin shells.

Id Description Ref. Poisson’s Ratio Young’s Modulus
(N/m−2)

Volumetric Mass
Density (kg/m−3)

1 Hen’s Egg [36,37] 0.3 7.24 × 1010 2710
2 Quail Egg [38] 0.3 1.05 × 1010 2710
3 Chicken Pullet Egg [38] 0.3 1.48 × 1010 2710
4 Chicken White Egg [38] 0.3 2.75 × 1010 2710
5 Chicken Organic Egg [38] 0.3 1.80 × 1010 2710
6 Chicken Jumbo Egg [38] 0.3 2.46 × 1010 2710
7 Goose Egg [38] 0.3 1.04 × 1010 2710
8 Ostrich Egg [38] 0.3 6.60 × 1010 2710
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Table A10. Dimensions of the avian egg thin shells.

Id Description Ref.
Span (m) Thickness (m)

Min. Mix. Average Min. Mix. Average

1 Hen’s Egg [36,37] 4.54 × 10−2 5.50 × 10−2 5.02 × 10−2 3.50 × 10−4 5.00 × 10−4 4.25 × 10−4

2 Quail Egg [38] 3.00 × 10−2 3.00 × 10−2 3.00 × 10−2 2.20 × 10−4 2.20 × 10−4 2.20 × 10−4

3 Chicken Pullet Egg [38] 5.45 × 10−2 5.45 × 10−2 5.45 × 10−2 4.40 × 10−4 4.40 × 10−4 4.40 × 10−4

4 Chicken White Egg [38] 6.04 × 10−2 6.04 × 10−2 6.04 × 10−2 3.50 × 10−4 3.50 × 10−4 3.50 × 10−4

5 Chicken Organic Egg [38] 6.04 × 10−2 6.04 × 10−2 6.04 × 10−2 4.10 × 10−4 4.10 × 10−4 4.10 × 10−4

6 Chicken Jumbo Egg [38] 6.31 × 10−2 6.31 × 10−2 6.31 × 10−2 4.00 × 10−4 4.00 × 10−4 4.00 × 10−4

7 Goose Egg [38] 8.74 × 10−2 8.74 × 10−2 8.74 × 10−2 6.70 × 10−4 6.70 × 10−4 6.70 × 10−4

8 Ostrich Egg [38] 1.55 × 10−1 1.55 × 10−1 1.55 × 10−1 2.55 × 10−3 2.55 × 10−3 2.55 × 10−3
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