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An SL1L2I1I2A1A2R epidemic model is formulated that describes the spread of an epidemic
in a population. The model incorporates an Erlang distribution of times of sojourn in
incubating, symptomatically and asymptomatically infectious compartments. Basic prop-
erties of the model are explored, with focus on properties important in the context of
current COVID-19 pandemic.
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1. Introduction

As part the authors’ work on COVID-19, we have relied several times on a specific model derived from an earlier model
(Arino, Brauer, van den Driessche, Watmough, &Wu, 2007). This model, like that previous model, is applicable to a variety of
emerging and re-emerging pathogens exhibiting an observable latent period as well as symptomatic and asymptomatic
infections. The specificity of the present model is the further incorporation of Erlang distributions of the time of sojourn in
some of the important compartments in the model. Indeed, most of the work we have carried out so far on COVID-19 has
concerned predictions over a short time period, often no more than a month. In this context, incorporating a better
description of sojourn times is extremely important. The present model generalises the simple 3-compartment SIR model to
age of infection models, providing a reasonable approximation to the details of progression through infectionwith a minimal
number of parameters and the convenience of an ODE model over integral or PDE models.

In this short note, we present this model and explain some of its features in the context of the current COVID-19 pandemic.
We also conduct a simple sensitivity analysis in order to highlight the most important parameters in the model.

The main conclusion of the analysis here is that model responses are highly sensitive to the value of the parameter
describing the fraction of cases that are asymptomatic, highlighting the need for intensive research to get a better handle on
the value of this critical parameter.
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2. The model

We use a simple variation on the classic SLIAR epidemic model for susceptible, latently infected, symptomatic and
asymptomatic infectious and removed individuals, with numbers denoted respectively S, L, I, A and R (Arino, Brauer, van den
Driessche, Watmough, & Wu, 2006). The SLIAR epidemic model has often been used to describe the propagation of diseases
caused by virus leading to respiratory illness such as influenza (Jin et al., 2011; Kim, Lee,& Jung, 2017; Li et al., 2020). Contrary
to SLIR (or SEIR) models, it allows to consider infection by asymptomatic individuals, which in the case of COVID-19 has been
reported to have substantially contributed to disease propagation (Li et al., 2020).

As the time scale of interest is short, the model has no birth or natural death, only death by removal from the infectious
compartments I andA. It is therefore an epidemicmodel, as opposed to an endemicmodel. Furthermore, because the time horizon
for simulations is very short in comparison to reported estimates of incubation period (Backer, Klinkenberg, & Wallinga, 2020;
Lauer et al., 2020a) and communicable period (Hu et al., 2020), making a more appropriate description of sojourn times in the
incubation, symptomatically infectious and asymptomatically infectious compartments is important. Although not ideal, we use
an Erlang distribution, i.e., a Gamma distribution with integer shape parameter. To simplify the problem, we use two compart-
ments for each of the L, I and A states (Arino, 2020). We could use more if need be; the overall set up would vary very little.

Let us briefly justify this modification in the current context. Consider, for instance, the incubation period, i.e., the time
between infection and the onset of symptoms. A wide range of possible durations has been reported. Let us suppose, for
instance, that the mean incubation period of COVID-19 is 5.2 days as reported by (Lauer et al., 3AD). Then, comparing the
fraction of individuals infected at time 0 and still incubating at time t, we obtain Fig.1. The Erlang distribution thus allows both
a less pronounced early end and a less extended duration of the incubation period. If need be, we could further extend this
behaviour by adding more compartments and thus increasing the shape parameter of the Erlang distribution.

Note that this does not increase the complexity of themodel and, for instance, parameter fitting procedures, sincewe use
the same parameter for all compartments in these “chains”; for instance, the incubation period is described using the single
parameter ε; the only differencewith the exponential case is that, here, 2=ε is themean sojourn time in the combined L1 and
L2 compartments.

The flow diagram of the model is as shown in Fig. 2.
We suppose that incidence takes the form

FS ¼ f ðxÞðI1 þ I2 þ hL2 þ xðA1 þ A2Þ ÞS; (1)

where b is the transmission coefficient, h and x are the attenuation factors for transmission by incubating and asymptomatic
cases, respectively, x ¼ ðS; L1; L2; I1; I2;A1;A2;RÞ is the state vector and f : ℝ8þ/ℝþ is the function describing the nature of the
overall incidence function. As in Fig. 2, we can also think of incidence as taking the form FS; F in this case is the force of
infection. Typical choices for f include f ðxÞ ¼ b, making the incidence mass action, and f ðxÞ ¼ b=C1; xD, with 1 ¼ ð1;…;1Þ,
giving proportional incidence.

The system governing the behaviour is then the following:

S’ ¼ �f ðxÞðI1 þ I2 þ xðA1 þ A2Þ þ hL2 ÞS (2a)

L1’ ¼ f ðxÞðI1 þ I2 þ xðA1 þ A2Þ þ hL2 ÞS� εL1 (2b)
Fig. 1. Comparison of the survival functions of an exponential and an Erlang distributions with mean 5.2 days (and shape 2 in the case of the Erlang distribution).



Fig. 2. Flow diagram of the SL1L2I1I2A1A2R model. Here, F ¼ f ðxÞðI1 þ I2 þ xðA1 þ A2Þ þ hL2 Þ is the force of infection.
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L2’¼ εðL1 � L2Þ (2c)

I1’¼ð1�pÞεL2 � gI1 (2d)
I2’¼gðI1 � I2Þ (2e)
A1’¼pεL2 � gA1 (2f)
A2’¼gðA1 �A2Þ (2g)
R’¼gI2 þ gA2: (2h)
Note that it is assumed that there can be transmission during the incubation period, as this was reported (Tong et al.,
2020). Thus, the compartment L2 can be interpreted as consisting of pre-symptomatic infectious individuals. A fraction p
of individuals is assumed to go into an asymptomatic phase following incubation (and correspondingly, 1� p develop
symptoms). Finally, ε and g describe the rates at which incubation and infectiousness end, respectively. By properties of
Erlang distributions, the average times spent incubating and infectious (symptomatically or asymptomatically) are 2= ε and 2=
g time units, respectively.

3. Some properties of the model

The purpose of this paper is not to conduct a thorough mathematical analysis of (2). We refer to (Arino et al., 2006) for
considerations on the behaviour of a version of this model with only one of each disease status compartments. It is useful,
though, to summarise some elementary properties of (2).

3.1. Behaviour of the model

An epidemic model such as (2), as compared to endemic models with demographic components, only has one possible
long term outcome: a disease-free equilibrium E0 in which the only two potentially positive components are S and R. As is
customary with such models, we denote S∞ ¼ limt/∞SðtÞ and R∞ ¼ limt/∞RðtÞ the limiting values of S and R. Because of the
structure of the model, these limits always exist [3, Theorem 5.1].

As with other simple epidemic models of this type, the main interest is to know whether, following the introduction of
infected individuals in the population, the number of infected individuals goes through an exponential growth phase,
indicating an epidemic phase, before the disease becomes extinct. This is decided using the basic reproduction numberR 0. To
find its value, we use the method in (Arino et al., 2007), using the notation therein. First, D ¼ 1 since S2Rm withm ¼ 1. The
matrixP ¼ ½pij� (to avoid confusionwith the fraction p of asymptomatic cases) has entry pij the fraction of the jth susceptible
compartment moving, upon infection, to the ith infected compartment. Therefore, here it is a vector, P ¼ ð1;0;0;0;0;0ÞT ,
since all new infectionsmove to the L1 compartment. The row vector b describes the relative horizontal transmissions. It takes
the form b ¼ ð0;h;1;1;x;xÞ. The function denoted bðx; y; zÞ in (Arino et al., 2007) is f ðxÞ here. Finally, the matrix V describing
transitions between and out of infected states takes the form

V ¼

0
BBBBBB@

ε 0 0 0 0 0
�ε ε 0 0 0 0
0 �ð1� pÞε g 0 0 0
0 0 �g g 0 0
0 �pε 0 0 g 0
0 0 0 0 �g g

1
CCCCCCA

and has inverse
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V�1 ¼

0
BBBBBB@

1=ε 0 0 0 0 0
1=ε 1=ε 0 0 0 0

ð1� pÞ=g ð1� pÞ=g 1=g 0 0 0
ð1� pÞ=g ð1� pÞ=g 1=g 1=g 0 0

p=g p=g 0 0 1=g 0
p=g p=g 0 0 1=g 1=g

1
CCCCCCA
:

From (Arino et al., 2007), the basic reproduction number of (2) is then

R 0 ¼ f ðE0ÞbV�1PDSð0Þ;
where Sð0Þ is the susceptible population at the initial time. Note that for this formula to hold, f ðE0Þmust be defined. In other

words, the basic reproduction number takes the form

R ðf Þ
0 ¼ f ðE0Þ

�
2
px

g
þ 2

1� p

g
þ h

ε

�
Sð0Þ; (3)

where the superscript ðf Þ is used to show dependence on the nature of f. If f ðxÞ ¼ b, i.e., we use mass action incidence, then
R ðMAÞ
0 ¼ b

�
2
px

g
þ 2

1� p

g
þ h

ε

�
Sð0Þ; (4)

whereas in the case of proportional or frequency-dependent incidence, f ðE0Þ ¼ b=Sð0Þ and
R ðFDÞ
0 ¼ b

�
2
px

g
þ 2

1� p

g
þ h

ε

�
(5)
Observe that the latter form stems from the fact that at E0, C1;E0D ¼ S∞ þ R∞ and the latter equals Sð0Þ since the model
clearly preserves the total population.

3.2. Final size relations

One measure of particular importance in the context of COVID-19 and other emerging or re-emerging pathogens is the
epidemic final size Sð0Þ� S∞. The final size is often expressed in terms of the attack rate ðSð0Þ � S∞Þ=Sð0Þ.

In the case where incidence is mass action, since we have a single susceptible class, the method in (Arino et al., 2007)
provides an explicit final size relation,

ln
�
Sð0Þ
S∞

�
¼ R ðMAÞ

0
Sð0Þ ðSð0Þ � S∞ Þ þ bbV�1Ið0Þ;

where Ið0Þ ¼ ðL1ð0Þ; L2ð0Þ; I1ð0Þ; I2ð0Þ;A1ð0Þ;A2ð0ÞÞT is the initial infected population. This simplifies to

ln
�
Sð0Þ
S∞

�
¼ R ðMAÞ

0
Sð0Þ ðSð0Þ � S∞ þ L1ð0Þ þ L2ð0Þ Þ þ

b

g
ð2I1ð0Þ þ I2ð0Þ þ 2xA1ð0Þ þ xA2ð0Þ Þ (6)

With other incidence functions, we obtain inequalities of the form

ln
�
Sð0Þ
S∞

�
� R ðf Þ

0
Sð0Þ ðSð0Þ � S∞ Þ þ f ðKÞbV�1Ið0Þ;

where K is the initial total population size. Similarly to (6), this can easily be simplified but is not shown here.
Thus, in the case of mass action incidence, the most used incidence in the case of epidemics, finding the final size of the

epidemic (or, equivalently, the epidemic attack rate) requires to solve the simple transcendental equation (6), which is easily
done at least numerically.

3.3. Detecting the turning point and the peak

Other measures of particular importance in the context of the study of an epidemic outbreak are the timing of the peak as
well as the disease prevalence at the peak. In the discussion that follows, assume incidence is mass action.

In a classic ODE Kermack-McKendrick SIR model, the peak is easily characterised as the point in phase space where I’ ¼ 0.
Because of the number of compartments, the peak here can be studied in two parts. Before the peak is actually reached, there
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is first a point in time at which incidence starts to decrease; this is sometimes called the turning point of the epidemic. In the
present model, this point is reached when L1’ ¼ 0, i.e., with mass action incidence, when

S¼ εL1
bðhL2 þ I1 þ I2 þ xðA1 þ A2ÞÞ

¼ : JðIÞ; (7)

where I ¼ ðL1;L2;I1;I2;A1;A2Þ. Note thatJ is not defined everywhere in phase space; for instance, it is not defined at E0 nor if
one considers an I with sign pattern ð þ ;0;0;0;0;0Þ. However, past initial transients and before I becomes close to E0, (7)
provides a characterisation of the phase the epidemic is currently in. If S>JðIÞ, then the “natural tendency” of the epidemic is
to propagate more. When enough susceptible individuals have been “consumed” by the infection, i.e., when S< JðIÞ, the
epidemic cannot sustain itself anymore. For perspective, in the context of COVID-19 and using time units of days and mass
action incidence, ε is of the order of 10�1 while b is typically several order of magnitude smaller, so the factor ε= b in (7) is in
the range ½104;107�. Note that because only I1 and I2 are observable, determining whether (7) holds is impossible in the field.
On the other hand, this is easily done when considering numerical simulations.

The peak is then the point at which prevalence of the infection in the population is maximum. Here, we focus on the
observable peak, i.e., the one that can actually be measured in real life data. Because of that, we consider the peak to happen at
the time when the observable part of the epidemic, i.e., the number of infectious individuals I1 þ I2, is maximum. Thus, at the
peak, I1’þ I2’ ¼ 0, i.e.,

ð1�pÞεL2 ¼gI2: (8)
Since ð1�pÞεL2 is the rate at which new symptomatic infections occur and gI2 is the rate at which symptomatic infections
are resolved, either by recovery or death, the occurrence of conditions necessary for the peak to take place can be inferred
from the data. So, while (7) is not observable, (8) is.

3.4. Start date of the epidemic in a location

When conducting a numerical investigation of the system properties, finding the date at which to start simulations is
important. We describe here the methodology used to do so.

In this work, we do not account for “structural” under-reporting of cases and thus assume that the observable quantity in
our model, in terms of infection, is the number of new symptomatic cases. As a consequence, we take, for a given location, the
time tc at which the first c confirmed cases are reported. A location is thus characterised by a pair ðtc;cÞ.

For illustration, take the situation of cumulative confirmed case counts in China as reported to WHO, which was of 547
cases on January 22, 2020, i.e., (t_c¼2020_01_22,c¼547). We seek the initial date ti for China such that, on January 22, 2020,
China has this cumulative confirmed case count when solving (2) numerically and with the parameters considered. Given a
point u in parameter space, we initiate a simulationwith initial time t0 ¼ 0.We solve (2) numerically, forward in time over the
interval ½0; t�, with Sð0Þ the population of China, L1ð0Þ ¼ 1 and all other state variables equal to zero. This gives a solution
xðt; t0 ¼ 0;uÞ. Extracting L2ðt; t0 ¼ 0;uÞ from this solution, we compute

CðtÞ¼
Zt

t0¼0

ð1�pÞεL2ðs; t0;uÞ ds:
As ð1�pÞεL2 is the rate at which individuals enter the I1 compartment, CðtÞ represents the total number of individuals
having become infectious at time t, i.e., the cumulative number of symptomatic infections t days after the introduction of the
first infectious individual in the population. We then let t* be the point when Cðt*Þ ¼ 547; ti for China, with the parameters u,
is then ti ¼ 2020_01_22� t*.

Note that a random point in parameter space might lead to a situationwhereR 0 <1. This is used in parameter estimation
to disqualify such points. Other points that would be disqualified are those such that t* is too large. These aspects will be
discussed in further work on the topic.
Table 1
Model parameters. Incubation time and Infectious period give the parameters ε ¼ 2=ðIncubation timeÞ and g ¼ 2=ðInfectious periodÞ, respectively.
Parameter Definition Range

b transmission coefficient ½5 � 10�7;10�4�
h attenuation of transmission for incubating individuals ½0;0:2�
x attenuation of transmission for asymptomatic individuals ½0;1�
p fraction of asymptomatic cases ½0;1�
Incubation time mean duration of incubation ½1;14�
Infectious period mean duration of infectious period ½2;14�



Fig. 3. Sensitivity analysis results: (a) Effects of factors on the number of observable cases as a function of time. The upper panel shows inter-quartile (grey area)
and median (bold line) output values over time. The lower panel displays the sensitivity indices over time for the main effects and the first-order interactions
(interaction between two factors). Residuals correspond to contribution to the variance from interactions between three or more factors. (b) Effects of factors on
the time of the peak tmax and size of the peak Imax . Bars represent total indices of sensitivity for each factor. The dark grey parts of bars are the main effect
sensitivity indices, light grey parts correspond to first-order interactions.
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4. Sensitivity analysis

A global sensitivity analysis is carried out to characterise the impact of uncertainty of factors (inputs of the model) on
model outputs. The inputs of model and their ranges are listed in Table 1; p inputs associated to the model parameters are
considered. The number of observable cases during the course of the epidemic and at the peak, and the timing of the peak are
the outputs of interest here. The number of observable cases is the cumulative confirmed case count CðtÞ.

The variance-based analysis is performed using the R package multisensi. For each factor,m ¼ 7 values are chosen using
Latin hypercube sampling with uniform distributions on the range considered for the factor of interest (Table 1). Then, using a
complete factorial design approach, mp scenarios are generated. Simulations are run for these mp ¼ 76 ¼ 117;649 scenarios
with the same initial condition Sð0Þ ¼ 100;000, I1ð0Þ ¼ 1 and L1ð0Þ ¼ L2ð0Þ ¼ I2ð0Þ ¼ Rð0Þ ¼ 0. Then, sensitivity indices are
computed using a classic ANOVA decomposition (Lamboni, Makowski, Simon, Gabrielle, & Monod, 2009; Monod, Naud, &
Makowski, 2006).

Fig. 3a shows the influence of factors on the number of observable cases over time. The sensitivity indices are computed
every 2 days over a period of 250 days. The lower panel of Fig. 3a details, at each time point, contributions (normalised to 1) of
model parameters to the total variability of model responses. At a given time tj, the relative lengths of the coloured segments
represent the relative contributions of the main effect sensitivity indices to this total variability. Interactions between two
factors is denoted “interaction” and those involving three or more factors is denoted “residual”.

For instance, at t85 (after 85 days), the number of observable cases is mostly sensitive to the main effect of p. The main
effect of the transmission coefficient b accounts for one-third of the variability. Interactions between factors contribute to
about one-tenth of the output variability. In the long-run, this trend persists.

In the early dynamics, the variability is due to the main effects of incubation time and interactions between factors.
Fig. 3b displays the total sensitivity, a measure of influence of each factor; the outputs considered here are the timing

of the peak and value of the observable variables at the peak, tmax and Imax respectively. In each bar (total sensitivity), the
main effect (dark grey) and interaction between the factor of interest and another (light grey) are detailed. The time of
the peak tmax is affected by the transmission b and incubation time. The value of the peak Imax is mainly influenced by the
proportion of asymptomatic p, the duration of incubation and infectiousness and transmission b. The transmission co-
efficient (b) has the most influence on tmax whereas Imax is most impacted by the proportion p of asymptomatic cases.
Furthermore, note that for the most influential factors of tmax the first-order interactions contribute the most to their
total sensitivity. The timing of peak of observable case numbers results mostly from the interplay between factors.
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5. Discussion

The model presented here can be used to consider some of the aspects of spread of a novel or re-emergent pathogen. We
have focused here on practical aspects of the use of the model, focusing on the need, in emergency response settings, to
provide a fast evaluation of outcomes.

Model (2) consists of 8 differential equations, but its parametrisation involves the same number of parameters as the 5
equations model fromwhich it is derived (Arino et al., 2006). Because a lot is unknown during the early stages of a crisis like
the ongoing COVID-19 pandemic, simple models that can be fitted using a minimal number of parameters are extremely
useful.

In a time of crisis, it is however also important not to oversell the capabilities of a model. We have been considering many
variations on the current model, as part of work conducted in Canada regarding COVID-19. While this base model has proved
very helpful in many circumstances, it is unable in particular to provide insights into testing or contact tracing. Other
modelling paradigms such as individual-based (IBM) or agent-based (ABM) models are much better suited to answer
questions in this area. A continuous-time Markov chain model version of this model has for instance been considered to
answer specific questions where a better understanding of the infection chains is required, such as importations of cases into
new locations.

Where our model is quite appropriate, on the other hand, is when reasonably sized populations are considered. In this
case, it can easily be shown, as had been done in (Arino et al., 2006), that ODE models provide essentially similar results to
population-level IBM and ABM.

This highlights another strength of this type of approach: ODEmodels are quite amenable to extensive sensitivity analyses,
bringing forward an important non methodological conclusion of the present work. One of the most influential factor/
parameter in themodel considered is the proportion of asymptomatic cases. The basic reproduction numberR 0 (through the
transmission parameter b and its interaction with other parameters) determines the time of the peak of observable cases
whereas the value of the peak, and thus the impact on the health care system, depends critically on the proportion of cases
that are asymptomatic. This highlights the imperious need for more research, both in the field and in modelling, to under-
stand the drivers of asymptomaticity and its prevalence among cases.
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