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Spontaneous pneumothorax, a prevalentmedical challenge inmost trauma cases, is a formof sudden lung collapse closely associated
with risk factors such as lung cancer and emphysema. Our work seeks to explore and quantify the currently unknown pathological
factors underlying lesion rupture in pneumothorax through biomechanical modeling. We hypothesized that lesion instability is
closely associated with elastodynamic strain of the pleural membrane from pulsatile air flow and collagen-elastin dynamics. Based
on the principles of continuummechanics andfluid-structure interaction, our proposedmodel coupled isotropic tissue deformation
with pressure from pulsatile air motion and the pleural fluid. Next, we derived mathematical instability criteria for our ordinary
differential equation system and then translated these mathematical instabilities to physically relevant structural instabilities via
the incorporation of a finite energy limiter. The introduction of novel biomechanical descriptions for collagen-elastin dynamics
allowed us to demonstrate that changes in the protein structure can lead to a transition from stable to unstable domains in the
material parameter space for a general lesion. This result allowed us to create a novel streamlined algorithm for detecting material
instabilities in transient lung CT scan data via analyzing deformations in a local tissue boundary.

1. Introduction

Spontaneous pneumothorax is a formof sudden lung collapse
closely associated with risk factors such as lung cancer and
emphysema. The disorder represents a pressing clinical chal-
lenge, affecting between 20 and 40% of patients with major
trauma [1]. The onset of pneumothorax has been attributed
to the rupture of quasi spherical parenchymal lesions or
air blebs of the visceral pleural membrane [2]. The rupture
of these lesions in turn releases air into the pleural cavity,
and the consequent pressure buildup leads to the collapse
of the lung [3]. Because pneumothorax has a relatively large
recurrence rate of approximately 54% in the first four years
after surgery, wholly understanding and quantifying the
mechanisms behind lesion rupture are important [4].

The etiology and trigger mechanisms behind lesion rup-
ture, however, still remain elusive [2, 5]. We hypothesize
that lesion rupture and instability are closely associated with
elastodynamic strain of the visceral pleural membrane from

pulsatile air flow and changes in the constitutive protein
composition of tissue. In order to assess the validity of this
hypothesis, we constructed a biomechanical model based on
the principles of finite strain continuummechanics and fluid-
structure interaction. Our proposed model closely aligns
with the behavior of true biological soft tissue through the
coupling of membrane energy limitations and growth and
remodeling driven by collagen-elastin dynamics. Through
the use of an exhaustive ordinary differential equation sta-
bility analysis, we isolated several instability regions in the
material parameter space of a general lesion.

Based on these mathematical results, we developed an
algorithm to rapidly assay clinical lung CT scan data for
structural instabilities. The algorithm is based on cataloging
and processing local deformations in a tissue boundary
isolated via Sobel Edge Detection. The local deformation of
the boundary is then fit to our biomechanical model and reg-
istered as either stable or unstable based onwhether or not the
interpolated material parameters lie in the instability region.
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Figure 1: Outline of novel early diagnosis method. An outline of our novel diagnosis method. Based on the observation of certain symptoms,
changes in the lung boundary are catalogued and material parameters are derived. The differential equation system is locally applied, and
then a stability calculation is performed to determine the appropriate course of action.

Figure 1 shows a general outline of our novel early diagnostic
method. In the future, the algorithm may be real time
coupled with either ultrasound or CT scan data to quantify
patient risk of pneumothorax earlier and improve the current
diagnostic benchmark of only 75% lesion sensibility [6].
Unlike competitive diagnostic procedures for pneumothorax
such as infrared thermography [1], our proposed method
relies on detecting pathological hallmarks in tissue behavior
before acute lung collapse actually occurs.

2. Methodology

Our study focused on the construction of a theoretically
based biomechanical model for lung parenchymal lesion
rupture and then the implementation of this model towards a
streamlined algorithm for early pneumothorax diagnosis.We
began with the theoretical development of a model for simple
isotropic tissue deformation and then conducted several
initial numerical investigations. Next, we derived mathemat-
ical instabilities for our system and then translated these
mathematical instabilities to physically relevant structural
instabilities via the incorporation of an energy limiter. We
then incorporated collagen-elastin dynamics (dynamic alter-
ation of the constitutive proteins in the tissue) to demonstrate
how changes in tissue structure may lead to lesion rupture.
Lastly, we developed an algorithm for determining lesion
stability from CT scan data by fitting our biomechanical
model onto tissue deformation data.

2.1. Mathematical Formulation. We modeled the parenchy-
mal lesions with a spherical membrane geometry with thick-
ness significantly smaller than the radius. Several parameters
were needed in order to fully characterize the lesion geom-
etry. The nondimensional stretch ratio 𝜆(𝑡) was defined as
𝑟(𝑡)/𝑅, where 𝑟(𝑡) represents the deformed radius varying
with time and𝑅 is the original undeformed radius. Assuming
membrane incompressibility, the constant volume condition

𝑉 = 4𝜋𝑟
2
(𝑡)ℎ(𝑡) implies that the deformed thickness is

ℎ(𝑡) = 𝐻/𝜆(𝑡)
2, where𝐻 represents the original undeformed

thickness. Figure 2 depicts the geometry of these quasi-
spherical lesions, including 𝑟(𝑡) and ℎ(𝑡).

2.1.1. Constitutive Parenchymal Wall Model. Based on the
findings of Tai and Lee [7], who concluded that lung tissue
exhibits less than 10% anisotropy of the mean deformation,
we pursued an isotropic model for the lung parenchymal
wall. We had based a collagen-only isotropic pseudostrain-
energy function for the wall of the parenchymal lesion on
the work of Denny and Schroter [8]. Previous works by
Denny and Schroter [9, 10] had also considered collagen
and elastin using separate models [9], which were enhanced
with viscoelastic contributions [10]. We adapted the Denny-
Schroter constitutive relationship for our 1D formulation
through multiplication by the deformed thickness ℎ:

𝑤 =
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Green-Lagrangian strain tensor). Note that for simplicity, our
model does not account for large stiffnesses for large strains.
However, this is something that we hope to incorporate in
future work. In order to facilitate the stability analysis and
further calculations, this pseudostrain-energy function was
approximated by a Taylor series centered about 𝐸
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Figure 2: Schema of spherical parenchymal lesion. A schematic
drawing of the spherical membrane geometry used as the basis for
studying the growth of axisymmetric lung parenchymal lesions.

If the 2D deformation gradient F is diag(𝜆(𝑡), 𝜆(𝑡)), then the
Cauchy stress resultant tensor T for inner membrane stress
can be represented by the following equation [11]:

𝑇
𝛼𝛽

=
1

det F
𝐹
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𝐹
𝛽𝛿

𝜕𝑤

𝜕𝐸
𝛾𝛿

+
2𝜇
𝑚
𝐻

𝜆(𝑡)
3
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(3)

Thus, the isotropic stress resultant 𝑇 (𝑇
11
) is given by the

following:
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2.1.2. Model for Breathing Motion. We used a Fourier series
developed by Jakuszkin [12] to model the pulsatile nature of
breathing.The driven flow value of air through the lungs𝑄 is

𝑄 =

7

∑

𝑖=1

𝐴
𝑖
cos (2𝜋𝑓

𝑖
𝑡 + 𝜙
𝑖
) . (5)

Table 1 contains the constants 𝐴
𝑖
, 𝑓
𝑖
, and 𝜙

𝑖
[12].

Note that while we have employed a sinusoidal model for
simplicity, we can extend the model to account for erratic
breathing behavior, which is not considered here. The driven
flow value is related to the pulsatile pressure through the
relation Δ𝑃 = 𝑅

𝑏
𝑄, where 𝑅

𝑏
was the respiratory resistance

of the bronchiole network. Because 𝑅
𝑏
is 1.0mmHg⋅s⋅L−1

[13] and the original pressure was atmospheric pressure
(760mmHg), the final pressure series was as follows:

𝑃inner = 760 +

7
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) . (6)

2.1.3. Dynamic Equation System. We obtained the dynamic
equation for the wall through linear momentum balance to
yield

𝜌
𝑚
ℎ𝑅

𝑑
2
𝜆 (𝑡)

𝑑𝑡2
= 𝑃 (𝑡) −

2𝑇 (𝜆 (𝑡))

𝜆 (𝑡) 𝑅
, (7)

Table 1: Lung Fourier series parameter table.

𝑖 𝐴 (L⋅s−1) 𝑓 (Hz) 𝜙

1 1 0.156250 4.95
2 0.3 0.390625 3.82
3 0.25 0.859375 4.37
4 0.25 1.484375 3.67
5 0.175 2.421875 4.05
6 0.175 4.609375 4.13
7 0.125 8.046875 4.02

where 𝜌
𝑚
is the density of themembrane and𝑃(𝑡) is the inner

pressure minus the outer pressure (transmural pressure).The
Navier-Stokes equations in spherical coordinateswere used to
model the pressure that the pleural fluid exerted on the lung
parenchyma. The resultant pressure was as follows [14]:
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where 𝑝
∞

is a constant value representing the pressure at
a significantly large distance from the lung and 𝜌

𝑓
is the

density of the fluid. Note the absence of a viscous term as
well as the same convention for the pressure at infinity as in
the published work by Shah and Humphrey [14]. Combining
the equations for the dynamic wall, the outer pressure, the
dynamic radial stress which contributes the factor of 𝜇

𝑓
,

and viscoelasticity, we arrived at the following differential
equation for the air-tissue-pleural fluid system:
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(9)

where 𝜇
𝑓
and 𝜇

𝑚
are the dynamic viscosities of the pleural

fluid and membrane, respectively.

2.1.4. Nondimensionalization. Nondimensionalization is a
process that helps to accommodate multiscale variations in
the data. This technique is a common engineering practice
which essentially simplifies multiphysics problems with dif-
ferent measured units involved. Because our final governing
equations couple three different physical aspects (the air, the
membrane, and the pleural fluid), this method was neces-
sitated. Moreover, nondimensionalization recovers the char-
acteristic properties of the stretch ratio and stretch rate. We
followed this standard which is commonly used in published
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Table 2: List of parameters.

Parameter (variable) Value Citation
Material parameters (𝑐

1
, 𝑐
2
, 𝑐
3
) −22.5 × 10

5N⋅m−2, 1.26, −7.8 × 10
5 N⋅m−2 Denny and Schroter, 2006 [8]

Undeformed lesion thickness (𝐻) 10
−3m Amjadi et al., 2007 [15]

Undeformed lesion radius (𝑅) 10
−2m Amjadi et al., 2007 [15]

Resistance of bronchiole network (𝑅
𝑏
) 1mmHg⋅s⋅L−1 Ben-Tal, 2006 [13]

Pressure at infinity (𝑝
∞
) 0mmHg Imposed

Pleural fluid viscosity (𝜇
𝑓
) 1.39–1.57 × 10

−3 Pa⋅s Yetkin et al., 2007 [16]
Pleural fluid density (𝜌

𝑓
) 980.3 kg⋅m−3 Rubins and Manning, “Pleural Effusion Workup” [17]

Solid membrane viscosity (𝜇
𝑚
) 7 × 10

−2 Pa⋅s Girnyk et al., 2006 [18]
Membrane density (𝜌

𝑚
) 1050 kg⋅m−2 Shah and Humphrey, 1999 [14]

Atmospheric pressure 760mmHg Ben-Tal, 2006 [13]

works on biomechanics such as Shah andHumphrey [14].The
following nondimensionalized quantities were required:

𝑦
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The resulting nondimensionalized equation system was as
follows:
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2.1.5. Parameter Table. Table 2 is a complete collection of the
relevant parameter values for the model.

2.2. Initial Numerical Investigations. We conducted several
numerical investigations in order to quantify both system
dynamics and stability. The previous dynamical system was
numerically evolved in MATLAB through a fourth-order
explicit Runge-Kutta scheme. Plots of the stretch ratio 𝜆(𝑡)

versus time reveal sustained stable oscillations of the mem-
brane for normal lung parenchymal tissue parameters of the
Denny-Schroter model: 𝑐

1
= −22.5 × 10

5, 𝑐
2
= 1.26, and 𝑐

3
=

−7.8×10
5. Variations in material stiffness proved an effective

tool in analyzing the effects of parameter variation on system
dynamics. Figure 3 shows that as material stiffness increased
in the model (for test values of 𝑐

2
= 1.00, 1.26, and 1.52), the

amplitude of the oscillations decreased as one would expect
intuitively. Figure 4 shows that for the general range of 𝑐

2
∈

[.5, 1.6], amplitude can be seen tomonotonically decrease and
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Figure 3: Stretch factor 𝜆(𝑡) for different stiffness constant (𝑐
2
).This

figure shows three plots of stretch factor with respect to dimen-
sionless time for the stiffness constants 𝑐

2
= 1.00, 1.26, and 1.52.

Variations in the stiffness constant clearly affect the amplitude and
frequency of oscillations.

begin to level off near zero. For the same window of stiffness
constants, oscillation frequency reaches a peak near 𝑐

2
≈ 0.78

and then decreases monotonically from that value.
Figure 5 demonstrates that the system is stable even

with minor perturbations in initial conditions for that class
of material parameters. This suggests that there may be
conditions where the bleb will not rupture. Figure 6 is
explained in the preceding paragraph as a relative force
proportion graph, which illustrates the dynamic behavior of
the different forces including internal pressure, fluid struc-
ture, internalmembrane, radial stress, and viscoelasticity.The
graph suggests that friction is not a significant factor leading
to pneumothorax, and this aligns with other publishedworks.
The numerical phase plane analysis in Figure 5 of 𝜆(𝑡) versus
𝜆̇(𝑡) further suggests the existence of an orbit about a stable
equilibria.The spiral nature of the superimposed vector field,
representing the stretch rate 𝜆̇(𝑡) versus the derivative of the
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Figure 5: Numerically generated phase planes of the dynamical system. (a) The stable orbit and superimposed vector field demonstrated in
the phase plane suggest the presence of an asymptotically stable equilibrium. (b) The 3D plot depicts the evolution of the stable orbit with
respect to dimensionless time as further evidence of sustained stable oscillations. Refer to Section 2.4 for more information about physically
unstable situations.

stretch rate 𝜆̈(𝑡), suggests an asymptotically stable node at
𝜆eq ≈ 1.3 for normal lung parenchymal tissue parameters. A
relative force proportion graph in Figure 6 reveals the forces
of internal pressure and inner membrane stress as the major
driving forces behind this oscillation, whereas the viscoelastic
and fluid forces effects are negligible. Furthermore, several
unstable regions had been isolated through variation of the
material parameters such as for 𝑐

1
= −22.5 × 10

5, 𝑐
2
= 1.26,

and 𝑐
3
= −1.39×10

6, but a rigorousmathematical analysis had

been called for to fully determine whether the instabilities
were truly physical or just due to numerical effects.

2.3. Stability Results

2.3.1. Determining System Equilibria. In order to simplify
the following equilibria identification and stability analysis,
we made the system autonomous by approximating 𝐹(𝑡) ≈

𝐹 = 𝑅𝑃/𝑐
1
𝐻. The system is at an equilibrium for any point



6 Computational and Mathematical Methods in Medicine

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time

Re
la

tiv
e f

or
ce

 p
ro

po
rt

io
n

Internal pressure
Fluid structure
Internal membrane

Radial stress
Viscoelastic

(a)

0 10 20 30 40 50 60 70 80 90 100
Time

Re
la

tiv
e f

or
ce

 p
ro

po
rt

io
n

Fluid structure
Radial stress
Viscoelastic

100

10−2

10−4

10−6

10−8

10−10

(b)

Figure 6: Relative force proportion graph. (a)The graph depicts the relativemagnitude of the dimensionless forces at play over dimensionless
time: pressure (𝐹(𝜏)), radial stress (4𝑚

𝑓
𝑦
1
/𝑦
0
), internal membrane (2𝑓(𝑦

0
)/𝑦
0
), fluid structure (3𝑏𝑦2

1
/2), and viscoelastic (4𝑚𝑑𝑦

1
/𝑦
0
). It is

clear that internal pressure and internal membrane forces are the major driving forces behind the oscillations. (b) The three forces that
contribute the least (radial stress, viscoelastic, and fluid structure) are plotted on semilogarithmic axes.

(𝜆(𝑡), 𝜆̇(𝑡)) such that ̇𝑦
0
= 0 and ̇𝑦

1
= 0. This implies that

𝜆̇(𝑡) = 0 for any equilibrium point. The equilibrium stretch
ratio 𝜆eq may be found by solving 𝐹 − (𝑓(𝜆(𝑡))/𝜆(𝑡)) = 0 as
follows:

𝜆eq =
−𝛼 ± √−4𝛽𝛾 + 𝛼2
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, (12)

where 𝛼 = 𝑐
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. For physically meaningful values of 𝜆(𝑡), the

positive equilibrium point is the one of significance. For the

normal lung parenchymal tissue parameters, 𝜆+eq = 1.3405 as
suggested by the initial numerical investigation.

2.3.2. Characterization of Unstable Nodes. We conducted a
general ordinary differential equation (ODE) stability anal-
ysis on the physical system in order to evaluate a lung
parenchymal lesion with arbitrary material parameters for
physical instabilities. Given a system with Jacobian matrix
𝐽, ODE instability is prescribed for det 𝐽 < 0 or tr 𝐽 > 0.
For the previous dynamical system in 𝑦

0
and 𝑦

1
, the Jacobian

matrix about the positive equilibrium point reduces to

𝐽 =

[
[
[
[

[

0 1

2𝐹𝛾 (−4𝛽𝛾 + 𝛼
2
− 𝛼√−4𝛽𝛾 + 𝛼

2
)

𝛼(−𝛼 + √−4𝛽𝛾 + 𝛼
2
)

2

((4𝛾
2
/(−𝛼 + √−4𝛽𝛾 + 𝛼

2
)

2

) + (𝑏 (−𝛼 + √−4𝛽𝛾 + 𝛼
2
) /2𝛾))

(2𝑚
𝑓
(𝛼 + √−4𝛽𝛾 + 𝛼

2
) /𝛽) − (64𝛾

4
𝑑𝑚/(−𝛼 + √−4𝛽𝛾 + 𝛼

2
)

4

)

((4𝛾
2
/(−𝛼 + √−4𝛽𝛾 + 𝛼

2
)

2

) + (𝑏 (−𝛼 + √−4𝛽𝛾 + 𝛼
2
) /2𝛾))

]
]
]
]

]

.

(13)

The constraint of physically relevant material parameters
imposes the inequalities 𝑐

1
< 0, 𝑐

2
> 0, and 𝑐

3
< 0, whereas

the constraint of defined real elements of the Jacobian matrix
imposes 𝛽 ̸= 0, 𝛾 ̸= 0, and 𝛼

2
≥ 4𝛽𝛾. Further note that from

the definition of 𝐹 = 𝐴𝑃/𝑐
1
𝐻, 𝛼 is always greater than zero

for physically relevant material constants (𝐴,𝐻, 𝑃 > 0).

Theorem 1. For any values of 𝛾 and 𝛽 such that 𝛾 < 0, 𝛽 > 0,
and 𝛾 < 𝑏

1/3
𝛼−𝑏
2/3
𝛽, the system is unstable because det 𝐽 < 0.

The expression det 𝐽 = −𝜕 ̇𝑦
1
/𝜕𝑦
0
is less than zero

for all 𝛽, 𝛾 such that sgn(𝜕 ̇𝑦
1
/𝜕𝑦
0
) > 0. The sign of

this expression is in turn governed by the following three
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subexpressions. The subexpression of (−𝛼 + √−4𝛽𝛾 + 𝛼2)

2

is consciously excluded from the sign analysis because it is
invariantly positive.

Lemma 2. The sign of 𝛽 and 𝛾 cannot both be positive for
physically relevant parameters.

The lemma is proven by contradiction. By definition, 𝛽 > 0

implies −𝑐
1
+ 5𝑐
1
𝑐
2
− 6𝑐
2

2
𝑐
3
> 0. Isolation of 𝑐

3
reduces the

inequality to 𝑐
3
< 𝑐
1
(5𝑐
2
− 1)/6𝑐

2

2
. Likewise, 𝛾 = 𝑐

1
− 3𝑐
1
𝑐
2
+

4𝑐
2

2
𝑐
3
> 0 reduces to 𝑐

3
> 𝑐
1
(3𝑐
2
− 1)/4𝑐

2

2
and places bounds on

𝑐
3
. However, the inequality 𝑐

1
(3𝑐
2
− 1)/4𝑐

2

2
< 𝑐
1
(5𝑐
2
− 1)/6𝑐

2

2

reduces to 0 < 𝑐
1
(𝑐
2
+ 1), which cannot be true from the

restrictions of 𝑐
1
< 0 and 𝑐

2
> 0.

Lemma 3. The expression

−4𝛽𝛾 + 𝛼
2
− 𝛼√−4𝛽𝛾 + 𝛼2 (14)

is greater than zero for any value of 𝛽, 𝛾 such that either 𝛽 < 0

and 𝛾 > 0 or 𝛽 > 0 and 𝛾 < 0. Similarly, the expression is less
than zero for any value of 𝛽, 𝛾 such that either 𝛽 < 0 and 𝛾 < 0

or 𝛽 > 0 and 𝛾 > 0.
The inequality −4𝛽𝛾+𝛼2−𝛼√𝛼2 − 4𝛽𝛾 > 0 reduces to 𝛼2−

4𝛽𝛾 > 𝛼√𝛼2 − 4𝛽𝛾. Because both sides of the inequality are
positive, the inequality may be squared and the terms brought
to one side to give (𝛼2 − 4𝛽𝛾)(−4𝛽𝛾) > 0. Because only values
of 𝛼, 𝛽, and 𝛾 such that 𝛼2 − 4𝛽𝛾 > 0 are considered, the
expression is true 𝛽𝛾 < 0. Thus, −4𝛽𝛾+𝛼2−𝛼√−4𝛽𝛾 + 𝛼2 > 0

for either 𝛽 < 0 and 𝛾 > 0 or 𝛽 > 0 and 𝛾 < 0. Likewise,
−4𝛽𝛾 + 𝛼

2
− 𝛼√−4𝛽𝛾 + 𝛼2 < 0 for 𝛽 < 0 and 𝛾 < 0 or 𝛽 > 0

and 𝛾 > 0.

Lemma 4. For physically relevant restriction of 𝑏 > 0, the
expression

4𝛾
2

(−𝛼 + √−4𝛽𝛾 + 𝛼2)

2
+

𝑏 (−𝛼 + √−4𝛽𝛾 + 𝛼2)

2𝛾
(15)

is greater than zero for any value of 𝛽, 𝛾 such that any one of
the following three conditions are met: 𝛾 > 0 and 𝛽 < 0; 𝛾 < 0

and 𝛽 < 0; 𝛾 < 𝑏
1/3
𝛼 − 𝑏
2/3
𝛽, 𝛾 < 0, and 𝛽 > 0.

For either the conditions of 𝛾 > 0 and 𝛽 < 0 or 𝛾 < 0

and 𝛽 < 0, the expression 𝑏(−𝛼 + √−4𝛽𝛾 + 𝛼2)/2𝛾 is always

greater than zero. Hence, because 4𝛾2/(−𝛼 + √−4𝛽𝛾 + 𝛼2)

2

is
invariantly positive, the entire expression (15) will be greater
than zero for these conditions. Given 𝛾, 𝛽 such that 𝛾 < 0 and
𝛽 > 0, the inequality reduces to 8𝛾3 +𝑏(−𝛼+√−4𝛽𝛾 + 𝛼2) < 0

or 𝛾 < −(𝑏
1/3
/2)(−𝛼 + √−4𝛽𝛾 + 𝛼2). This in turn reduces to

4𝛾/𝑏
2/3

− 4𝛼/𝑏
1/3

+ 4𝛽 < 0 or 𝛾 < 𝑏
1/3
𝛼 − 𝑏
2/3
𝛽.

Lemma 5. For physically relevant restriction of 𝑏 > 0, the
expression (15) is less than zero for any value of 𝛽, 𝛾 such that
𝛾 < 0, 𝛽 > 0, and 𝛾 > 𝑏

1/3
𝛼 − 𝑏
2/3
𝛽.

Either the conditions of 𝛾 > 0 and 𝛽 < 0 or 𝛾 < 0 and
𝛽 < 0 make the statement unconditionally false, leaving only
the case of 𝛾 < 0, 𝛽 > 0. The fact that 𝛾 > 𝑏

1/3
𝛼 − 𝑏
2/3
𝛽 is

proven likewise as in Lemma 4.

Lemma 6. The expression

2𝐹𝛾

𝛼
(16)

is greater than zero for all 𝛾 < 0 and less than zero for all 𝛾 > 0.
By definition, 𝐹 < 0 and 𝛼 > 0, and thus the result follows.

The expression det 𝐽 < 0 is true such that the product of
expressions (14), (15), and (16) is positive. Upon coupling of the
previous inequality systems, the only scenario that does not lead
to contradictions is for (14), (15), and (16) all positive.This case
implies that for 𝛾 < 0, 𝛽 > 0, and 𝛾 < 𝑏

1/3
𝛼 − 𝑏
2/3
𝛽 the system

is unstable because det 𝐽 < 0.

Theorem 7. For any values of 𝛾 and 𝛽 such that 𝛾 < 0, 𝛽 > 0,
𝛾 > 𝑏

1/3
𝛼 − 𝑏
2/3
𝛽, and 𝛽 > 𝛼𝛾

2
(𝑑𝑚/𝑚

𝑓
)
1/3

+ 𝛾(𝑑𝑚/𝑚
𝑓
)
2/3,

the system is unstable because tr 𝐽 > 0.

The expression tr 𝐽 = −𝜕 ̇𝑦
1
/𝜕𝑦
1
is less than zero for all

𝛽, 𝛾 such that sgn(𝜕 ̇𝑦
1
/𝜕𝑦
1
) > 0. The sign of this expression

is in turn governed by subexpressions (15) and (17).

Lemma 8. For physically relevant parameters (𝑚
𝑓
, 𝑚, 𝑑 > 0),

2𝑚
𝑓
(𝛼 + √−4𝛽𝛾 + 𝛼2)

𝛽
−

64𝛾
4
𝑑𝑚

(−𝛼 + √−4𝛽𝛾 + 𝛼2)

4
(17)

is less than zero for all 𝛽 < 0 or for 𝛽 > 0, 𝛾 < 0, and 𝛽 >

𝛼𝛾
2
(𝑑𝑚/𝑚

𝑓
)
1/3

+ 𝛾(𝑑𝑚/𝑚
𝑓
)
2/3.

For all 𝛽 < 0, expression (17) is invariantly negative, and
thus, the statements are unconditionally true. This leaves only
the case of 𝛽 > 0 and 𝛾 < 0. Manipulation of the expression
yields

2𝑚
𝑓

𝛽
(𝛼 + √𝛼2 − 4𝛽𝛾) (−𝛼 + √𝛼2 − 4𝛽𝛾)

4

< 64𝛾
4
𝑑𝑚

(18)

or (−𝛼 + √𝛼2 − 4𝛽𝛾)

3

> −8𝛾
3
𝑑𝑚/𝑚

𝑓
. This in turn yields 𝛼2 −

4𝛽𝛾 > (𝛼 − 2𝛾(𝑑𝑚/𝑚
𝑓
)
1/3
)
2

, which upon isolation of 𝛽 gives
the expression 𝛽 > 𝛼𝛾

2
(𝑑𝑚/𝑚

𝑓
)
1/3

+ 𝛾(𝑑𝑚/𝑚
𝑓
)
2/3.

The expression tr 𝐽 > 0 is true such that the product
of expressions (15) and (17) is positive. For the signs of
(15) and (17) to both be negative, Lemma 5 and Lemma 8
give 𝛾 < 0, 𝛽 > 0, 𝛾 > 𝑏

1/3
𝛼 − 𝑏

2/3
𝛽, and 𝛽 >

𝛼𝛾
2
(𝑑𝑚/𝑚

𝑓
)
1/3

+ 𝛾(𝑑𝑚/𝑚
𝑓
)
2/3. The case of expression (15)

and (17) both greater than zero is consciously omitted from
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Figure 7: 2D instability region portraits. The images show the regions of instability (blue) for each selection of two material parameters. The
value of the third parameter in each graph is assumed to be the value from Denny and Schroter [8].

the proof because the analysis leads to an instability region
already enclosed by Theorem 1. Figure 7 shows 2D portraits
of the regions obtained from these instability criteria for a
certain selection of material parameters 𝑐

1
, 𝑐
2
, and 𝑐

3
.

2.4. Introducing Energy Limitations of Tissue. In order to
accurately capture the biomechanics of lung parenchymal
failure, we translatedODE instabilities to physicalmechanical
failure via the introduction of a finite energy limiterΦ(𝐽𝑚−3).
Similar to Volokh and Vorp [19], we built a finite energy con-
stitutive modelΨ based on the framework of the hyperelastic
model 𝑤 which was constructed as follows:

Ψ = 𝐻Φ(1 − exp( −𝑤

𝐻Φ
)) . (19)

Note that as 𝑤 → ∞, Ψ → 𝐻Φ a finite value of energy
before rupture in contrast to the hyperelastic model where 𝑤
may growunbounded as𝜆(𝑡) → ∞. Similarly, in the limiting
case 𝐻Φ ≪ 𝑤, Ψ ≈ 𝑤 as can be seen via Taylor expansion.
Reformulating the Cauchy stress resultant tensor T given by
[14] with the new strain-energy function yields

𝑇
󸀠

𝛼𝛽
=

1

det F
𝐹
𝛼𝛾
𝐹
𝛽𝛿

𝜕Ψ

𝜕𝐸
𝛾𝛿

+
2𝜇
𝑚
𝐻

𝜆(𝑡)
3

𝑑𝜆 (𝑡)

𝑑𝑡
, 𝛼, 𝛽, 𝛾, 𝛿 = 1, 2.

(20)

Thus, the new isotropic stress resultant𝑇󸀠 (𝑇󸀠
11
) is given by the

following:

𝑇
󸀠

= (−
𝑐
1
𝐻

𝑐
2

+ 𝑐
3
𝐻 + (−

𝑐
1
𝐻

2𝑐2
2

+
3𝑐
1
𝐻

2𝑐
2

− 2𝑐
3
𝐻)(𝜆(𝑡)

2
−1))

× exp(
(𝑐
1
𝐻/𝑐
2
− 𝑐
3
𝐻) ((𝜆(𝑡)

2
− 1) /2)

𝐻Φ

+

(𝑐
1
𝐻/2𝑐
2

2
−3𝑐
1
𝐻/2𝑐
2
+2𝑐
3
𝐻)((𝜆(𝑡)

2
−1)
2

/4)

𝐻Φ
)

+
2𝜇
𝑚
𝐻

𝜆(𝑡)
3

𝑑𝜆 (𝑡)

𝑑𝑡
.

(21)

As demonstrated in Figure 8, numerical simulations with
the new isotropic stress resultant demonstrate rupture mid-
expansion as opposed to expansion to infinity in the original
constitutive model.

2.5. Collagen-Elastin Dynamics. The final component of the
proposed model for parenchymal lesion growth and rupture
is a means by which stable mechanical configurations may
enter unstable domains. The introduction of collagen-elastin
dynamics (a dynamic protein framework of the tissue)
elucidates mechanisms for how a stable lesionmay eventually
rupture.We introduced a new constitutivemodel through the
creation of a linear combination of Denny and Schroter’s [8]
collagen-only strain energy function andHumphrey andYin’s
[20] elastin-only strain energy function:

𝑤
󸀠
= 𝐴
𝑐
(𝜏) (

𝐻

𝜆(𝑡)
2
(𝑐
1
log[1 − (

𝑒
𝐸
11 − 1

𝑐
2

)] + 𝑐
3
𝐸
11
))

+ 𝐴
𝑒
(𝜏) (

𝑏𝐻

𝜆(𝑡)
2
(𝜆 (𝑡) − log 𝜆 (𝑡) − 1)) ,

𝑤
󸀠
≈ (

−𝐴
𝑐
(𝜏) 𝑐
1
𝐻

𝑐
2

+ 𝐴
𝑐
(𝜏) 𝑐
3
𝐻)

𝜆(𝑡)
2
− 1

2
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+ (
𝐴
𝑒
(𝜏) 𝑏𝐻

2
−
𝐴
𝑐
(𝜏) 𝑐
1
𝐻

2𝑐2
2

+
3𝐴
𝑐
(𝜏) 𝑐
1
𝐻

2𝑐
2

−2𝐴
𝑐
(𝜏) 𝑐
3
𝐻)

(𝜆(𝑡)
2
− 1)
2

4
,

(22)

where 𝐴
𝑐
(𝜏) and 𝐴

𝑒
(𝜏) are dimensionless quantities rep-

resenting active collagen and elastin numbers. Similarly as
before, we introduced a finite energy limiter Ψ

󸀠 to this
constitutive model, and we recalculated the new isotropic
strain tensor. Unlike the previous developments of the paper,
collagen-elastin dynamics called for a return to the initial
momentum balance due to the changing mass of the protein
matrix. Given the mass of collagen𝐶 and elastin 𝐸 defined by
𝜌
𝑐
𝐴
𝑐
and 𝜌
𝑒
𝐴
𝑒
(where 𝜌

𝑐
and 𝜌
𝑒
are equal to 5.10 kg⋅m−3 [21]),

the new momentum balance was as follows:

𝜌
𝑚
ℎ𝑅

𝑑
2
𝜆 (𝑡)

𝑑𝑡2
+
𝑑 (𝐴
𝑒
𝜌
𝑒
+ 𝐴
𝑐
𝜌
𝑐
)

𝑑𝑡
V
𝑟
𝐻 = 𝑃 (𝑡) −

2𝑇 (𝜆 (𝑡))

𝜆 (𝑡) 𝑅
,

(23)

where V
𝑟
(𝑡) is the velocity at the boundary of an expanding

biological membrane given by 𝑅𝑑𝜆(𝑡)/𝑑𝑡. With the nondi-
mensionalized term 𝑚

𝑝
= (𝐴/√𝜌

𝑚
|𝑐
1
|)(𝑑𝐶/𝑑𝑡 + 𝑑𝐸/𝑑𝑡),

the first two differential equations of the dynamical system
became

𝑑𝑦
0

𝑑𝜏
= 𝑦
1
,

𝑑𝑦
1

𝑑𝜏

=
𝐹 (𝜏) −3𝑏𝑦

2

0
/2 − 4𝑚

𝑓
𝑦
1
/𝑦
0
−2𝑓 (𝑦

0
) /𝑦
0
−4𝑚𝑑𝑦

1
/𝑦
4

0
−𝑚
𝑝
𝑦
1
/𝑦
2

0

𝑏𝑦
0
+ 𝑦
−2

0

.

(24)

Based on histochemical evidence that had determined that
collagen levels increase with increased stress and that elastin
levels decrease because of elastolytic processes near rupture
[22], we proposed the following differential equations for
collagen-elastin dynamics:

𝑑𝐴
𝑐

𝑑𝑡
=

𝑘
1
𝐴
𝑐

󵄨󵄨󵄨󵄨𝜙
󸀠 − 𝜓󸀠

󵄨󵄨󵄨󵄨
𝑛
,

𝑑𝐴
𝑒

𝑑𝑡
=

−𝑘
2
𝐴
𝑒

󵄨󵄨󵄨󵄨𝜙
󸀠 − 𝜓󸀠

󵄨󵄨󵄨󵄨
𝑛
. (25)

Because 𝑘
1
and 𝑘

2
are positive constants, we devised the

differential equations such that little change occurs in the
protein matrix in scenarios far from rupture (|𝜙󸀠 − 𝜓

󸀠
| ≫ 0)

and larger changes occur as the membrane nears rupture. We
numerically solved the series of four differential equations as
a whole in MATLAB, revealing escapes from stable orbits for
certain rate kinetics of the elastin-collagen dynamics that are
depicted in Figure 9.

2.6. Parameter Estimation from In Vivo Data. In order to
build a database for parameter estimation on the proposed
model, we collected in vivo lung data in the form of CT scans
from the VIA/I-ELCAP Public Lung Image Database, which
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Figure 8: Effect of introduction of finite energy limiter. A
point (𝑐

1
, 𝑐
2
, 𝑐
3
) which satisfies the instability of requirement of

Theorem 1 (−22.5 × 105, 1.26, and − 1.39 × 10
6
) was used to test the

effect of the finite energy limiter. As indicated by the red plot, the
finite energy limiter curtails expansion to infinity and establishes a
physical rupture point.

were about 250mm× 150mm in size. The Sobel Edge Detec-
tion algorithm provided ameans to quantify the deformation
of the lung boundary and to extract material parameters
from in vivo clinical data for the strain-energy function. This
algorithm works by estimating the horizontal and vertical
spatial gradients at the interior pixels, 𝐺

𝑥
and 𝐺

𝑦
, through

application of a matrix mask in order to detect edges. Pixels
that meet a certain threshold for 𝐺 (|𝐺

𝑥
| + |𝐺

𝑦
|) are counted

as edges (Aybar, “Sobel Edge Detection”). This method was
preferred over methods such as the Canny algorithm due
to the coupling of speed and required accuracy for this
problem. In order to facilitate the detection of the edges, we
recolored the lung images to a 50% black and white scheme
with 50% softening. After recoloration and softening, we
ran the images through the Sobel algorithm implemented in
Python, which returned a list of edge pixels for each image as
coordinate pairs. We first transformed these pairs into a new
coordinate system with the center of the image as the origin
then categorized the pairs into subsections corresponding to
sectors defined by angles. We then calculated values for the
stretch factor, kinetic energy per square meter ((1/2)𝜌

𝑚
V2𝐻),

and radial velocity in each radial direction.
Next, we applied nonlinear regression using the

Levenberg-Marquadt algorithm on each subsection in order
to extract the three material parameters 𝑐

1
, 𝑐
2
, and 𝑐

3
as

well as the corresponding coefficients of determination (𝑅2
values). We fit the velocity and kinetic energy data to the
Denny-Schroter second-order Taylor series approximation.
After we determined these parameters, they were classified
as either stable or unstable corresponding to the previously
derived stability criteria. Lastly, our program recolored the
boundary of the lung parenchyma based on the stability of
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Figure 9: Collagen-elastin dynamics may lead to escapes from stable orbits. (a) The graph shows 𝜆(𝜏) with the additional collagen-elastin
dynamics calibrated with𝐴

𝑐
= 100, 𝐴

𝑒
= 50, 𝑘

1
= 1×10

7, 𝑘
2
= 1×10

3, and 𝑛 = 1. The point of rupture occurs at the final peak of oscillation
at 𝜏 ≈ 16. (b) The phase plane reflects the transition from stability to instability as the trajectory veers off from stable orbits.
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Figure 10: Edge detection and risk analysis. (a) and (b) show a lung before and after deformation, with red pixels indicating edge pixels
detected by the Sobel Edge Detection algorithm. (c) shows the results of the nonlinear regression analysis performed on different sectors
of the lung. Areas characterized as unstable, and thus at risk for lung collapse, are colored in red, whereas areas characterized as stable are
colored in green.

the corresponding subsections, with green corresponding
to stable subsections and red corresponding to unstable
subsections. The general schema for our computational
algorithm is shown in Figure 10. Thus, our algorithm is
streamlined towards interpolating material parameters from
deformations in lung CT scan data and identifying specific
areas of risk in the lung parenchyma.

Motion artifacts, while important and are often observed
in CT data acquisition, are not considered in this paper. The
images are represented using intensity values at various pixel
locations. This paper used only one dataset as a proof of
concept. Our algorithm looks at small sections of the lung

boundary, allowing for the isotropic assumption to be valid.
However, it must be noted that this assumption must be
removed for more general studies.

3. Conclusion and Future Directions

Our proposed biomechanical model for lung parenchymal
lesions demonstrates that elastodynamic strain of the visceral
pleural membrane from pulsatile air flow and changes in
the constitutive protein composition of tissue are key patho-
logical factors in pneumothorax. Through proving general
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instability results, our study demonstrated that these factors
biject to physically unstable domains in the material param-
eter space for a general lesion. Specifically, our discovery
that certain rate kinetics of collagen-elastin dynamics may
lead to unstable mechanical configurations aligns well with
clinical studies, which have found that certain connective
tissue diseases lead to spontaneous pneumothorax [23, 24].
Future work on the theoretical biomechanics aspect of our
model will incorporate COMSOL multiphysics simulation
software integrated with finite element mesh processing
to solve the problems of nonaxisymmetry and anisotropic
lesion growth. Also, it would be interesting to study how
variations in the dynamic viscosities affect the behavior of
parenchymal lesions. Clinical studies have indicated that
gravity is a significant factor on the air accumulated in
the pleural cavity. We hope to consider these effects in
futurework.Quantification ofmaterial propertieswill require
efficient inverse parameter estimation studies, which we hope
to incorporate in the future. Such studies will help us to
develop efficient simulation tools [25, 26]. Other methods for
lung deformation registration such as the dictionary learning
approach used by Zhang et al. [27] will be considered.

Our algorithm for determining lesion stability from CT
scan data relies on fitting our biomechanical model to
deformations in a local tissue boundary. Using Sobel Edge
Detection and CT scans from a lung image database, we
could isolate unstable regions of local lung parenchymal
tissue. The algorithm is a robust method for quantifying
patient risk of pneumothorax and may be streamlined to
work in the future with in vivo lung data collected from
either ultrasound or CT scans. Overall, our computational
solution for lung parenchymal lesion detection and patient-
specific structural instability profiling is a feasible alternative
diagnostic strategy and has the potential to surpass current
diagnostic benchmarks for pneumothorax.
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