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Epiretinal Membrane Detection at 
the Ophthalmologist Level using 
Deep Learning of Optical Coherence 
Tomography
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Purpose: Previous deep learning studies on optical coherence tomography (OCT) mainly focused on 
diabetic retinopathy and age-related macular degeneration. We proposed a deep learning model that 
can identify epiretinal membrane (ERM) in OCT with ophthalmologist-level performance. Design: Cross-
sectional study. Participants: A total of 3,618 central fovea cross section OCT images from 1,475 eyes of 
964 patients. Methods: We retrospectively collected 7,652 OCT images from 1,197 patients. From these 
images, 2,171 were normal and 1,447 were ERM OCT. A total of 3,141 OCT images was used as training 
dataset and 477 images as testing dataset. DL algorithm was used to train the interpretation model. 
Diagnostic results by four board-certified non-retinal specialized ophthalmologists on the testing 
dataset were compared with those generated by the DL model. Main Outcome Measures: We calculated 
for the derived DL model the following characteristics: sensitivity, specificity, F1 score and area under 
curve (AUC) of the receiver operating characteristic (ROC) curve. These were calculated according 
to the gold standard results which were parallel diagnoses of the retinal specialist. Performance of 
the DL model was finally compared with that of non-retinal specialized ophthalmologists. Results: 
Regarding the diagnosis of ERM in OCT images, the trained DL model had the following characteristics 
in performance: sensitivity: 98.7%, specificity: 98.0%, and F1 score: 0.945. The accuracy on the training 
dataset was 99.7% (95% CI: 99.4 - 99.9%), and for the testing dataset, diagnostic accuracy was 98.1% 
(95% CI: 96.5 - 99.1%). AUC of the ROC curve was 0.999. The DL model slightly outperformed the 
average non-retinal specialized ophthalmologists. Conclusions: An ophthalmologist-level DL model was 
built here to accurately identify ERM in OCT images. The performance of the model was slightly better 
than the average non-retinal specialized ophthalmologists. The derived model may play a role to assist 
clinicians to promote the efficiency and safety of healthcare in the future.
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Epiretinal membrane.  An epiretinal membrane (ERM), also known as macular pucker or cellophane mac-
ulopathy, is a pathological fibrocellular tissue that forms on the inner surface of the retina. Clinical manifestations 
vary from asymptomatic cellophane-like films to fibrotic contractile membranes that result in blurred vision, 
monocular diplopia, micropsia, metamorphopsia, decreased visual acuity, and central vision loss1,2. The exact 
pathogenic mechanisms remain determined. One hypothesis is that a separation of the vitreous membrane from 
the retina, or a posterior vitreous detachment, causes inflammation-mediated proliferation of retinal glial cells, 
fibrous astrocytes, hyalocytes, fibroblasts, myofibroblasts, and macrophages on the retinal surface3–5. ERMs can 
be either idiopathic or secondary to retinal vascular diseases, ocular inflammatory diseases, and retinal tear or 
detachment6,7.

The incidence of ERM is 1.1% per eye-year8, with estimated prevalence as high as 28.9% (population- 
dependent)9. ERMs occur at higher rates in the elderly population (>65 years of age). Thus, the number of people 
afflicted likely increases with expanding aging populations.

ERMs are diagnosed based on clinical examination historically. In comparison, the more recently developed 
optical coherence tomography (OCT) has greater sensitivity10, and becoming the mainstay for guiding ERM 
diagnosis and treatment11,12. Spectral domain OCT is a noncontact, noninvasive imaging technique based on 
the spectral analysis of interference patterns of back-scattered light to form two- and three-dimensional views 
of living retinal tissues13,14. Depending on the severity of the ERM, its management involves either conserva-
tive observation or surgical intervention to peel the membrane away from the retina15,16. If left untreated, ERM 
may eventually lead to blurred vision and metamorphopsia, impairing the life quality and self-care capability of 
patients. OCT now plays a vital role in visualizing ERMs, determining the appropriate timing and procedures for 
their management, as well as the prediction of postoperative outcomes17.

Computer-aided diagnosis for ocular diseases.  Despite the diagnostic advantage of OCT on ocular dis-
eases, interpretation of images is a time-consuming procedure for ophthalmologists. To accelerate the diagnostic 
process, several studies on ocular images were made to automate the interpretation workflow using various com-
puter vision approaches18,19. Even though, there is still a lot of limitation for the conventional handcrafted feature 
approach to hinder the widely adoption of computer-aided diagnosis in the clinical settings.

Deep learning in medical imaging.  Deep learning (DL) is an algorithm in machine learning. It utilizes 
statistical and computational methodology to allow the computer to perform intelligent tasks in a data-driven 
manner. In recent years, due to the rapid growth of data volume and computational capacity, DL approaches 
have made great advancements in many fields, such as computer vision, voice recognition and nature language 
processing. The surprising improvement over conventional approaches has positioned DL in the mainstream 
technique in implementing applications of the artificial intelligence.

Due to the huge success of DL in the field of computer vision, several researchers attempted to apply the 
technique to medical imaging. For example, Gulshan et al. built an automated interpretation model for images 
of the retinal fundus. It detects referable diabetic retinopathy (RDR) with excellent performance (area under the 
receiver operating curve, AUC = 0.99)20. Its performance is well comparable with the assessment of ophthalmolo-
gists. Ting et al. later developed a DL system that can identify disorders like RDR, glaucoma and age-related mac-
ular degeneration (AMD) in a multiethnic population21. Poplin et al. also established a DL model that predicts 
common cardiovascular risk factors and the occurrence of 5-year major adverse cardiovascular events (MACE)22. 
Their results supported the usefulness of the DL model in detecting image characteristics perceived by human 
observers, as well as those more subtle abnormalities human observers do not perceive.

Regarding optical coherence tomography (OCT), DL has been used to discriminate images between 
age-related macular degeneration and normal retina23. Kermany el al. built a DL model that detects choroidal 
neovascularization, diabetic macular edema, and drusen OCT images24. The occlusion map further allows the DL 
model in assisting diagnostic decisions according to manifestations of certain features recognized as determin-
istic abnormality by domain experts. In addition to image classification, DL was also used to solve segmentation 
problem for intraretinal fluid in OCT images25.

Aim of the study.  DL has been used for the detection of several ocular diseases (such as RDR), but only few 
studies focus on the ERM identification. Sonobe et al.26 confirmed DL model outperform support vector machine 
(SVM) in the task of ERM detection on 3D-OCT images. However, the performance on routine OCT images was 
not investigated. In addition, Lu et al.27 built a DL model to detect ERM, macular hole, cytoid macular edema and 
serous macular detachment. The accuracy was non-inferior to domain experts but the model interpretability was 
not elucidated. Due to ERM is a common manifestation of OCT abnormality (especially in the elderly popula-
tion), it should be fully studied and regarded as a fundamental building block in developing an OCT interpreta-
tion decision support system. The present study is aimed to determine the value of DL in model detection of ERM 
in retinal OCT images with more comprehensive evaluation.

Materials and Methods
This study was approved by the Institutional Review Board of Taichung Veterans General Hospital (CE18178B) 
with waiver of informed consent from study participants and adhered to the tenets of Declaration of Helsinki. All 
collected OCT images received de-identification before further processing.

Datasets.  We retrospectively collected OCT images from patients in the Taichung Veterans General 
Hospital between January 2010 and April, 2018. OCT studies were conducted according to recommenda-
tions of board-certified ophthalmologists based on clinical indications. The OCT images were obtained with 
spectral-domain OCT (Spectralis; Heidelberg Engineering, Heidelberg, Germany) and the raw image data were 
stored in a centralized workstation. In total, we collected 7,652 central fovea cross section OCT images from 1,197 

https://doi.org/10.1038/s41598-020-65405-2


3Scientific Reports |         (2020) 10:8424  | https://doi.org/10.1038/s41598-020-65405-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

patients. Duplicated and poor quality images were first excluded. Each OCT image was classified as normal, ERM 
or other ocular disease by a senior retinal specialist (with> 18 years of experience). After remove OCT images of 
other ocular diseases, a total of 3,618 central fovea cross section OCT images from 1,475 eyes of 964 patients were 
left. Normal (n = 2,171) and ERM (n = 1,447) OCT images were subsequently selected for analysis. Data were 
randomly split into either training dataset (n = 3,141) for training (and validation), or testing dataset (n = 477) 
for final evaluation of model performance to compare with ophthalmologists (see Fig. 1), and testing dataset is 
kept aside which is not included in the training dataset. We randomly choose 80% of the training dataset to be 
the actual training set and the remaining 20% to be the validation set. In order to facilitate the training process, 
we split the training and testing dataset in a way to let the training dataset have a more balanced class distribution 
(normal vs. ERM). On the other hand, we created a testing dataset with small proportion of ERM cases, that is 
similar to the real world OCT images data distribution. Therefore, the evaluation performance would be more 
likely to reflect that in the real world.

Data preprocessing and labeling.  First, the retinal specialists used a well-known open source tool, 
LabelImg28, to annotate the images as ERM or normal. In OCT images, the characteristic morphology of ERM 
was localized around the central fovea. All labeled images were verified by two experienced retinal specialists. The 
images with disagreement by the specialists were not included in the experimental dataset. Meanwhile, confusion 
matrix is usually used to observe the result of classification of a trained model on the training dataset after com-
pleting training process. We then performed confusion matrix to verify in case of mislabeling images to affect the 
classification accuracy. In this study, no images are mislabeled from confusion matrix.

Model training, validation and testing.  AlexNet, the state-of-the-art convolutional neural network 
(CNN); in designing newer network architecture is to go deeper into the data with more layers in the model. The 
conventional AlexNet has only 5 convolutional layers, other networks like VGG network29 or GoogleNet (also 
code-named as Inception_v1)30 have more layers (like 19 or 22). He et al. proposed a residual learning frame-
work, called ResNet31, and they obtained a remarkably successful outcome in the ILSVRC 2015 competition. The 
key idea of ResNet (Fig. 2) is in its modeling the residual of the intermediate output, instead of the intermediate 
output (like in the traditional models). ResNet is able to train extremely deep networks with stochastic gradi-
ent descent (SGD) through the use of residual modules. It is also able to train a network with large amount of 
layers while keeping low complexity (compared with VGGNet) and it has achieved with a particular dataset a 
top-5 error rate of 3.57%, a performance level better than human. Currently, a number of versions of ResNet are 
available, with the more popular ones being ResNet-50, ResNet-101 and ResNet-152. In this study, we adopted 
ResNet-101 for modeling. In total, we used 3,141 OCT images for model training. Among the training datasets, 
20% was used as the validation data to guide the tuning of the network hyperparameters.

Figure 1.  Optical coherence tomography image dataset used for the detection of epiretinal membrane. 
Flowchart of handling optical coherence tomography (OCT) images, showing data collection and the separation 
of training and testing datasets. The training dataset was used to train and validate the deep learning model.

Figure 2.  Schemtic architecture of residual network (ResNet). ResNet was composed of stacking with multiple 
residula block. Shortcut connections between layers were added to facilitate the training process. Currently, a 
number of versions of ResNet are available (such as ResNet-50, ResNet-101 and ResNet-152). In this study, we 
adopted ResNet-101 for modeling.
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The framework used to train our models is Python 3.6.4 + Keras 2.2.4 on a workstation equipped with Intel 
Core i7-6850K, 128 GB ram and NVIDIA GTX 1080Ti graphic card. The parameters utilized in the training were 
the following: learning rate, 0.0001; batch size, 32; epoch, 2000, and optimizer, Adaptive Moment Estimation 
(Adam).

Statistics on testing dataset.  In order to evaluate the performance of the derived model, we first calcu-
lated the area under curve (AUC) of the receiver operating characteristic (ROC) curve for the model prediction 
in an unseen testing dataset. Next, we determined the following as evaluation metrics for the final model: the 
accuracy on the training data and the accuracy, sensitivity, specificity and F1 score on the testing data. Cohen’s 
kappa index was used to measure the inter-rater agreement of the four ophthalmologists on the testing dataset. 
Confusion matrix were also generated to investigate the detail of the misinterpretation. All statistical analyses 
were performed using R Statistics software (v3.4.1).

Model performance compared with clinicians.  To evaluate the usefulness of the DL model in the clin-
ical settings, four board-certified non-retinal specialized ophthalmologists of different clinical experiences were 
asked to interpret the unseen testing dataset which was used for the final model evaluation. Statistics with sensi-
tivity and specificity were used to evaluate the performance of human expert on the task of OCT ERM identifica-
tion. The performance of the ophthalmologists was finally compared with the DL model to validate its usefulness 
in the real world.

Model visualization.  To gain deeper understanding on the logic of DL model, some methods were proposed 
to make the prediction result more explainable. Gradient-weighted class activation mapping (Grad-CAM)32 is 
a well-known approach to produce a coarse localization map highlighting the important regions of the image 
that the machine learned to identify the classes. In our study, this approach was implemented before the last 
fully-connected layer of ResNet.

Results
Finally, 3,141 OCT images were used for model training and 20% (n = 628) of them were validation dataset. 
During the training process, the accuracy and loss metrics were monitored and plotted as learning curves. 
Figure 3 shows that the model converged after 700 epochs and the training continued until 2,000 iterations. 
No obvious model overfitting was found. The prediction accuracy on training data was 99.7% (95% confidence 
interval: 99.4 - 99.9%). Due to the limitation of memory capacity of GPU device, the batch size we used is 32. 
Therefore, the issue of mini-batch gradient descent leaded to the spikes of loss values at the early stage before 700 
epochs shown in Fig. 3.

When DL model was applied on an unseen testing dataset (n = 477), the accuracy was 98.1% (95% confi-
dence interval: 96.5 - 99.1%). Sensitivity, specificity and F1 score on the testing data were 98.7%, 98.0% and 
0.945, respectively. ROC curve of the model (AUC: 0.999) are shown in Fig. 4 together with the results of evalu-
ation by four ophthalmologists. The close-up view (Fig. 4B) shows the DL model performed slightly better than 
the average of the participated ophthalmologists (pink symbol). During the error analysis, we found the DL 
model was more likely to result in false positive and false negative error with OCT images from myopia patients. 
Besides, after reviewing the false positive cases, we also identify some cases with suspicious early manifestation of 
ERM, indicating the derived model is quite sensitive in ERM detection. Table 1 showed the inter-rater agreement 
between the ophthalmologists and DL model and the confusion matrices of the clinicians’ interpretation on the 
testing dataset were provided in Table 2. During reviewing the disagreed images between the four ophthalmolo-
gists, we found majority of the disagreement occur in OCT images with only subtle ERM change. However, there 
are still few apparent misinterpretation by the clinicians noted.

Figure 5A,B shows examples of normal and ERM OCT images with Grad-CAM visualization effect overlaid. 
Regions highlighted with warmer colors represent those areas more important for the final class determination. 
The ERM region of interest (ROI) was captured precisely and results are compatible with judgement of the retinal 
specialist.

Figure 3.  Learning curve of the derived deep learning model. The blue one is the result for the training dataset, 
while the orange one indicate that for the validation dataset. (Left panel: accuracy, Right panel: loss).
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Discussion
Beginning with the proposal of Krizhevsky et al. modifications on conventional architecture of CNN were made with 
wider use of multiple graphics processing units (GPU) to accelerate the computational operations, DL has greatly 
improved results in the field of computer vision33. In 2016, Gulshan et al. of Google successfully developed a DL 
model that can detect RDR in retinal fundus color photography with ophthalmologist-level performance20. Other 
studies applied DL in different medical images, such as on skin, pathology, chest X-ray and electrocardiography34–37. 
Increasing evidence has indicated the potential and feasibility of utilizing DL in the interpretation of medical images.

In this study, we implemented a DL model that outperformed non-retinal specialized ophthalmologists in 
ERM identification. Our application can help to accelerate the process and lower the cost of ERM diagnosis. It 
is especially useful for regions with limited access to retinal specialist due to various reasons (such as economic 
issues or medical resource allocation). Further and timely referral to retinal specialist can be allocated to those 
whose abnormality has been detected by the DL model.

Figure 4.  Receiver operating characteristic (ROC) curve for the identification of epiretinal membrane in the 
testing dataset. Evaluation results of four ophthalmologists are plotted with their average performance (pink 
symbol). (Panel A: original ROC curve; Panel B: close-up view of the high-lighted area in panel A).

Clinician 1 Clinician 2 Clinician 3 Clinician 4 DL model**
Clinician 1 1.00

Clinician 2 0.86 1.00

Clinician 3 0.88 0.88 1.00

Clinician 4 0.78 0.77 0.78 1.00

DL model 0.87 0.87 0.92 0.79 1.00

Table 1.  Inter-rater agreement* for clinicians and deep learning model. *Measurement with Cohen’s kappa 
index. **DL: Deep learning.

Actual (+) Actual (-)

Clinician 1

Predict (+) 71 5

Predict (−) 8 393

Clinician 2

Predict (+) 64 1

Predict (−) 15 397

Clinician 3

Predict (+) 72 1

Predict (−) 7 397

Clinician 4

Predict (+) 61 6

Predict (−) 18 392

Table 2.  Confusion matrix of the clinicians.
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As for the diagnosis of ocular diseases, non-mydriatic fundus photography is a convenient tool of examina-
tion due to its non-requirement of pupil dilatation, and hence widely used to screen for diabetic retinopathy. Its 
drawback is not able to detect subtle abnormalities. Therefore, the OCT remains the gold-standard diagnostic 
tool for many retinal diseases. In previous studies, DL has been used to interpret and identify choroidal neo-
vascularization (CNV), diabetic macular edema (DME), and drusen OCT images38. Sonobe et al. also confirm 
the superiority of DL model over SVM in ERM detection with 3D-OCT images. However, the 3D-OCT images 
were not supported by all the OCT imaging machine and the generalizability to routine OCT images were not 
investigated in their study. An OCT image DL classification model with competitive performance with domain 
experts were developed by Lu et al. However, the interpretability of the model was not elucidated. In our study, 
DL model showed no inferiority compared with the ophthalmologists, supporting the potential use of DL in OCT 
interpretation. Grad-CAM visualization confirm the validity and the robustness of the derived ERM detection DL 
model. ERM has not been fully studied yet but it is a prevalent disease among the elderly and is also a common 
finding in OCT images. An DL model for ERM identification could be an essential component in an automatic 
and comprehensive interpretation model for OCT. In this study, we have developed a DL model that can distin-
guish between ERM and normal OCT with ophthalmologist-level accuracy. We believed the established model 
can further improve the applicability of DL model in the highly versatile clinical settings when combined with 
previous developed models (like that by Kermany et al.) in analyzing OCT images38. The derived DL model may 
be used in the clinical settings to shorten the time period from examination to the diagnosis and increase the 
efficiency and efficacy of our healthcare. In addition, when the automatic DL model combine into the clinical 
workflow, it can also help the clinicians to avoid the occurrence of the medical error and misdiagnosis. Therefore, 
the derived model may also potentially play a role as a clinical decision support system to promote the patient 
safety in the future. In the critical period of the healthcare burden overloading, such as the COVID-19 pandemic, 
the DL based automatic model may also assist the clinicians to decrease the healthcare workload and prevent the 
healthcare providers from burnout.

Conclusion
An ophthalmologist-level DL model has been developed here to accurately identify epiretinal membrane in OCT 
images. Due to the high prevalence disorders of epiretinal membrane, our model could form an essential com-
ponent in automatic interpretation system for OCT images. The derived DL model may assist the clinicians to 
promote the efficiency and safety of healthcare in the future.

Figure 5.  Exemplary OCT Images of normal and the epiretinal membrane (ERM) in patients. Important area 
for pattern recognition is highlighted with gradient-weighted class activation mapping shown on the right 
panels. (Panel A: normal OCT, Panel B: ERM OCT).
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