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ABSTRACT
Accumulating evidence has suggested the importance of gut microbiota in the develop-
ment of type 2 diabetes mellitus (T2DM). In the present study, 40 patients with T2DM
were treated with liraglutide for 4 months. Feces samples and clinical characteristics
were collected from these 40 T2DM patients before and after the liraglutide treatment.
The diversity and composition of gut microbiota in the two groups were determined
by sequencing the V4 region of bacterial 16S rRNA genes. Meanwhile, blood glucose,
insulin, hemoglobin A1c (HbA1c), and lipidmetabolismwere alsomeasured in the pre-
andpost-liraglutide-treatment groups.We find that BaselineHbA1cwas associatedwith
liraglutide treatment response (R2= 0.527, β =−0.726, p< 0.0001). After adjusted for
baselineHbA1c, blood urea nitrogenwas associatedwith liraglutide treatment response.
Besides, our results showed reduced gut microbial alpha diversity, different community
structure distribution and alteredmicrobial interaction network in patients treatedwith
liraglutide. The liner discriminant analysis (LDA) effect size (LEfSe) analysis showed
that 21 species of bacteria were abundant in the pre-liraglutide-treatment group and
15 species were abundant in the post-liraglutide-treatment group. In addition, we also
find that Megamonas were significantly correlated with older age, diabetes duration
and diabetic retinopathy, Clostridum were significantly correlated with family history
of diabetes andOscillospira were significantly correlated with both diabetic retinopathy
and diabetic peripheral neuropathy. Functional analysis based on Kyoto Encyclopedia
of Genes and Genomes (KEGG) and cluster of orthologous groups (COG) annotations
enriched three KEGG metabolic pathways and six functional COG categories in the
post-liraglutide-treatment group. In conclusion, our research suggests that baseline
HbA1c, blood urea nitrogen and gut microbiota are associated with the liraglutide
treatment applied on patients with T2DM. These findings may contribute to the
beneficial effects of liraglutide against diabetes.

Subjects Biotechnology, Microbiology, Molecular Biology, Diabetes and Endocrinology, Drugs
and Devices
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INTRODUCTION
Type 2 diabetes mellitus (T2DM) is a highly prevalent metabolic disorder characterized by
the imbalance in blood glucose level and altered lipid profile (Sharma & Tripathi, 2019),
which is caused by either disturbed insulin secretion, disturbed insulin effect, or usually
both (Petersmann et al., 2019). The World Health Organization (WHO) has proposed that
T2DM could be one of the top ten potent reasons of death worldwide by 2030 (Kelly
et al., 2008). The increased morbidity and mortality rates related to T2DM are often
associated with vascular complications, such as cardiovascular diseases (Zheng et al., 2018),
nephropathy (Lu et al., 2017) and retinopathy (Maugeri et al., 2018). Approximately 50%
of T2DM patients developed a diabetic peripheral neuropathy (DPN), which is a chronic
and progressive disorder affecting the peripheral nervous system (Edwards et al., 2008).
Diabetic retinopathy (DR) is a microvascular complication of diabetes mellitus and can
cause blindness or visual impairment (Kulkarni et al., 2019). T2DM is thought to arise due
to the overlaps of genetic factors, sedentary lifestyle, poor diet, excessive visceral obesity,
and other environmental exposures throughout life (Salamon et al., 2018).

In recent years, gut microbiota has been found to play a critical role in the establishment
and maintenance of human health. A large number of studies showed that the alteration
of microbiota is associated with many human diseases including gastrointestinal diseases
(Tong et al., 2013), cancer (Garrett, 2015), metabolic disease (Musso, Gambino & Cassader,
2011), neurodegenerative disorders (Hsiao et al., 2013) and cardiovascular (Wang et al.,
2011). Previous studies of clinical T2DM cases have found compositional changes between
the gut microbiome in patients and healthy controls (Karlsson et al., 2013). However, the
pathophysiological mechanisms that link the microbiota to T2DM have not been well
elucidated.

Liraglutide, a glucagon-like peptide 1 (GLP-1) analogue, was approved by the U.S. Food
and Drug Administration in 2010 for treating T2DM (Vilsboll & Garber, 2012). GLP-1 is an
incretin hormone which is secreted by intestinal L cells in response to food ingestion and
it shows a significant advance in the treatment of T2DM (Drucker & Nauck, 2006). There
is evidence that GLP-1 may play a role in the biological function of intestinal epithelium,
correlating these effects with changes in gut microbiota (Hwang et al., 2015).

However, the effect of liraglutide on gut microbiota in T2DM is not fully understood.
Therefore, we performed a randomized study in 40 individuals diagnosed with T2DM, and
combined 16S rRNA gene amplicon sequencing to investigate the effects of liraglutide on
the composition and function of the gut microbiota.

MATERIALS AND METHODS
Study population
The 40 (including both male and female) T2DM patients were aged 25–83 years, with mean
% HemoglobinA1c (HbA1c) concentration of 9.17% (76.67 mmol/mol) (5.3%) (34.43
mmol/mol) − 12.2% (109.84 mmol/mol), and body-mass index (BMI) scores >25 kg/m2.
HbA1c is the gold standard of glycemic control index and the standardization of HbA1c
was considered to be important, which was proceeded by the National Glycohemoglobin
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Standardization Program (NGSP) and the International Federation of Clinical Chemistry
and Laboratory Medicine (IFCC) (Weykamp, 2013). All participants had been treated
with metformin as a monotherapy (stable doses for 2 months). Relevant exclusion criteria
included: taking other glucose-lowering medications and those who had been taking
antibiotics in the last 3 months. The recruited participants were randomly assigned to
receive 1.2 mg of liraglutide for 4 months. BaselineHbA1c was assessed at before treated-
with liraglutide. HbA1c change (liraglutide treatment response) was calculated based on
treatment HbA1c value (after 4 months treated-with liraglutide) minus baseline HbA1c
value. All 40 T2DMpatients were switched from oral metformin to subcutaneous injections
of liraglutide for 4 months once daily. The metformin-liraglutide substitution design was
applied because a pre-study feasibility assessment reported that it was impossible to recruit
sufficient subjects with liraglutide as their primary medication for T2DM (Hodge et al.,
2016). All procedures were performed in accordance with the ethical standards of the
Clinical Research Ethics Committee of the Nanyang Second General Hospital, and written
informed consents were obtained from all participants included in the study.

Fecal DNA extraction and 16s rRNA gene sequencing
Total 80 fresh feces samples were collected in sterile collection tubes (Fisher Scientific,
Waltham, MA, USA) before and after the 4-month liraglutide treatment and then stored
at −20 ◦C until being transported to the research center in chilled styrofoam containers.
They were subsequently stored on-site at −80 ◦C for further analysis. Microbial DNA
was extracted from 200 mg fecal sample using the QIAamp PowerFecal Pro DNA Kit
(QIAGEN) which contains a bead-beating step. Briefly, adding 200 mg fecal sample
and 800 µl lysis buffer in a beads-containing tube and vortex at maximum speed for
10 min. Take 350 µL supernatant after 1 min centrifugation at 15,000 g and use it in
the subsequent steps according to the kit instructions. DNA is finally eluted in 100 µl
elution buffer for downstream applications. DNA was amplified using primers targeting
the V4 region of the 16S rRNA gene (515F 5′-GTGYCAGCMGCCGCGGTA-3′, 806R 5′-
GGACTACNVGGGTWTCTAAT-3′). PCR was run in a VeritiTM 96-Well Thermal Cycler
PCR system (Thermo Fisher Scientific) using the following program: 95 ◦C for 3min,
followed by 21 cycles of 95 ◦C for 30 s, 56 ◦C for 30 s, 72 ◦C for 30 s, with a final extension
at 72 ◦C for 5 min. Mixed amplicons were pooled and the sequencing was conducted at
Shanghai Biotecan Pharmaceuticals Co., Ltd. (Shanghai, China) using an Illumina Novaseq
6000 Sequencing system (Illumina, USA) according to the manufacturer’s instructions.

Sequence data analysis
Sequences were assigned to operational taxonomic units (OTUs) with 97% similarity
(Greengenes database: http://greengenes.lbl.gov) into mothur (v.1.39.5), OTU taxonomy
was assigned to the Greengenes database for the comparisons, using the Quantitative
Insights into Microbial Ecology (QIIME) software package (Caporaso et al., 2010). Both
Kyoto Encyclopedia of Genes and Genomes (KEGG) (Langille et al., 2013) and Clusters
of Orthologous Groups of proteins (COG) (Liu et al., 2019) pathways were categorized
using Phylogenetic Investigation of Communities by Reconstruction of Unobserved
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States (PiCRUSt) and both were imported into STAMP (v.2.1.3) for visualization.
To identify taxa with differing relative abundances between the two groups, linear
discriminant analysis (LDA) effect size (LEfSe) analyses were performed on the website
(http://huttenhower.sph.harvard.edu/galaxy). The cut off value was the absolute LDA
score (log10) >3.0 with a p< 0.05. The alpha diversity ‘‘summary.single’’ script was used
to calculate ACE, Chao1, Shannon and Simpson indexs in the mothur software package.
‘‘Beta_diversity.py’’ script was used to calculate the beta diversity in the QIIME software,
and the Principal Coordinate Analysis (PCoA) was used to measure beta diversity in each
group. Coabundance network analysis was based on Spearman correlation. Only genera
present in at least 60% of samples were used for correlation analysis, and only connections
with a r > 0.6 or <−0.6 and P < 0.05 were used for network building on the basis of
Igraph R package and imported into Cytoscape (v.3.6.0) for visualization.

Statistical analysis
The data are shown as the mean ± standard error of the mean (SEM). Bacterial taxa that
were differentially abundant were identified by using the Wilcoxon rank-sum test (for two
groups) or Kruskal-Wallis test (for more than two groups) in R studio (v.3.6.1). Clinical
data analyses between the two groups were conducted by Wilcoxon signed–rank test or
t -test using Prism version 6.0 (GraphPad, San Diego, CA, USA). Linear regression analysis
was performed using R studio (v.3.6.1). A p< 0.05 was considered statistically significant.

RESULTS
Baseline HbA1c is a key predictor of liraglutide treatment response
We recruited 40 individuals with T2DM to receive 1.2 mg liraglutide for 4 months.
Clinical characteristics of the 40 individuals before and after the 4-month liraglutide
treatment (termed L0 and L4, respectively) are presented in Table S1. As baseline HbA1c is
a major predictor in blood glucose therapies, we assessed the relationship between baseline
HbA1c and HbA1c change using linear regression analysis. The result indicated that
baseline HbA1c explains 52.7% of liraglutide treatment response variation (R2

= 0.527, β
=−0.726, P < 0.0001, Fig. 1). In addition, BMI, HbA1c, homeostasis model assessment
of insulin resistance (HOMA-IR), fasting blood glucose, 2-hour postprandial blood
glucose, total cholesterol, triglycerides, HDL-C, and LDL-C were significantly lower in the
post-liraglutide-treatment group than the pre-liraglutide-treatment groupusing Wilcoxon
signed–rank test or t -test . However, there were no notable differences observed in fasting
insulin, serum creatinine and the blood urea nitrogen between the two groups (Table S2).

Furthermore, due tomany clinical characteristicsmay be associatedwith baselineHbA1c,
adjusted for baseline HbA1c was suggested to avoid erroneous treatment response. So we
used multiple linear regression to analyze the association between the baseline HbA1c and
the baseline covariates (11 clinical characteristics), and the association between the baseline
covariates and liraglutide treatment response after with or without adjustment for baseline
HbA1c. However, the results indicated that none clinical characteristics were associated
with both baseline HbA1c and liraglutide treatment response after without adjustment for
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Figure 1 Baseline HbA1c is associated with liraglutide treatment response. The association between
% baseline HbA1c and % HbA1c change using linear regression analysis (R2

= 0.527, β = −0.726, P <
0.0001).

Full-size DOI: 10.7717/peerj.11128/fig-1

baseline HbA1c. Only the blood urea nitrogen was associated with liraglutide treatment
response after adjustment for baseline HbA1c (Table S3).

Characteristics of the pyrosequencing results
To characterize the effects of liraglutide on the gut microbiome, we performed high-
throughput sequencing of the V4 regions of 16S rRNA genes from the 80 fecal samples
collected from the two groups. A total of 8,822,088 high-quality sequences and 7488 OTUs
(97% similarity) were obtained from the 80 samples, and the average number of reads
was 100, 626 and OTUs was 296 for each individual (Table S4). The reads/OTUs were
assigned to 34 different phyla, and the top 3 dominant bacterial phyla of the two groups
were Firmicutes, Bacteroidetes and Proteobacteria.

Liraglutide modifies gut microbiota alpha and beta diversity in the
T2DM
Since the participants have different duration of T2DM, we divided the 40 T2DM patients
into three diabetes duration groups (short-duration group (<5 years); medium- duration
group (5-10 years) and long-duration group (≥10 years)) and analyzed alpha and beta
diversity in gut microbiota of the three groups. Alpha diversity is an index reflecting the
variety of microbial species in stool samples and we also examined the patterns of beta
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diversity by calculating the dissimilarity in the composition of gut microbial (Rapacciuolo et
al., 2019). The results indicated that the three duration groups had no significant difference
in gut microbiota alpha and beta diversity (Figs. S1 and S2). Therefore, being treated with
metformin for 2 months do not alter the fecal microbiome in T2DM patients. In order
to evaluate the effect of liraglutide treatment on gut microbiota diversity, we analyzed
the 80 fecal samples collected from pre- and post-liraglutide-treatment groups. The alpha
diversity indices (theACE,Chao1, Shannon and Simpson index)were used to describe alpha
diversity. The community richness (ACE and Chao1) was significantly different between
the two groups (Figs. 2A and 2B), showing a lower abundance in the post-liraglutide-
treated group. However, there were no significant difference in the community diversity
(Shannon and Simpson) of the two groups (Figs. S3A and S3B). As to the beta diversity,
a principal-component analysis (PCoA) of a nonmetric multidimensional scaling plot
(on a Bray-Curtis distance matrix) and unweighted UniFrac distances revealed significant
qualitative differences in gut microbial community structure between the two groups (Figs.
2C and 2D), but there was no difference in weighted UniFrac distances (Fig. S3C).

Liraglutide alters gut microbiota composition
To assess the effects of liraglutide on gut microbiota composition, a taxonomy-based
comparison was performed and a broad overview of our taxonomic data from the 80
samples was given in Fig. 3A. A heat map was constructed to visualize the top 30 genus in
the two groups (Fig. 3A). We also conducted a coabundance network analysis to investigate
how different gut bacteria could interact with each other. The results indicated that 4
months of liraglutide treatment promoted an increased number of positive correlations
among microbial genera, especially those within Firmicutes and Bacteroidetes. Negative
correlation was identified in Ruminococcus (Firmicutes) and Actinomyces (Actinobacteria)
(Fig. 3B).

Phylogenetic and taxonomic profiles of gut microbiota
To analyze the statistical differences in microbial communities between the pre- and post-
liraglutide-treatment of T2DM, the significant differences based on genomic characteristics
were further confirmed by LEfSe analysis, which used LDA coupled with effect size
measurement to identify bacterial taxa with sequences that differed in the abundance of
the two groups.

Cladograms were obtained by the LEfSe analysis, which showed the most significantly
difference at taxonomic levels between the two groups. The size of each circle represents
the abundance of certain bacteria (Fig. 4A).

Upon analyzing the fecal samples, 36 phylotypes were identified as high-dimensional
biomarkers (Table S5). Twenty-one species of bacteria were abundant in the pre-liraglutide-
treatment group and 15 species were abundant in the post-liraglutide-treatment group.
At the phylum level, the abundance of Fusobacteria was significantly higher in the pre-
liraglutide-treatment group, while Verrucomicrobia and Actinobacteria were significantly
higher in the post-liraglutide-treatment group. At the genus level, nine genera were
found in significantly high abundances in the pre-liraglutide-treatment group. These
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Figure 2 Liraglutide treatment affected the microbiota alpha diversity and beta diversity. (A–B)
ACE and Chao1 were used to analyze the alpha diversity. Statistic analysis was performed by Wilcoxon
rank-sum test, ∗P < 0.05. (C–D) PCoA of fecal microbiota from the two groups of patients using a
Bray-Curtis distance matrix (C) and unweighted UniFrac distances (D). Statistical analysis was performed
by ANOSIM test, ∗P < 0.05.

Full-size DOI: 10.7717/peerj.11128/fig-2

genera included Acinetobacter (p= 0.016), Oscillospira (p= 0.013), Acidaminococcus
(p= 0.021), Succinatimonas (p= 0.042), S24_7 (p= 0.008), Megamonas (p= 0.0005),
Alistipes (p= 0.035), Fusobacterium (p= 0.017) andMegasphaera (p= 0.0002). The genera
Collinsella (p= 0.011), Akkermansia (p= 0.002) and Clostridium (p= 0.002) were enriched
in the post-liraglutide-treatment group (Fig. 4B).

Correlation between clinical features and gut microbiota
According to the LDA analysis (LDA value > 3.0), we discovered the relative abundance
of 12 bacterial genera (Table S5) between the two groups. To investigate the inter
associations between gut microbiota and clinical status of the host, we identified the
statistical correlations between the 12 genera and the 11 clinical features, including age, sex,
BMI, family history of diabetes, diabetes duration, family history of cardiovascular disease,

Shang et al. (2021), PeerJ, DOI 10.7717/peerj.11128 7/19

https://peerj.com
https://doi.org/10.7717/peerj.11128/fig-2
http://dx.doi.org/10.7717/peerj.11128#supp-8
http://dx.doi.org/10.7717/peerj.11128


En
te

ro
ba

cte
ria

ce
ae

_E
sc

he
ric

hia
Ba

cte
ro

ida
ce

ae
_B

ac
te

ro
ide

s
La

ch
no

sp
ira

ce
ae

_L
ac

hn
os

pir
a

Ri
ke

ne
lla

ce
ae

_A
lis

tip
es

Ve
illo

ne
lla

ce
ae

_P
ec

tin
at

us
En

te
ro

ba
cte

ria
ce

ae
_S

hig
ell

a
St

re
pt

oc
oc

ca
ce

ae
_S

tre
pt

oc
oc

cu
s

Ru
m

ino
co

cc
ac

ea
e_

Os
cil

los
pir

a
Al

ca
lig

en
ac

ea
e_

Su
tte

re
lla

La
ch

no
sp

ira
ce

ae
_R

os
eb

ur
ia

La
ch

no
sp

ira
ce

ae
_L

ac
hn

os
pir

ac
ea

e
En

te
ro

ba
cte

ria
ce

ae
_E

nt
er

ob
ac

te
r

Ru
m

ino
co

cc
ac

ea
e_

Ge
m

m
ige

r
Ve

illo
ne

lla
ce

ae
_M

eg
as

ph
ae

ra
Ve

illo
ne

lla
ce

ae
_D

ial
ist

er
Ru

m
ino

co
cc

ac
ea

e_
Ru

m
ino

co
cc

ac
ea

e
Le

uc
on

os
to

ca
ce

ae
_W

eis
se

lla
Ru

m
ino

co
cc

ac
ea

e_
Ru

m
ino

co
cc

us
Pr

ev
ot

ell
ac

ea
e_

Pr
ev

ot
ell

a
Po

rp
hy

ro
m

on
ad

ac
ea

e_
Pa

ra
ba

cte
ro

ide
s

La
ch

no
sp

ira
ce

ae
_D

or
ea

La
ch

no
sp

ira
ce

ae
_C

los
tri

diu
m

Ps
eu

do
m

on
ad

ac
ea

e_
Ps

eu
do

m
on

as
Ve

illo
ne

lla
ce

ae
_P

ha
sc

ola
rc

to
ba

cte
riu

m
M

or
ax

ell
ac

ea
e_

Ac
ine

to
ba

cte
r

Ru
m

ino
co

cc
ac

ea
e_

Fa
ec

ali
ba

cte
riu

m
La

ch
no

sp
ira

ce
ae

_R
um

ino
co

cc
us

La
ch

no
sp

ira
ce

ae
_C

op
ro

co
cc

us
Ve

illo
ne

lla
ce

ae
_M

eg
am

on
as

Bi
fid

ob
ac

te
ria

ce
ae

_B
ifid

ob
ac

te
riu

m

S001541061
S002240740
S003127935
S003455050
S003600781
S005787392
S005859720
S007683498
S008634589
S009893980
S011537861
S012838157
S013136885
S014716121
S016155640
S016535105
S021680499
S023697174
S025161601
S026092893
S026336495
S026671142
S029542745
S029695363
S031090715
S032859041
S034720292
S034861824
S035488426
S037854653
S039463904
S043755895
S045519660
S048196178
S052222488
S053635151
S053815056
S053955426
S057613705
S057663043

S058143631
S059365756
S059718185
S060636939
S062280857
S062554016
S063813091
S064788580
S064792713
S065750241
S067686161
S068476084
S071368741
S071427884
S075024151
S075882888
S076545607
S082700271
S085570446
S087726828
S093560679
S097805636
S099723191
S207621329
S212496230
S220458891
S221637576
S222861694
S223643955
S230851764
S232494959
S241357478
S243919078
S245779035
S247938804
S254984917
S268822680
S277870962
S297508120
S299608633

phylum

gr
ou

p

Phylum
Actinobacteria
Bacteroidetes
Firmicutes
Proteobacteria

group
L0
L4

−4

−2

0

2

4

A
Actinobacteria 
Bacteroidetes
Firmicutes
Fusobacteria
Proteobacteria

Phylum

Positive correlation (L0)
Positive correlation (L4)
Negative correlation

B

Figure 3 Liraglutide treatment promoted rapid changes in the composition of the gut microbiota.
(A) Heat map showing changes in the abundance of bacterial strains before (L0) and after the 4-month li-
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of the pre- (L0) and the post-liraglutide-treatment group (L4). The edges indicate Spearman correlations
of r > 0.5 or r <−0.5 and ∗P < 0.05 between the genera present in at least 60% samples.
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family history of diabetic nephropathy (DN), family history of diabetic retinopathy (DR),
family history of diabetic peripheral neuropath (DPN), smoking status and alcoholism
status (Table S6).

First, we found that the abundance of Megamonas was significantly lower in the older
age group (≥50) (p= 0.014), medium- and long-duration groups (p= 0.006) (Figs. 5A
and 5B). What’s more, the levels of Clostridum genus was lower in the family history of
diabetes (p= 0.043) group (Fig. 5C). Oscillospira was significantly different between the
Non-DR group and DR groups, in which severe non-proliferative DR (NPDR) sub-group
had the highest abundance of Oscillospira (p= 0.038) (Fig. 5D). We also found that the
abundance of Megamonas was lower in the DR group (p= 0.005) (Fig. 5E). Last but not
least, the higher abundance of Oscillospira was found in the DPN group, but not in the
non-DPN group (p= 0.040) (Fig. 5F).

Effect of liraglutide-treatment administration on metabolic pathways
KEGG and COG pathway comparisons were performed to explore potential differences
in the functional composition of the microbiome between the pre- and post-liraglutide-
treatment group. Figure 6 highlights the significant differences in the distribution of
metabolic pathways, and compares the microbiota functions between the two groups. As
listed in Fig. 6A, seven differences were observed in KEGGpathways. Three KEGGpathways
(including G protein-coupled receptors, Glycolysis/Gluconeogenesis and Selenocompound
metabolism) were enriched in the post-liraglutide-treatment group, and 4 KEGG
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A

B

Figure 4 The overall structure and composition of the gut microbiota difference between the pre- and
post-liraglutide-treatment group. (A) The cladogram depicts the phylogenetic distribution of microbial
lineages in fecal samples taken before (L0) and after the 4-month liraglutide treatment (L4). Differences
in abundant microbiota are listed and distinguished by different color (blue for L0 group and brown for
L4 group). (B) Key phylotypes of the gut microbiota responding to liraglutide treatment. The histogram
shows the lineages with LDA values>3.0 and with a *P < 0.05 as determined by LEfSe analysis.

Full-size DOI: 10.7717/peerj.11128/fig-4
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or Kruskal-Wallis test, ∗P < 0.05.

Full-size DOI: 10.7717/peerj.11128/fig-5

pathways (including tropane, piperidine and pyridine alkaloid biosynthesis, phenylalanine
metabolism, porphyrin and chlorophyll metabolism, and styrene degradation) were
enriched in the pre-liraglutide-treatment group.

As shown in Fig. 6B, 17 different functional COG pathways between the two groups
were found. Six of them were enriched in the post-liraglutide-treatment group, including
predicted ABC-type transport system involved in lysophospholipase L1 biosynthesis,
acetate kinase, phosphatidylglycerophosphate synthase, predicted choline kinase involved
in lipopolysaccharides (LPS) biosynthesis, predicted glutamine amidotransferase and
putative cell wall-binding domain. In contrast, the pre-liraglutide-treatment group were
enriched in ABC-type Co2+ transport system, periplasmic component, ABC-type Fe3+
transport system, periplasmic component, transcriptional regulator containing PAS, AAA-
type ATPase, and DNA-binding domains, acetyl-CoA hydrolase, N-acyl-D-aspartate/D-
glutamate deacylase, Na+/proline symporter, permeases of the drug/metabolite transporter
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A

B

Figure 6 Differential PICRUSt-predicted KEGG and COG pathways in individuals before (L0) and af-
ter the 4-months liraglutide treatment (L4). The KEGG (A) and COG (B) pathways demonstrating seven
and 17 significant differences between the two groups, respectively. For each comparison in predicted
KEGG or COG pathways, the mean proportion and the 95% CI difference in mean proportions are also il-
lustrated. Statistical analysis was performed by Welch’s t -test, ∗P < 0.05.

Full-size DOI: 10.7717/peerj.11128/fig-6

(DMT) superfamily, precorrin-2 methylase, predicted metal-binding protein, pyruvate
carboxylase and s-adenosylhomocysteine hydrolase.

DISCUSSION
T2DM is a complex metabolic disorder and public health issue throughout the world. It
is also one of the most severe chronic diseases that affect human health. According to the
estimation, the prevalence of diabetesmay increase 69% in developing countries and 20% in
developed countries between 2010 and 2030 (Shaw, Sicree & Zimmet, 2010). The metabolic
potential of the gastrointestinal tract and its microbiota are increasingly recognized as
promising targets to improve T2DM treatment (Brunkwall & Orho-Melander, 2017). Thus,
there is an urgent need in the development of more efficient prevention and treatment
strategies.

As a GLP-1 analogue, liraglutide has shown the therapeutic effects by changing the
structural of gut microbiota in diabetic male rats (Zhang et al., 2018). In this study,
although all participants were stable on metformin as a monotherapy for 2 months
before the recruitment, neither alpha nor beta diversity was different among the three
diabetes duration groups. Then all 40 T2DM patients were switched from oral metformin
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to subcutaneous injections of liraglutide for 4 months. We found that the liraglutide
treatment lowered BMI, blood glucose, HbA1c, HOMA-IR and relieved dyslipidemia
in T2DM patients. Similarity, in a diabetic rat study, insulin level and HOMA-IR were
significantly decreased (Zhang et al., 2018), and blood glucose and body weight were much
lower after being treated with liraglutide (Wang et al., 2016). In the present study, we
found that baseline HbA1c is associated with liraglutide treatment response. As clinical
characteristics may be associated with baseline HbA1c, many T2DM studies have adjusted
for baseline HbA1c to avoid incorrect treatment response using linear regression method
(Jones et al., 2016; Thong et al., 2014). In this study, neither baseline HbA1c nor liraglutide
treatment response after without adjustment for baseline HbA1c was associated with
baseline covariates. However, the blood urea nitrogen was associated with treatment
response after adjustment for baseline HbA1c. Many studies have indicated that blood
urea nitrogen is associated with increased an risk of insulin use in diabetes mellitus (Xie
et al., 2018a; Xie et al., 2018b). Jones et al. reported that false positive associations may
arise and true associations may be covered up by negative results if without adjustment
for baseline HbA1c (Jones et al., 2016). In this study, without adjustment for baseline
HbA1c, the blood urea nitrogen was not associated with treatment response; while
adjustment for baseline HbA1c, the blood urea nitrogen was associated with treatment
response. Furthermore, we analyzed the effects of liraglutide on the gut microbiota of
the 80 samples collected from the pre- and post-liraglutide-treatment groups. Several
interesting results were observed. First of all, at the phyla level, Firmicutes, Bacteroidetes
and Proteobacteria were the top 3 dominant bacterial phyla between the two groups.
A previous study reported that Bacteroidetes and Proteobacteria, could produce LPS,
and subsequently trigger inflammatory response and contribute to the development of
diabetes (Larsen et al., 2010). The diabetic rat microbiome was profoundly dominated by
the phyla Firmicutes and Bacteroides, while liraglutide-treated rat group had a reduced
Firmicutes/Bacteroidetes ratio and relative abundance of Tenericutes (Zhang et al., 2018).
According to our taxonomic data from the 80 samples, patients who had enriched genus
Bacteroides usually had low abundance of genus Prevotella, which is consistent with the
previous study performed in colorectal cancer (Yachida et al., 2019). Zhang et al. reported
that Prevotella genera was much more lower in liraglutide-treated rats (Zhang et al., 2018).
Secondly, by using a Bray-Curtis distance matrix and unweighted UniFrac PCoA analysis,
we confirmed that two major components in the gut microbiota of the two groups were
structurally separated from each other. What’s more, according to LEfSe analysis, 9 genera
including Acinetobacter,Oscillospira, Acidaminococcus, Succinatimonas, S24_7,Megamonas,
Alistipes, Fusobacterium and Megasphaera were found in significantly high abundances in
the pre-liraglutide-treatment group. In a previous study, Li et al. reported thatAcinetobacter
was significantly abundant in T2DM group than that in healthy subjects (Li et al., 2019).
Oscillospira was reported to be significantly abundant in high-fat diet mice group than in
a chow diet mice group (Wu et al., 2019). However, Fusobacterium genera in fecal samples
were not significantly different between the T2DM and healthy people (Sedighi et al.,
2017). Therefore, large studies were needed to verify this issue in near future. According to
our research, Megamonas was significantly lower in the older group, medium- and long-
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duration group, which is in accord with the study that Megamonas was significant lower
in longevity village communities than urbanized town communities (Park et al., 2015). A
similar study indicated that the abundance of Alistipes was significantly increased in rat
of T2DM (Zhu et al., 2020). Clostridum was lower in the T2DM family history of diabetes
group, similarly, Clostridum was significantly lower in the fecal samples of diabetic patients
than in those of control subjects in Japanese (Yamashiro, 2017). Another study further
indicated that Clostridium was negatively correlated with fasting blood glucose, HbA1c and
insulin levels (Karlsson et al., 2013).

On contrary, liraglutide-treated group had an increased level of Collinsella, Akkermansia
and Clostridium at the genus level. In a pre-clinical study, the abundance of Akkermansia
was increased by the metformin treatment in the mice fed by high fat diet (HFD), and
oral administration of Akkermansia enhanced glucose tolerance and attenuated adipose
tissue inflammation in HFD-fed mice (Shin et al., 2014). Another study reported the
low abundance of Clostridium in European women with T2DM, as well as the negative
correlation of Clostridium with fasting blood sugar, glycated hemoglobin, insulin,
and plasma triglycerides (Karlsson et al., 2013). In our study, after being treated with
liraglutide for 4 months, the abundance of Clostridium was decreased in the family
history of diabetes group, which is consistent with the findings that the abundance
of Clostridium is lower in diabetic patients (Yamashiro, 2017). In the diabetic rat
liraglutide-treated study, LEfSe analysis showed 11 bacteria significantly difference
between the liraglutide-treated group and diabetic group. The genera Flavonifractor
and Lachnoclostridium, species Ruminococcus_gnavus, Flavonifractor_plautii, and
Bacteroides_acidifaciens were much more abundant in the liraglutide-treated group than
the diabetic group. The reduced bacteria were mainly in the family Christensenellaceae,
genera Christensenellaceae_R_7_group, the genera Ruminococcaceae_UCG_010,
Ruminoclostridium_6, and Prevotella_9, and the class Mollicutes (Zhang et al., 2018).
These results indicated that microbiome structures of rat and human were mainly different.

Finally yet importantly, the PICRUSt analysis revealed 7 different KEGG pathways and
17 COG pathways. KEGG analysis further indicated that these gut bacteria in T2DM
were strongly associated with the dysregulation of several metabolic processes such
as glycolysis/gluconeogenesis metabolism; phenylalanine metabolism; porphyrin and
chlorophyll metabolism; and selenocompound metabolism. For example, phenylalanine
metabolism, showed lower abundance in the post-liraglutide-treatment group. It is
reported that phenylalanine was associated with insulin resistance, and may increase
the risk of T2DM (Guasch-Ferre et al., 2016). Glycolysis/gluconeogenesis pathway was
higher in the post-liraglutide-treatment group, which is consistent with the findings that
glycolysis/gluconeogenesis related metabolites is significantly associated with T2DM risk in
a Mediterranean population (Guasch-Ferre et al., 2020). In addition, we found 17 different
functional COGs between the two groups. For example, periplasmic component, ATPase
component and permeases of the drug/metabolite transporter (DMT) were enriched in the
pre-liraglutide-treatment group, which promote glucose and ribose/galactoside using to
regulate energy according to the previous study (Liu et al., 2019). Considering the fact that
T2DM is a metabolic disease and several metabolic disorder phenotypes were observed in
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T2DM patients, we speculated that gut microbiota affects the host via metabolites, which
provides a further understanding between the microbiome–metabolome interaction in
T2DM and may be helpful for the diagnosis and treatment of T2DM in the future.

There were still several limitations in this study. Specifically, the sample size was relatively
small to represent the combined effects of T2DM and liraglutide. Besides, we did not recruit
a 4-month-metformin-treated group to compare with the current- liraglutide-treated
group. Although our collected clinical characteristics were significant changes between the
pre- and post-liraglutide treatment groups. While adjustment for baseline HbA1c, only
blood urea nitrogen was associated with liraglutide treatment response in the 40 T2DM
patients. Therefore, it is urgent to enlarge cohort to verify this issue in the future. Due to
the extremely complicated interactions between gut microbiota and host, as well as our
knowledge and research capability, the potential mechanisms behind this interaction were
not further explored. Meanwhile, metagenomic sequencing has been widely employed
to explore novel changes in the functional potential of the microbiota. However, in the
present study, the results of prediction COG and KEGG functional analysis were analyzed
by the method of 16S rRNA gene sequencing. Besides, due to the small sample size, we only
covered part of the correlations between gut microbiota and clinical features. Therefore, to
fully elucidate the modifiable capacity of the gut microbiota and its potential applications
in the prevention and treatment for type 2 diabetes, large longitudinal, interventional
studies and multicenter strategies are further required.

In conclusion, our findings suggest that liraglutide treatment is associated with baseline
HbA1c, blood urea nitrogen and gut microbiota composition in T2DM patients. This
may contribute to the beneficial effects of liraglutide against diabetes. In particular, the
phenylalanine metabolism, porphyrin and chlorophyll metabolism and selenocompound
metabolism pathways were predicted by KEGG pathways without no functional analysis
in T2DM yet. So further researches are required to elucidate the mechanisms by which
liraglutide affects the gut microbiota of diabetes patients, and this may serve as potential
therapeutic targets for T2DM.
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