
Frontiers in Immunology | www.frontiersin.

Edited by:
Peizeng Yang,

First Affiliated Hospital of Chongqing
Medical University, China

Reviewed by:
Piotr Kusnierczyk,

Hirszfeld Institute of Immunology and
Experimental Therapy (PAS), Poland

Eddie A. James,
Benaroya Research Institute,

United States

*Correspondence:
Jonas J. W. Kuiper

J.J.W.Kuiper@umcutrecht.nl

Specialty section:
This article was submitted to

Autoimmune and
Autoinflammatory Disorders,

a section of the journal
Frontiers in Immunology

Received: 27 August 2020
Accepted: 16 October 2020

Published: 11 November 2020

Citation:
Kuiper JJW and Venema WJ (2020)

HLA-A29 and Birdshot Uveitis: Further
Down the Rabbit Hole.

Front. Immunol. 11:599558.
doi: 10.3389/fimmu.2020.599558

REVIEW
published: 11 November 2020

doi: 10.3389/fimmu.2020.599558
HLA-A29 and Birdshot Uveitis:
Further Down the Rabbit Hole
Jonas J. W. Kuiper1,2* and Wouter J. Venema1,2

1 Department of Ophthalmology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands, 2 Center for
Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands

HLA class I alleles constitute established risk factors for non-infectious uveitis and
preemptive genotyping of HLA class I alleles is standard practice in the diagnostic
work-up. The HLA-A29 serotype is indispensable to Birdshot Uveitis (BU) and renders
this enigmatic eye condition a unique model to better understand how the antigen
processing and presentation machinery contributes to non-infectious uveitis or chronic
inflammatory conditions in general. This review will discuss salient points regarding the
protein structure of HLA-A29 and how key amino acid positions impact the peptide
binding preference and interaction with T cells. We discuss to what extent the risk genes
ERAP1 and ERAP2 uniquely affect HLA-A29 and how the discovery of a HLA-A29-specific
submotif may impact autoantigen discovery. We further provide a compelling argument to
solve the long-standing question why BU only affects HLA-A29-positive individuals from
Western-European ancestry by exploiting data from the 1000 Genomes Project. We
combine novel insights from structural and immunopeptidomic studies and discuss the
functional implications of genetic associations across the HLA class I antigen presentation
pathway to refine the etiological basis of Birdshot Uveitis.
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INTRODUCTION INTO BIRDSHOT UVEITIS

Birdshot Uveitis (also known as Birdshot chorioretinopathy or Birdshot retinochoroidopathy) is a
well-characterized form of autoimmune uveitis (inflammation of the uveal layer of the eye) mostly
known for its ovoid light lesions, which appear ‘shotgun pattern’-like distributed along the vascular
arcades in the back of the eye (i.e., the ‘fundus’ of the eye where these lesions are visible by
photography) (1). Inflammation and extensive depigmentation of the choroid, macular edema,
peripheral ischemia (2), degeneration of the retina, and the progressive formation of thin layer of
scar tissue on the retina (“epiretinal membrane”) (3, 4), progressively impair vision in a substantial
proportion of patients. BU is unusual in the young (5) and typically affects patients over 50 years of
age of Western-European ancestry, with more women than men affected (6). Long-term systemic
corticosteroid-sparing immunomodulatory therapy is the mainstay of treatment (7, 8), but a
fraction of patients may exhibit a more benign disease course that does not require systemic therapy
(9). Histopathology studies of eye tissues and modern imaging technologies show that early lesions
are located deep inside the vascular layer of the eye (the “choroid”) between the retina and the white
outer layer of the eyeball (sclera). In the choroid, the large-vessel layer (choroidal stroma)—densely
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populated with pigmented “melanocyte” cells—shows abnormalities
before the characteristic fundus lesions are visible (10, 11). Because
BU shows early inflammation of the choroidal stroma (12), Herbort
and associates proposed to classify BU as a primary stromal
choroiditis, together with Vogt-Koyanagi-Harada (VKH) disease.
VKH is a condition characterized by chronic inflammation toward
melanocytes that affect multiple parts of the body, including the
choroidal stroma and the larger choroidal vessels (11, 13). In VKH
no retinal involvement at early stages of disease are noticeable. In
contrast, retinal inflammation (e.g., leakage of vessels) is an early
clinical characteristic of BU (14), which suggests that retina
involvement is not merely the result of inflammation spilling over
from the choroid. However, the cause and interdependence of the
retinal and choroidal inflammation are unknown, which is reflected
in the use of multiple terms to define the eye condition; birdshot
retinitis, birdshot chorioretinopathy, or birdshot retinochoroidopathy.
For lack of understanding the disease pathology, here the broader
term “birdshot uveitis” was chosen.

Microscopic anatomy studies (or histological studies) of eye
tissue of patients with BU are scarce because of the rarity of the
condition (estimated 1 to 5 cases per 500,000) (6, 15). The most
recent histological study by Sohn and coworkers (16) in a patient
with end-stage BU showed extensive degeneration of the retina
and near complete loss of choroidal layers and the retinal
pigment epithelium, a highly specialized cell layer critical to
the homeostasis photoreceptors of the retina. Changes in retinal
pigment epithelium are also evident by retinal imaging in
patients with established disease (17). Each of the histological
studies show massive infiltration of blood leukocytes into the
choroid and retina layers; mostly T lymphocytes not only express
the glycoproteins CD4 (“T helper” cells) and CD8 (“Cytotoxic” T
cells) (16, 18, 19) but also relatively increased numbers of other
immune cells, such as myeloid cells and B lymphocytes. The
cases in two of these studies were remarkable for a history of
malignant melanoma, but evidence that directly links melanoma
to BU is lacking. At most, the evidence is circumstantial, such as
“Birdshot-like disease” in melanoma cancer patients that develop
autoimmune uveitis due to checkpoint inhibitor therapy (a
treatment setting T cells free to kill tumor, but also normal
tissue) (20) or the presence of blood antibodies that can bind to
proteins in melanoma tumor cell lines (21). These phenomena
may be explained by the fact the proteins involved in immunity
toward melanoma are also expressed in normal melanocytes (22)
and may actually support that choroidal melanocytes are among
target cells deliberately attacked by the derailed immune system
in BU.
THE GENETIC ASSOCIATION WITH
HLA-A29

Short after BU was first described in 1980 (23), the unusually
strong genetic association of theHuman-Leukocyte Antigen A*29
(HLA-A*29) with BU was discovered in 1982 by Nussenblatt and
coworkers (24). HLA-A29-positive testing is now widely
considered critical to diagnosis and led key opinion leaders in
Frontiers in Immunology | www.frontiersin.org 2
the field propose to rename the condition to “HLA-A29 uveitis”
(25). HLA-A*29 is one of the hundreds of variants of the HLA-A
gene that together with different versions of HLA-B and HLA-C
genes form the HLA class I complex of functionally related
proteins in humans. The HLA-A gene encodes slightly different
versions of a the cell-surface protein HLA-A. Like other HLA
class I proteins, HLA-A plays a central role in the immune
system by instructing immune cells (e.g., cytotoxic T cells) if a
cell must be destroyed because it is infected by foreign invaders
(e.g., a virus) or when a cell has become cancerous after mutation
of the DNA (26). In most cells of the body, HLA-A achieves this
by constant sampling of protein fragments from foreign invaders or
self-proteins (termed “antigenic” peptides, or antigens in short) from
the inside of the cell and “presenting” these peptides on the outside
of the cell for scrutiny by surveilling immune cells (26, 27). This
“antigen presenting pathway” is critical to monitor cellular integrity
and is based on differentiating “self” from “non-self” (pathogen) or
“altered-self” (cancer) (26). Aberrant function of this pathway can
result in persistent infection, cancer or autoimmune disease (27).

Because all patients with BU carry a copy of the HLA-A29
allele (the term for “gene variant”), it is considered to be critically
involved in the unidentified disease mechanisms (1). This is
supported by rare familiar cases of BU that show that all cases
with the eye phenotype are also HLA-A29-positive (28). Also, the
allele frequency of HLA-A29 is high in Western-European
countries (29), where also the vast majority of BU patients are
reported in Europe, while BU is anecdotally reported in
populations with low occurrence of HLA-A29 (30, 31). How
exactly HLA-A29 contributes to eye inflammation is unknown,
but several unique properties of HLA-A29 distinguish this allele
from others HLA-A alleles in the population; A gel
electrophoresis study from 1992 indicated that HLA-A29 in
cases is identical to unaffected controls that carry HLA-A29
(~5–10% of the Western-European populations) (32), which is
supported by small DNA sequencing studies (29). In two
genome-wide association studies (33, 34), we used detailed
genetic analysis of HLA alleles in BU cases that revealed that
the main risk allele for BU is HLA-A*29:02, the most common
HLA-A29 allele in Europe. These studies further ascertained that
other associations in the MHC locus (the DNA region where
HLA genes are embedded) are a result of positive linkage
disequilibrium (LD) with HLA-A29. In other words, near-by
gene variants such as for example the HLA-B*44 allele are often
(yet not always) inherited together with HLA-A29 but most
likely not relevant for the disease. One study of a murine model
in which a copy of HLA-A29 DNA from a BU patient was
genetically expressed initially showed an eye disease similar to
BU (35), but in a later underappreciated study, the mice strain
used for the BU model was found to harbor a wide-spread and
previously unnoticed genetic mutation that causes retinal
degenerative disease (not uveitis) that also affected the control
mice (36). This supports that the HLA-A29 allele itself is not
sufficient and that the susceptibility to BU is mediated by
additional etiological triggers. This also fits the observation
that HLA-A29 is a common allele (~10% of the Western-
European population is HLA-A29-positive), but BU is a rare
November 2020 | Volume 11 | Article 599558
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condition (~250 cases in the Netherlands at 17 Mill. citizens as of
June 2020). Also, HLA-A*29:02 is also very common among
specific ethnic groups of non-European ancestry where BU has
not been reported, such as the South African Zulu (37) or the
Luhya in Webuye of Kenya in Africa (~10% HLA-A*29:02-
positive individuals) (38, 39).
THE HLA-A29 PROTEIN STRUCTURE

In 2020, the immuno polymorphism database (40) contains >200
reported HLA-A29 alleles, but only the most common alleles—
HLA-A*29:02, HLA-A*29:01, and HLA-A*29:10—have been
reported in cases with birdshot (41). Structurally, HLA-
A*29:01 (D102H) and HLA-A*29:10 (E177K) differ from
HLA-A*29:02 at single amino acids positions in the external
alpha 2 domain of HLA-A29 (Figure 1A), but these positions do
not influence the expression, conformation, or interaction of the
HLA-A complex with T cells (46–48). In other words, these
alleles can be considered functionally similar. The most relevant
amino acid positions in HLA-A29 for disease risk were
statistically linked to amino acids at positions 62 and 63 in the
protein sequence (33). As shown in Figure 2, the amino acids
Leucine at position 62 (62-L) and Glutamine at position 63 (63-
Q) distinguish HLA-A29 from other HLA-A alleles. This is of
interest because computational modelling of HLA-A by
changing amino acids at indicated positions (or amino acid
substitution modelling) revealed that position 63 has the
largest effect on the ability to bind antigenic peptides over all
polymorphic positions in the peptide-binding “groove” of HLA-
A allotypes (the term for “protein variants”) (49). Specific
mutation of the positions 62-63 can completely abrogate HLA-
peptide recognition by T cells (50). Most other HLA-A alleles
encode the amino acids asparagine (N) or glutamic acid (E) at
amino acid position 63 (Figure 2). Despite the degree of
similarity of the chemical characteristics of the side chains of
the amino acids, the effects of Q and N on the local structure
of protein are different (51) and changing the chemically related
glutamine (Q) to glutamic acid (E) at single amino acid position
in the HLA-A molecule can modulate the interaction with CD8
of T cells (52). Indeed, amino acid substitution modelling of
position 62 and 63 in HLA-A29 demonstrates that the strength
of binding of peptides (i.e., the binding “affinity”) into the
peptide-binding groove of HLA-A29 is decreased if the amino
acids at these positions are changed to any of the other other
naturally occurring combinations of amino acids at positions 62-
63 in HLA-A (Figure 1B). Curiously, substituting position 62 is
predicted to have a larger effect than substitutions on position 63.
Also, the ‘theoretical’ motif 62-L 63-E (which does not occur in
any known HLA-A alleles) provides a globally similar binding
capacity for peptides compared to the 62-L 63-Q of HLA-A29.
Phylogenetically related alleles of HLA-A29 (i.e., HLA-Aw19
complex) (53) encode 62-Q 63-E and would require changing
‘only’ position 62 to achieve a globally similar functionality.
However, as mentioned, the local structural effects of the
chemically related E and Q can be quite distinct and functional
Frontiers in Immunology | www.frontiersin.org 3
analysis is required to better understand the hierarchy of impact
of these positions on defining the HLA-A29 peptidome. Also,
these amino acids do not completely account for the peptide
specificity of HLA-A29. In fact, 62-L 63-Q is detected in some
other alleles such as HLA-A*43:01, HLA-A*11:11, and HLA-
A*68:130 [allele frequency of HLA-A*43:01 and HLA-A*11:11
in the European population >15,000 times less than HLA-
A*29:02 (54), and HLA-A*68:130 is not well documented (40)].
However, these alleles differ from HLA-A29 alleles on various
other key positions that influence peptide binding in the peptide-
binding groove, including amino acid position 9 (55), 70, 76, 77,
or positions 97 or 152, which influence the interaction with T
cells (56, 57). Notwithstanding these exceptional alleles, the
amino acid motif 62-L 63-Q near exclusively accounts for
HLA-A29 in the European population (54). Amino acid
residues 62 and 63 are positioned at the edge of the peptide-
binding groove (Figure 1A) in a cavity that directly interacts
with the side chain of the amino acid at position 2 (P2) of the
displayed antigenic peptide (58). Therefore, the 62-63 motif may
influence the flexibility to accommodate antigenic peptides with
distinct P2 residues, a feature most likely relevant to autoantigen
discovery for BU.
THE HLA-A29 PEPTIDE MOTIF

The peptide binding motif—or the ‘conserved’ positional residue
preference considering the amino acid sequences of all
“presented” peptides—of HLA-A29 is relatively flexible on
condition of a C-terminal (the last amino acid in a peptide)
Tyrosine (Y) or less frequently a Phenylalanine (F) (45). Peptides
with a C-terminal Y also make up a significant proportion of the
peptides presented on other HLA-A alleles, including HLA-
A*01:01, HLA-A*03:01, and HLA-A*30:02 (45) (but also HLA-
A*43:01 and HLA-A*68:130). This includes peptides that are
detected in the binding groove of more than one HLA-A allotype
(demonstrated by mass-spectrometry studies of single-HLA-
expressing cell lines), a phenomenon termed peptide ‘promiscuity’
(59). We and others have studied the complete set of antigenic
peptides (termed the ‘immunopeptidome’) bound by HLA-A29 and
used multidimensional scaling (a visual representation of the
immunopeptidome where all peptides are positioned in a graph
based on their relative similarity or difference in amino acid
sequence) to cluster the peptides into subdominant binding
motifs (or “submotifs”) (43, 45, 60). This approach facilitates the
identification of clusters of antigenic peptides (submotifs) that are
shared with other HLA class allotypes or that are unique to
HLA-A29. These studies revealed patterns of submotif preferences
easy to miss in conventional studies when considering the
immunopeptidome as a whole. In short, HLA-A29 presents a
palette of submotifs mostly defined by distinct amino acids at
position 2 (P2) and 7 (P7) in the antigenic peptide sequence. As
discussed, a fraction of peptides presented by HLA-A29 is also
found in the binding groove of other HLA-A alleles and
consequently some submotifs of HLA-A29 were also detected in
immunopeptidome data of other HLA allotypes. This helped to
November 2020 | Volume 11 | Article 599558
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narrow down a submotif that is specific to HLA-A29 (43), which is
characterized by the amino acids F or Y at P2 in conjunction with
the HLA-A29-characteristic C-terminal (PC) Y (F/Y-P2 + Y-PC
motif). This motif makes up ~15% of the HLA-A29
immunopeptidome (Figure 1C). Peptides with this motif are
substantially less frequently presented on other HLA allotypes and
those that do are uncommon in the Western-European population
Frontiers in Immunology | www.frontiersin.org 4
and/or display very low similarity in the immunopeptidome
composition with HLA-A29 (<3% of the peptides are shared,
Figure 1C). Note that ‘just’ P2-F and P2-Y (so without PC-Y) is
not uncommon in the immunopeptidomes of other HLA-A
allotypes, such as HLA-A24 [see supplemental data of Sarkizova
et al. (45)], but the amino acids that occupy the pocket
accommodating P2 of binding peptides is completely different from
A
B

DC

FIGURE 1 | Structure and function of amino acid positions 62 and 63 in HLA-A29. (A) View into the peptide‐binding groove of a three‐dimensional ribbon model for
HLA-A29 (Based on Protein Data Bank entry: 6J1W modelling using UCSF Chimera (42). The amino acids Leucine (L in yellow) at position 62 and Glutamine (Q in
blue) at position 63 defining HLA-A29 are indicated. The binding peptide is shown in black with phenylalanine at position 2 (P2-Phe) interacting with position 63-Q
(with energy-minimized positions of side chains). Polymorphic amino acid positions associated with the alleles HLA-A29:01 (pos 102 in red) and HLA-A29:10
(position 177 in green) are also shown. (B) The effect of amino acid substitutions for position 62 and 63 on predicted binding affinity for HLA-A29-presented
peptides. The average binding scores of 9-mers (n = 948) detected by mass-spectrometry analysis of HLA-A29 reported by Venema et al. (43). Replacement of
position 62 and 63 with the most commonly occurring amino acids at that position encoded by HLA-A alleles was done in netMHCpan 4.1 server (44). Naturally
occurring motifs are indicated with black lines, other motifs (e.g., QN) do not occur in human HLA-A allotypes. (C) The percentage of 9-mer peptides with P2-Phe
and P9-Tyr detected in immunopeptidomes of HLA class I alleles as reported by Sarkizova et al. (45). The top 5 (of 95 alleles tested) class I alleles other than HLA-
A29 are shown. The jaccard similarity index for the HLA-A*29:02 peptidome (overlap in presented peptides) and each allele is indicated (in %). Peptidome data were
derived from Sarkizova et al. (45). (D) Sequence logos of 9-mers (n = 948) from HLA-A29 [the same peptides as in (C)] stratified into non-specific for HLA-A29 [with
binding score MSi > 0.6 for HLA-A*43:01 or HLA-A*68:130 according to the HLAthena server (45)] or specific for HLA-A29 (MSi < 0.6 for HLA-A*43:01 and HLA-
A*68:130). The arrow indicates the aromatic P2 in the binding motif specific for HLA-A29.
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HLA-A29. Although we were unable to find immunopeptidome
studies of the HLA-A*43:01 and HLA-A*68:130 alleles, binding
prediction shows that peptides with the motif F/Y-P2 + Y-PC
are poorly presented by these alleles, most likely as a consequence
of the differences in other key positions in the binding groove
(Figure 1D), which further support that this motif is specific to
HLA-A29.
THE ERAP1-ERAP2 HAPLOTYPE LINKS
BU TO THE WESTERN-EUROPEAN
ANCESTRY

Key to progress in understanding why merely a fraction of HLA-
A29-positive individuals develop BU came from genetic studies,
including work from our lab. We identified that beyond HLA-
A29, genetic polymorphisms (or common variations in the DNA
sequence among individuals) at chromosome 5q15 confer strong
disease risk (34, 61). The signal on chromosome 5 covers the
endoplasmic reticulum aminopeptidase (ERAP)-1 and ERAP2
genes, and LNPEP, all enzymes involved in trimming the peptide
fragments before they are bound by HLA class I (e.g., HLA-A29).
Importantly, the combination of two polymorphisms functionally
linked to ERAP1 (rs2287987) and ERAP2 (rs10044354), conferred
a risk for BU that was significantly larger than the risk from either
one the two polymorphisms individually (61). Analysis of patients
and HLA-A29-positive controls showed that the combined
polymorphisms linked to ERAP1 and ERAP2 also showed the
largest disease risk (detected in 50% of 130 cases and 25% of 439
HLA-A29-positive controls). This indicates that the genetic
changes affecting both ERAP1 and ERAP2 in tandem increase
the risk in the HLA-A29-positive population (61). Indeed, if we
look at publicly available data from the 1000 genomes project, the
risk-variant linked to ERAP2 (rs10044354-T) or the risk-variant
linked to ERAP1 (rs2287987-C) are also observed in HLA-A29-
positive individuals of non-European ancestry (Figure 4). For
example, most of the HLA-A29-positive cases in the Luhya in
Webuye (LWT in Figure 3) of Kenya also carry the BU risk-
Frontiers in Immunology | www.frontiersin.org 5
variant near ERAP2, a population where no BU has been reported.
In contrast, the combined risk polymorphisms are only observed
in HLA-A29-positive individuals in Western-European
populations in which BU is “endemic”, with the exception of
Puerto Ricans (PUR in Figure 4). However, the majority (>60%)
of Puerto Ricans is of European ancestry and the samples from
this population were collected throughout the entire country (i.e.,
predominantly Caucasian) (64). Furthermore, BU is reported in
Puerto Ricans (several Puerto Rican BU cases are reported in the
Retina Image Bank; file numbers 6191 and 6178) (65). In contrast,
the Tuscany population (TSI in Figure 4) includes samples
collected from a small town near Florence in Italy. In this
population the combination of HLA-A29 and the ERAP1-ERAP2
polymorphisms is rare. These data do not necessarily represent all
individuals of a population of a country that is of mixed ancestry
[e.g., BU is reported in Northern Italy (66)], but serves to explain
why BU is very rare or non-existing in populations where the genetic
combination associated with BU risk is exceptional.

This also implies that the ERAP1, ERAP2, and HLA-A29
collectively drive the pathogenesis of BU. We do like to emphasize
that the number of individuals “burdened” with the “birdshot-
genotype” still exceeds the estimated cases in each population
(~1% of people fromWestern-European ancestry, of which about
1 in 500 develop BU as a rough estimate). Here, it is good to
consider that the cause of HLA-A29-dependent BU is most likely
heterogenous and in some patients may be mediated by genetic
susceptibility imprinted in ERAP genes, while in others ERAPs
may be dysregulated by alternative mechanisms. For example,
ERAP1 is tightly regulated by TNF-alpha, a pro-inflammatory
cytokine that is increased in concentration in eye fluids of BU
patients and blocking TNF-alpha by anti-TNF therapy alleviates
severe symptoms of BU (67–70). Polymorphisms linked to ERAP1
and ERAP2 genes are also associated with other HLA class I
associated conditions that manifest with non-infectious uveitis,
including HLA-B27-associated anterior uveitis and ankylosing
spondylitis, or HLA-B51-associated Behcet’s disease (71–73).
This supports the interdependence of ERAPs and HLA class I
in the pathophysiology of non-infectious uveitis.
FIGURE 2 | The amino acid sequence of HLA-A alleles. The first 100 amino acids for 19 HLA-A alleles from the IPD-IMGT/HLA Database (40). The amino acids at
positions 62 and 63 distinguish HLA-A29 alleles, with the exception of the rare HLA-A43 (± 15,000 times lower allele frequency compared to HLA-A29:02 in the
European population).
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ERAP1 AND ERAP2 IN THE ANTIGEN
PRESENTATION PATHWAY

The antigen presenting pathway for HLA(-A) starts with the
degradation of cellular proteins (proteolysis) by the proteasome,
a continuous and normal process to eliminate dysfunctional or
mature proteins into shorter peptides (26, 27). A selection of
peptides up to 20 amino acids long are transported into the
endoplasmic reticulum (ER) by the Transporter associated with
antigen processing (or TAP) and trimmed to generally 8-10
amino acid long peptides by ERAP1 and ERAP2 (26, 27, 74).
ERAP1 and ERAP2 are specialized aminopeptidases that reside
in ER (hence their name) where they each trim a proportion of
Frontiers in Immunology | www.frontiersin.org 6
the antigenic peptide pool before the peptides bind to HLA class I
molecules for presentation at the cell surface (74). Structural
studies have shown that the trimming process involves
sequestering the entire peptide sequence inside the enzyme’s
cavity after which the N-terminal (first amino acid in the peptide
sequence) is trimmed off (75, 76), which indicates that the
majority of peptides are trimmed before binding (77) to HLA
class I (e.g. HLA-A29). Some HLA class II alleles lack protection
of their peptide-binding groove when exposed to peptides in the
endoplasmic reticulum and bind these peptides before their
transportation to the cell surface (78). It’s not unlikely that
ERAPs may influence the peptide cargo presented by a
selective group of these ‘unprotected’ HLA class II alleles, but
FIGURE 3 | The combined risk factors HLA-A29 and the ERAP1-ERAP2 haplotype are restricted to populations of Western-European ancestry. The percentage of
individuals that carry a copy of HLA-A*29:02, the C allele of the polymorphism rs2287987 (in ERAP1), and the T allele of rs10044354 (near ERAP2) in 84 BU patients
and the 2504 individuals of 26 ethnic populations of the 1000 Genomes Project. Data from BU patients was derived from (61). The graphs in the middle are the data
for all 2504 individuals of the 1000 Genomes. The graphs on the right are the genotype data limited to HLA-A*29:02-positive individuals. This data demonstrates that
the combined risk haplotype of rs2287987-rs10044354 in HLA-A29 is rare or absent in populations of non-Western-European ancestry. HLA data was obtained
from (39) and genotype data for rs10044354 and rs22878987 from the 1000 Genomes project (63). The regions and populations are indicated using the following
abbreviations: CHB, Han Chinese in Beijing; JPT, Japanese in Tokyo; CHS, Southern Han Chinese; CDX, Chinese Dai in Xishuangbanna; KHV, Kinh in Ho Chi Minh
City; CEU, Utah Residents (CEPH) with Northern and Western European Ancestry; TSI, Tuscans in Italy; FIN, Finnish in Finland; GBR, British in England and
Scotland; IBS, Iberian Population in Spain; YRI, Yoruba in Ibadan; LWK, Luhya in Webuye; GWD, Gambian in Western Divisions in the Gambia; MSL, Mende in
Sierra Leone; ESN, Esan in Nigeria; ASW, Americans of African Ancestry in SW USA; ACB, African Caribbeans in Barbados; MXL, Mexican Ancestry from Los
Angeles USA; PUR, Puerto Ricans from Puerto Rico; CLM, Colombians from Medellin; PEL, Peruvians from Lima; GIH, Gujarati Indian from Houston; PJL, Punjabi
from Lahore; BEB, Bengali from Bangladesh; STU, Sri Lankan Tamil from the UK; ITU, Indian Telugu from the UK.
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this is unexplored. Also, ‘free’ ERAP1 and ERAP2 is found in
body fluids and blood (79), and can be secreted by stimulated
immune cells (80). Notwithstanding these other functions, the
strong genetic association with HLA-A29-associated BU
implicates ERAP-dependent antigen presentation by HLA-A29
as a key disease pathway in BU. To better understand how
ERAP1 and ERAP2 modulate HLA-A29, let’s first detail the
genetic associations mapped to these genes.
ERAP1 AND BIRDSHOT

The ERAP1 gene encodes various distinct ERAP1 haplotypes (a
group of polymorphisms inherited together) that encode
functionally different protein variants (which are termed
“allotypes”) with markedly different capacity to cut antigen
peptides in terms of speed and specificity (61, 81). Genetics
studies showed that the C allele of the polymorphism rs2287987
was more frequently seen in patients with BU (61). The
rs2287987-C is found almost exclusively in the haplotype
(named Hap10) that encodes Allotype 10 (61). Detailed
description of ERAP1 polymorphisms and their effects on
functions of ERAP1 can be found elsewhere (74, 82). Briefly,
the minor C allele of rs2287987 located in exon 6 of ERAP1
results in the change of Methionine to Valine at amino acid
position 349 in ERAP1. This amino acid change occurs in the
active site of ERAP1 next to the hallmark zinc-binding motif of
the family of M1 zinc metallopeptidases (H-E-X-X-H-(X)18-E
motif) and affects the enzymatic activity of the enzyme. However,
the rs2287987 bearing allotype 10 contains additional
polymorphisms that indirectly affect the specificity or activity
Frontiers in Immunology | www.frontiersin.org 7
by changing the structural conformation of the enzyme (83, 84).
Note that rs2287987-C is also common in African populations
(Figure 3) but it often resides in ERAP1 haplotypes different
from Hap10. Allotype 10 is characterized by enzymatic activity
that is magnitudes lower compared to other characterized
allotypes of ERAP1, but also shows relatively low expression
(61). The latter feature is caused by moderate LD between the C
allele of rs2287987 and a splice interfering variant [T allele of
rs7036 (85)] located upstream in an untranslated region of
ERAP1 [rs7063 is present in >90% of Hap10 and typically <5–
10% of other common haplotypes of ERAP1 (61)]. Although low
expression and low enzymatic activity of Hap10 is often
mentioned in the same breath in discussions of its pathogenic
contribution to disease, rs2287987 is associated with BU
independently from rs7063, thus, the BU risk linked to
rs2287987 represents more likely the diminished enzymatic
activity of ERAP1 (61). In fact, rs7063-T is also found in >90%
of another common haplotype of ERAP1 named Hap6 (61).

Because the vast majority of Hap6 shares the T allele of rs7063
with Hap10 (61), gene expression data from the 1000 Genomes
project shows that consequently the expression of the two
haplotypes is comparably low (Figure 4). Although the ERAP1
expression levels have been shown to influence the
immunopeptidome of HLA-A29 (86), the low expressed Hap6
is not associated with BU (61) and makes it more plausible that
the highly distinct enzymatic features of Hap10 contribute to the
susceptibility to BU. This is further supported by the fact that the
highly active ERAP1 allotype encoded by Hap2, the functional
“antagonist” of Hap10, is protective against BU (61). Because of
these differences in trimming capacity, the lack of destruction of
a uveitogenic epitope is a plausible mechanism for disease.
FIGURE 4 | The splice associated variant rs7063 associated with haplotype 6 (97% of all Hap6) and 10 (99% of all Hap10) of ERAP1 mediates low expression of
these haplotypes in lymphoblastoid cells. Gene expression data for ERAP1 and ERAP2 from 85 homozygous or heterozygous cell lines with indicated haplotypes
(and rs7063 allele) were obtained from available RNA-sequencing data of 358 lymphoblastoid cell lines from European ancestry of the GEUVADIS cohort (loaded
using the recount R package) (62). Note that in cell lines that harbor the haplotype 10 containing the T allele of rs7063 genotype, the rs7063 genotype in Hap6
governs the expression of total ERAP1 and that Hap6/Hap10 cell lines homozygous for the T allele of rs7063 show similar low expression compared to Hap10/
Hap10 cell lines. The gene expression pattern for ERAP2 (left plot) in the same samples does not mimic ERAP1 gene expression patterns, but reflect the non-
random distribution of the ERAP2-protein coding haplotype across common ERAP1 haplotypes, as we previously described (61). In particular haplotype 2 (Hap2;
encoding allotype 2) is found infrequently in conjunction with ERAP2 haplotype A and, thus, shows low overall expression for ERAP2 in the Hap2 homozygous cell
lines in this example (n = 9).
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ERAP2 AND BIRDSHOT

Of the two common haplotypes (A and B) of ERAP2 detected in
the population, haplotype A (HapA) encodes the canonical full-
length ERAP2 protein (87), but is consists of many polymorphisms
that are located also far outside ERAP2 and deep into the LNPEP
gene. The polymorphisms of HapA outside ERAP2 are located in
the intragenic regions of the LNPEP gene and are not encoded into
the LNPEP gene products. Haplotype B (HapB) contains a
polymorphism (the G allele of rs2248734) that changes a splice
region and facilitates intronic read-through until a stop codon,
which under steady state conditions targets the transcript for
destruction and results in barely detectable levels of the full-
length ERAP2 protein (87). However, HapB has been shown to
produce a truncated ERAP2 protein in response to infection by
various microbial pathogens, interferon alpha or bacterial
lipopolysaccharides (88–90). The strongest association at 5q15 is
linked to the polymorphisms in HapA (tagged by rs10044354 in an
intragenic location of LNPEP). We showed that this signal did not
influence the splicing or expression of the LNPEP gene, but showed
that high ERAP2 expression controlled by this genetic signal
embedded in HapA is a risk factor for BU (34, 61). Here we note
that the polymorphism rs10044354 (and variants in LD) is
independently associated with BU from the polymorphism
rs2248374 that governs splicing of ERAP2 into its main
haplotypes (61). Data from the The Genotype-Tissue Expression
(GTEx) project supports that rs10044354 is strongly associated
with the expression of ERAP2 and mildly impacts the expression of
LNPEP across various tissues (91). However, the effect sizes of
rs10044354 on the expression of other nearby genes ERAP1 and
CAST are in the same range as for LNPEP and of unknown
biological significance. In summary, high ERAP2 expression is a
significant risk factor for BU in HLA-A29-positive individuals. The
generation of uveitogenic peptides by ERAP2, which hypoactive
ERAP1 fails to destroy, is a plausible disease mechanism for BU.
ERAP1 AND ERAP2 SHAPE THE HLA-A29
IMMUNOPEPTIDOME

Both ERAP1 and ERAP2 have been shown to affect the HLA-A29
peptidome of cell model systems (86, 92), which has been reviewed
in detail elsewhere (74). In short, by global assessment of the
immunopeptidome, active ERAP1 allotypes (e.g. Hap2) decrease
the length of peptides of 10 amino acids or longer (10-mers), with
a net increase of 9-mers (86). In the presence of active ERAP1
allotypes, the number of peptides with phenylalanine (F) and
tyrosine (Y) at the first two amino acids of the peptide sequence
(the N-terminal position 1 [P1] or 2 [P2]) of the binding peptides
was slightly increased (86). ERAP2 shapes the HLA-A29
immunopeptidome predominantly by destruction of peptides
with a P1 amino acid that are preferred substrates for ERAP2,
predominantly Lysine (K), Arginine (R), and Alanine (A) (93).
Large aromatic amino acids F and Y are poor substrates for
ERAP2. Because ERAP2 destroys competing peptides that
harbor optimal residues (K, R, or A at P1) for ERAP2, peptides
that contain F or Y at P1 consequently make up a relatively larger
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proportion of the available antigen peptides to bind HLA-A29 and
become “over-represented” in the presence of ERAP2 (43, 92).
Other studies from the López de Castro group also demonstrated
these ERAP2 effects on the immunopeptidome of risk HLA
allotypes of other types of uveitis, such as HLA-B27 (94). In a
recent study, we demonstrated that the effect of ERAP2 on P1 is
actually a common feature of ERAP2 observable in the
immunopeptidomes of all HLA class I alleles expressed by the
cell (43). Intriguingly, Abelin and coworkers showed that
peptides presented by HLA class I allotypes show a depletion
for K, R and A residues at P1, which we believe can be attributed
to the fact that their studied cell line expresses ERAP2 (60). So
perhaps ERAP2 is evolutionary designed to destroy epitopes with
these characteristics as a means to lower the immunogenicity of
the presented immunopeptidome. This hypothesis comes from
the observation that cancer patients with high ERAP2 expression
showed worse overall survival after checkpoint inhibitor therapy
(allowing T cells to kill cancer cells), relative to those with low
ERAP2 expression (95). In other words, when T cells are “licensed”
to attack tumors unrestrictedly, immune responses are more
dependent on the level of antigen presentation to T cells. Here,
ERAP2 may influence the HLA class I immunopeptidome so it
provides less T cell epitopes to destroy tumors (and perhaps
normal tissue, but this was not evaluated). This may in part be
explained by the fact that the side chains of the amino acids at P1
influence the spatial configuration of amino acid position 167 in
HLA-A, which has been shown to tune the peptide recognition by
T cells and affect the peptide binding repertoire (49, 96). Here, the
amino acids K and R induce a similar configuration of position 167
that is distinct from the configuration the alpha domain adapts at
this position if P1 contains a F or Y (96) which functionally
parallels the preference for trimming these amino acids by ERAP2.
Beyond the universal effects on P1, peptides that are destroyed by
ERAP2 may also share additional characteristics. For example,
ERAP2 also showed preference for amino acids at position 3 and 7 in
the antigenic peptide (43), which matches the pockets of ERAP2 that
would interact with the sidechain of these residues (75). Similar to the
effects of P1, as mentioned, the destruction of HLA-A29 epitopes by
ERAP2 most likely represents a canonical function of ERAP2.
THE ERAP1-ERAP2 RISK HAPLOTYPE
EXHIBITS HLA-A29-SPECIFIC EFFECTS

In contrast to the shared effects of ERAP2 across HLA class I
immunopeptidomes, in patient derived cell lines homozygous for
the risk ERAP1 allotype Hap10, ERAP2 facilitated the increased
presentation of peptides with F or Y at P2 specifically for HLA-
A29 (43, 92). Because this is the same submotif that distinguishes
HLA-A29 from other HLA class I alleles, this observation provides
a possible explanation for the association of these genes with BU.
These submotif-specific effects of ERAP2 were also detected in
different source data regarding immunopeptidomics of HLA-A29
(43). This indicates these effects of ERAP2 on HLA-A29 are
generalizable, but may also help narrow down the putative disease
modifying effects of the antigen presentation pathway. Recall that
active ERAP1 allotypes (other than Hap10 and in ERAP2-deficient
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cells) also showed a moderate increase of F at P2 in the HLA-A29
immunopeptidome (86). However, submotif analysis of this data
revealed that ERAP1 did not bias the immunopeptidome in favor of
the HLA-A29-specific submotif like ERAP (43). This may be
because the pocket in which the side chain of P2 binds in ERAP2
has limited space which doesn’t allow bulky aromatic residues (75),
while the analogous pocket in which P2 would bind in ERAP1 is
more open and could accommodate bulky residues to some degree
(i.e., F or Y) (76). Furthermore, considering individual peptides,
there is low correlation between the effects of ERAP1 and ERAP2 on
HLA-A29 (43), which indicates context specificity and possible
non-redundant pathogenic contributions to antigen presentation by
HLA-A29 that increase the risk for BU. Such independent
pathogenic contributions by ERAP1 and ERAP2 are supported by
the genetic studies (61) of BU as discussed.
HLA-A29 AND AUTOANTIGEN
PRESENTATION

Given that HLA-A29 is prerequisite for the development of BU, we
hypothesize that disease mechanisms associated with antigen
presentation are most likely driven by a limited set of epitopes
(or single peptide) because of promiscuity of peptides across HLA
class I (59). Based on the submotif that is specific to HLA-A29 and
supported by ERAP2, we hypothesize that ‘uveitogenic’HLA-A29-
restricted peptides may more likely harbor a F or Y at P2 (and a Y
at PC). The importance of P2 in HLA-A29-restricted peptides is in
line with the fact that the amino acids at position 62-63—which
define HLA-A29—directly interact with P2 of the binding peptide
(Figure 1). The hypoactive ERAP1 allotype strongly linked to BU
predominantly may prevent the destruction of 9-mers or longer
peptides (43, 73, 92). There are examples of HLA-A29-presented
10-mers that cause strong T cell-mediated responses in humans,
such as AELLNIPFLY encoded by UGT2B17 (97, 98).

Curiously, the HLA-A*29 alleles are among the lowest
expressed HLA-A alleles (99). However, the amount of
peptides presented by HLA class I only weakly correlates with
HLA levels at the cell surface, plus immunopeptidome studies
support that HLA-A29 is potent in presentation of peptides at
the cell surface (43, 45, 92). Of interest, HLA class I is generally
low expressed in the retina (100), while HLA class I expression is
relatively high around endothelial cells of large vessels of the
choroid (101), the presumed epicenter of inflammation in BU
(12). Choroid melanocytes are densely located around these
endothelial cells and have been proposed as an autoantigen-
source in BU etiology (1). Perhaps BU is driven by HLA-A29-
presented ERAP-dependent melanocyte-derived peptides (1, 61).
This also fits the “autoimmune surveillance of hypersecreting
mutants” (ASHM) theory, which predicts that autoantigens
involved in organ-specific autoimmunity (the eye) should be
linked to secreting cells such as melanocytes (102), where
autoimmunity is considered a natural tradeoff to prevent lethal
disease mediated by hypersecreting mutants. Besides their more
commonly known role in pigment production, choroid
melanocytes have also been shown to contribute to the
maintenance of the normal vasculature structure of the
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choroid (103). Of interest, melanocytes can produce powerful
angiogenic factors upon suppression of tyrosinase activity, the
key enzyme in pigment production (104). It is conceivable that
proteins highly expressed in choroidal melanocytes are closely
monitored by surveilling self-reactive T cells (following the
ASHM theory), because of the potential devastating effects of
hypersecreting mutants, at the cost of autoimmunity. The
autoimmune conditions VKH, vitiligo, and psoriasis are a proof
of principle that melanocytes harbour autoantigens that are
targets for autoreactive T cells (105–108). Gene expression or
proteomic studies comparing cutaneous and choroid melanocytes
are warranted to understand their potential differences to better
understand the restriction of BU inflammation to the eye. Of
interest, the ERAP2-promoted HLA-A29-specific peptide motif
(P2-F + PC-Y) is observed in the amino acid sequence of key
proteins of melanogenesis that are expressed in the eye (43). These
include a number of putative candidate peptides from melanocyte
proteins, such as CFVALFVRY (SLC45A2), CFPLLRLLY
(OCA2), or SFSKLLLPY (PLXNC1) (43). Of course, functional
experiments are required to validate if any of these ‘potential’
peptides are actually presented by HLA-A29. As mentioned, the
circumstantial association with melanoma (i.e., a ‘hyper’ anti-
melanoma response) has sparked interest for this theory, but lacks
evidence for any causal relation (109). Remarkably, although
HLA-A29 can effectively present melanoma epitopes (1), HLA-
A29 is associated with worse survival compared to HLA-A29-
negative melanoma patients (110). This could indicate that
perhaps similar to the effects of ERAP2, in general, HLA-A29
and ERAP2 may ‘lower’ the immunogenic peptide cargo
presented to T cells, but only increase the expression of a very
limited (perhaps single) antigen under specific conditions that
cause BU. Alternatively, the loss of choroidal melanocytes may be
collateral damage from dysfunction in the choroidal endothelium.
More specifically, the disruption of a Hedgehog-signaling axis
from choroidal endothelial cells to choroidal stromal cells (i.e.,
perivascular mesenchymal stem cell-like cells that suppress T cell
function) resulted in the loss of choroid melanocytes and
illustrates a key role for the choroidal endothelium for the
maintenance of choroidal immune homeostasis (111).

The retinal S-antigen has long been considered as a major
autoantigen for BU, because S-antigen causes a birdshot-like
phenotype in primate models (112, 113) and T cells from
patients proliferate after stimulation with S-antigen (24, 114).
However, S-antigen immune reactivity is widespread among
clinically distinct phenotypes of uveitis and linked to T helper cell
responses (linked to HLA class II), which suggests it plays a role in
BU independent of HLA-A29, perhaps at later stages of the disease.
This is in line with the retinal lesions observed in BU patients and
suggests the retinal S-antigen may have a role at the clinical stage.
However, also other retinal proteins contain peptides that may be
presented by HLA-A29 (109). Previous in vitro studies determined
that peptides derived from the S-antigen can bind to HLA-A29
(115), but further research using immunopeptidomics of cells
expressing S-antigen are required to define the HLA-A29 presented
epitopes of S-antigen. We recently identified that a naturally HLA-
A29-presented peptide of S-antigen is VTLTCAFRY and currently
assess if this peptide is also recognized by T cells of patients (43).
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THE MICROBIOME, TH17 CELLS, AND
HLA-A29

The commensal microbiome is a fast universe of diverse and
mostly uncharacterized microbial species which inhabit tissues
such as the skin and gastrointestinal tract where they collectively
influence the functions of the immune system (116). For example,
CD8+ T cells are primed by microbial derived metabolites and
MHC-I presented microbial derived peptides to cross-react with
cancer antigens as a means to facilitate anti-tumor immunity (117,
118). Gut microbiome dysbiosis is observed in patients with
inflammatory conditions and considered to cause disturbance of
systemic immune homeostasis in uveitis (119). In animal models,
gut commensals have been shown to directly activate T helper 17
(Th17) cells to trigger uveitis (120).

This is of interest, because BU patients show increased numbers
of blood Th17 cells and elevated levels of Th17-cytokines (68, 121–
123). Of interest, Th17 cells induced by infection such as the fungal
commensal C. Albicans may persist and aggravate autoimmune
disease of the kidney (124). Protective anti-C. albicans responses by
Th17 cells have also paradoxically been shown to result in
inflammatory lung disease or inflammatory bowel disease in some
individuals (125). Although C. albicans infection can affect the
choroid and retina in a small percentage of patients (126), this
shows a very different clinical phenotype. Regardless, the Th17-
signature in BU could be related to changes in the microbiome.
Studies of the microbiome of patients with BU are not yet
conducted, the first study of HLA-A29-positive individuals as a
whole show show a distinct intestinal microbiome composition
(127) as demonstrated for HLA-B27-positive or HLA-DRB1-
positive controls (128). In fact, microbiome similarity is observed
in individuals who shared HLA alleles (129), which suggests that
HLA influences the composition of the gut microbiome in part as a
canonical feature of the immune homeostasis. The interaction of the
microbiome in antigen-presentation via HLA-A29 in the disease
mechanisms of BU requires further investigation, ideally by
integrating the novel insights from studies of ERAP1 and ERAP2.
Of interest, HLA class I bound by Killer immunoglobulin-Like
Receptors (KIRs) on T cells promotes the expansion of Th17 cells
in patients with HLA-B27 pathologies (130). Furthermore, specific
modulation of ERAP1 has been shown to influence Th17 expansion
(131). Therefore, it would be interesting to determine if similar
biological mechanisms are linking HLA-A29 to Th17 responses
in BU.
KIR RECEPTORS AND BIRDSHOT

BU may be driven by additional inflammatory genes since its
genetic profile displayed shared genetic contributions with other
inflammatory conditions, including systemic lupus erythema and
Neuromyelitis optica, that both involve the eye (132). Among these
may also be additional factors of the antigen presentation pathway,
including the autophagy gene TECPR2 previously reported (34) or
Killer immunoglobulin-Like Receptor (KIR) (KIRs) genes (133).
KIR genes have been associated with BU, however, the allele
frequencies of controls used in a study of BU patients may not
Frontiers in Immunology | www.frontiersin.org 10
be representative for European populations and stringent
correction for multiple testing is required to avoid false-positives,
which may influence the outcomes of KIR associations in BU (133,
134). Regardless, KIRs are important receptors for T cells, but also
Natural Killer (NK) cells, an understudied immune cell in the
context of non-infectious uveitis that is decreased in the circulation
of BU patients (135). Curiously, immunosuppression therapy
restores the number of NK cells in patients with uveitis (136).
The role of KIRs in BU also merits further functional investigation
because NK cells have been shown to get activated by HLA class I
by altering the presented peptide (137). It will be interesting to
explore the role of the ERAP1-ERAP2 haplotype in peptide
presentation by HLA-A29 and NK cell responses in patients.
However, in HLA-B27-associated ankylosing spondylitis, the
strong genetic interaction of ERAP1 with HLA-B*27 was
independent from genetic associations with KIR genes, suggesting
that the disease mechanisms of ERAP and HLA class I may be
mostly distinct from interaction of KIRs with HLA class I (138),
and perhaps represent complementary mechanisms such as shown
for free heavy chain expression by HLA-B27 and KIR interaction
(131), while ERAP may mediated antigen-specific T cell responses.
Indeed, T cell receptor (TCR) analysis of CD8+ T cells in patients
with AS suggest differential antigen exposure (139) and similar
studies of TCR repertoires of BU are currently underway.
CONCLUDING REMARKS

In this review, we discussed how key features of the antigen
presentation pathway predispose to eye-specific autoimmunity in
BU. The prerequisite for HLA-A29 and the enrichment for functional
polymorphisms that affect the function of antigen processing
enzymes ERAP1 and ERAP2 point toward a key contribution for
the antigen presentation pathway in the etiology of BU. Using
functional studies, we are beginning to understand how ERAPs
shape the immunopeptidome of HLA-A29 and a growing body of
evidence is closing in on their disease modifying effects. This will help
to better predict the outcome of pharmacological interference of
ERAPs activity using newly available small molecule inhibitors (140)
that may soon be applied as a high precision medicine to halt
autoimmunity and restore eye health in patients, while leaving
immunity toward pathogens and cancerous tissues intact.
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A, Sanz-Bravo A, et al. Molecular and pathogenic effects of endoplasmic
reticulum aminopeptidases ERAP1 and ERAP2 in MHC-I-associated
inflammatory disorders: Towards a unifying view. Mol Immunol (2016)
77:193–204. doi: 10.1016/j.molimm.2016.08.005
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