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Conscious attempts to regulate alcohol and drug use are often undermined by automatic 
attention and arousal processes that are activated in the context of salient cues. Response 
to these cues involves body and brain signals that are linked via dynamic feedback loops, yet 
no studies have targeted the cardiovascular system as a potential conduit to alter automatic 
neural processes that maintain cue salience. This proof-of-concept study examined within-
person changes in neural response to parallel but unique sets of visual alcohol-related cues 
at two points in time: prior to versus following a brief behavioral intervention. The active 
intervention was resonance breathing, a rhythmical breathing task paced at 0.1 Hz (6 breaths 
per minute) that helps normalize neurocardiac feedback. The control intervention was a low-
demand cognitive task. Functional magnetic resonance imaging (fMRI) was used to assess 
changes in brain response to the cues presented before (A1) and after (A2) the intervention in 
41 emerging adult men and women with varying drinking behaviors. The resonance breathing 
group exhibited significantly less activation to A2 cues compared with A1 cues in left inferior 
and superior lateral occipital cortices, right inferior lateral occipital cortex, bilateral occipital 
pole, and temporal occipital fusiform cortices. This group also showed significantly greater 
activation to A2 cues compared with A1 cues in medial prefrontal, anterior and posterior 
cingulate, and precuneus cortices, paracingulate, and lingual gyri. The control group showed 
no significant changes. Thus, following resonance breathing, activation in brain regions 
involved in visual processing of cues was reduced, while activation in brain areas implicated 
in behavioral control, internally directed cognition, and brain–body integration was increased. 
These findings provide preliminary evidence that manipulation of the cardiovascular system 
with resonance breathing alters neural activation in a manner theoretically consistent with a 
dampening of automatic sensory input and strengthening of higher-level cognitive processing.

Keywords: alcohol, biofeedback, cardiovascular, neural reactivity, functional magnetic resonance imaging, heart 
rate variability, respiration, resonance breathing
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INTRODUCTION

Moment-to-moment changes in internal states (e.g., cognition, 
emotion, visceral processes, moods) and environments (e.g., cues, 
persons) influence decisions to use alcohol and other drugs (1). 
These dynamic, intra-individual change processes derive from 
the body’s ability to collect and relay information to the brain 
about the environment (afferent neural traffic), as well as from 
the brain’s ability to integrate this information and generate a 
behavioral response (efferent neural traffic). In other words, 
behavior is influenced by both body and brain signals that are 
linked via reflexive and predictive bidirectional feedback (2, 3). 

In the case of the cardiovascular system, this feedback loop 
(Figure 1) has been extensively documented in terms of its 

neurophysiology and functional anatomy in rodent and primate 
models [e.g., (4, 5)]; parallel functional anatomy emerged in a 
meta-analysis of human neuroimaging studies (6). The loop 
maintains signaling between the brain and heart via the vagus 
and sympathetic nerves, baroreceptors located on the aortic arch, 
carotid artery, and other vessel walls, and a network of brain 
regions referred to as the central autonomic network (4). These 
bodies of literature reveal how the brain elicits cardiovascular 
signals that promote arousal (e.g., increasing heart rate and blood 
pressure) that, in turn, prepare the organism for goal-directed 
behavior to respond to in-the-moment demands. Through this 
loop, feedback from the heart and vasculature is integrated 
with other autonomic information and relayed to forebrain 
structures that mediate cognitive and emotional  experience 

FIGURE 1 | Schematic overview of the neurocardiac feedback loop. Efferent information (blue arrows) emanates from cortical, subcortical, and brain stem 
structures of the central-autonomic network and flows to the sinoatrial (SA) node of the heart via the sympathetic and parasympathetic branches of the autonomic 
nervous system. Afferent information (red arrows) from the heart and blood vessels is conveyed back to the brain via baroreceptors located mainly in the walls of the 
aortic and carotid arteries. Afferent signals enter the brain (shaded in green) via the nucleus tractus solitarius in the brain stem and are integrated with other sensory, 
cognitive, and affective information as it ascends to cortical regions, including the medial frontal, cingulate, and insular cortices.
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(7–9). Consideration of cardiovascular processes as embedded 
components of affect and cognition implies that these processes 
contribute to motivated human behavior, including behavioral 
flexibility toward alcohol and other drugs (10–12). This is 
important because several non-invasive, low-cost behavioral 
interventions that help normalize cardiovascular functioning 
have demonstrated efficacy across various mental and physical 
health conditions (13–20).

Two compelling qualities of the neurocardiac feedback loop 
for intervention development are its plasticity and responsivity 
to relatively simple behavioral interventions. Afferent stream 
activation of the neurocardiac feedback loop can be accomplished 
by manipulating peripheral functions, such as respiration and 
muscle flexion (21–24). Breathing paced at 6 breaths per minute 
(0.1 Hz) is slower and more rhythmical than typical breathing 
(12–20 breaths per minute). It creates resonance within the 
cardiovascular system by synchronizing cardiac oscillations 
driven by respiratory sinus arrhythmia (i.e., the phenomena of 
heart rate acceleration with inhalation and deceleration with 
exhalation) with cardiac oscillations driven by the baroreflex, 
which links heart rate acceleration/deceleration to corresponding 
changes in the blood pressure (21, 25). As shown in Figure  2, 
breathing at this frequency lowers systolic blood pressure, 
increases variability in the time intervals between R-spikes 
of the electrocardiogram (ECG) (i.e., heart rate variability), 
generates large oscillations in pulse transit time (i.e., vascular 
tone variability), and increases the sensitivity of heart rate to 
changes in blood pressure (i.e., baroreflex gain) (12, 21). A recent 
meta-analysis found that clinical interventions involving paced 
breathing at a resonance frequency of the cardiovascular system 
resulted in large effect size reductions in anxiety and stress (26). 
Preliminary evidence also suggested paced breathing may reduce 
craving for appetitive substances (27).

The brain structures of the central autonomic network that 
participate in cardiovascular signaling overlap considerably with 
those that process reward, emotion, and habit formation (28), 
including medial prefrontal, cingulate, and insular cortices, and 
amygdala. These structures also figure prominently in current 
translational models of putative addiction neurocircuitry 
(29–31), with the brain stem serving as the first point of 
neural integration of afferent autonomic and somatic signals 
from the body. Psychophysiological evidence suggests that 
the neurocardiac feedback loop may participate in substance 
use behaviors through its contribution to attention capture by 
stimulating cues, affective modulation, and relay of visceral 
reactivity to the brain [e.g., (32–36)], but little research has 
extended these findings to the neural structures that comprise 
the central autonomic network. Nonetheless, converging lines 
of evidence suggest that ineffective or maladaptive functioning 
of this feedback loop can set into motion a cascade of biological 
events that alter one’s ability to adaptively modulate affect, 
arousal, and stress response (2, 37, 38). 

Neural cue reactivity studies, wherein brain activation is 
measured while participants are exposed to salient alcohol- or 
drug-related cues, have received significant attention in the 
neuroscience and psychology of addiction literatures (39, 40). Cue 
reactivity studies typically compare within-person differences in 

FIGURE 2 | Physiological data from one representative individual collected 
during a 5-min baseline task (normal breathing) and a 5-min resonance 
breathing task. Resonance breathing elicited instantaneous changes in 
respiration, heart rate, pulse transit time (i.e., vascular tone), systolic arterial 
pressure, and baroreflex sensitivity such that oscillations were magnified 
and more rhythmic across all measures. In addition, resonance breathing 
decreased systolic pressure, improved vascular tone, and increased the 
sensitivity of the neurocardiac feedback loop (i.e., baroreflex). Adapted from 
(12). Used with permission.
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brain activation to alcohol or drug cues versus control cues (40). 
There is substantial evidence that elevated alcohol and drug 
cue neural reactivity is found in individuals with substance use 
disorders (40–42). Increased neural (43) and cardiac (44) cue 
reactivity also has been associated with increased drug craving 
(2, 37, 38). Experimental evidence suggests that heightened 
neural (45) and cardiovascular (46) reactivity to alcohol and 
drug cues is related to high risk substance use in non-clinical 
populations. Thus, altered reactivity to affective and appetitive 
stimuli appears to increase the likelihood that individuals will 
be susceptible to contextual influences on substance use, even 
following extended periods of abstinence (47, 48). This raises 
the question of whether behavioral interventions that enhance 
the efficiency of neurocardiac signaling might be used to alter 
neurocardiac activation to contextual challenges that promote 
substance use and relapse (49, 50). 

This proof-of-concept study examined whether stimulating 
the afferent stream of the neurocardiac feedback loop with a 
5-min course of resonance breathing can affect subsequent 
neural activation to visual alcohol cues. In contrast to cue 
reactivity paradigms that compare neural activation to alcohol 
versus control cues, this study examined within-person changes 
in neural response to alcohol cues at two points in time. We 
compared neural activation with unique sets of alcohol cues 
viewed prior to versus following the breathing task. Because 
this is the first study of its kind, there is no empirical literature 
to guide predictions about brain activation changes when 
participants are exposed to visual cues following resonance 
breathing. Based on the anatomy of the central autonomic 
network (4, 5) and drug cue salience networks (28, 40), we 
hypothesized that significant changes in activation may be 
observed in brainstem, medial prefrontal, cingulate, and insular 
cortices, as well as in the amygdala. We further allowed for the 
possibility of spreading activation, wherein structures within 
the central autonomic network that share additional network 
circuitry with regions outside the central autonomic network 
(e.g., the mesocorticolimbic circuit, ventral striatum) may exhibit 
activation changes as well. Significant changes in neural response 
were not anticipated in the group that viewed alcohol cues before 
and after completing a low-demand cognitive task. 

METHODS

Participants
Forty-nine men and women, ages 18 to 25 years, were recruited 
at a large, northeast U.S. university and in the surrounding 
community through advertisements targeting alcohol drinkers. 
Initial inclusion criteria for all participants assessed via self-
report were fluency in English, right-handedness, near 20/20 
vision (corrected), and alcohol consumption at least once per 
month. Exclusion criteria assessed via self-report included: 
MRI contraindications (e.g., permanent metal in the body, 
claustrophobia), abnormal hearing, any serious medical 
condition (e.g., epilepsy, diabetes), cardiovascular problems 
(e.g., hypertension, heart murmur), current learning disability or 
attention difficulties, loss of consciousness for longer than 30 min, 

and, for women, pregnancy. To reduce heterogeneity related 
to psychiatric comorbidities and poly-substance use, lifetime 
diagnosis of a bipolar disorder or psychosis (e.g., schizophrenia, 
schizoaffective disorder), past year psychiatric/psychological 
treatment, past year cannabis use exceeding four times per month 
in the past year, other past year illicit drug use more than twice 
per month, past or current substance use treatment (including 
Alcoholics Anonymous/Narcotics Anonymous), and substance 
use during pregnancy on the part of the biological mother also 
were exclusionary.

Half of the participants were recruited based on meeting the 
National Institute on Alcohol Abuse and Alcoholism (NIAAA) 
“low risk” drinking criteria [i.e., no more than 5 drinks per day 
for men (4 drinks per day for women), no more than 14 drinks 
per week for men (7 drinks per week for women)], as well as 
an additional criterion of not binge drinking more than once in 
the past 6 months. The other half met DSM-IV-TR criteria (51) 
for alcohol dependence. This proof-of-concept examination of 
resonance breathing as a neurally active intervention included all 
participants with the exception that data from eight participants 
were excluded due to excessive motion in the scanner. The final 
sample (n = 41) had a mean age of 21.4 (SD = 1.9) years and was 
racially and ethnically diverse (27% Asian, 27% black/African 
American, 29% white, 17% other/multiple race; 11% Latino/a); 
46% of the participants identified as female.

Procedures
Potential participants who gave verbal consent completed a 
telephone screening interview to determine initial eligibility. 
Eligible participants were asked to abstain from alcohol and 
drug use (except caffeine and nicotine) for 24 h prior to the 
experimental session. After screening, they were randomized 
into the active intervention (i.e., resonance breathing) or the 
control intervention (i.e., vanilla task), with drinking profiles 
being approximately equally distributed in both groups.

Upon arrival at the imaging center, participants provided 
written informed consent, supplied a breath sample to verify 
zero blood alcohol concentration, and completed a MRI safety 
screener and self-report questionnaires regarding alcohol use, 
mood state (Positive and Negative Affect Scale) (52), and stress 
(Perceived Stress Scale) (53). Basic physiological measures 
(e.g.,  temperature, blood pressure, weight) and a urine sample 
were collected; participants with a positive urine screen for 
cocaine, methamphetamine, opiates, and/or benzodiazepines 
(One Step Multi-Drug Screen Test Panel) were excluded. 
Participants with a positive urine screen for marijuana were 
asked additional follow-up questions about their drug use, 
and those with marijuana use exceeding four times per month 
were excluded. Women were screened for pregnancy using a 
standard urine dipstick. All participants were trained to use an 
MRI-compatible response box and to perform their assigned 
intervention task. Task training lasted approximately 2 min. 
Participants then were fitted with ECG sensors and a respiration 
belt and positioned in the scanner. 

The overall paradigm (Figure 3A) involved four 5-min 
tasks: 1) viewing a set of nature picture cues, 2) viewing a set 
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of alcohol picture cues (A1), 3) performing the intervention 
task, 4) viewing a second, distinct set of alcohol picture cues 
(A2); a 6-min resting state task was then performed. After each 
task, participants responded to the question, “How much are 
you currently craving alcohol right now?” using a track ball on 
a visual analogue scale (VAS, 43) anchored from “not at all” 
(0) to “extremely” (100). Stimulus cues were presented using 
E-Prime software (Psychology Software Tools Inc.). Images were 
projected onto a screen positioned at the rear of the scanner bore 
and viewed through a mirror attached to the head coil. A trigger 
pulse synchronized the start of each task with the E-Prime 
software. Total scan time was approximately 45 min.

Data from the two alcohol cue tasks (A1, A2) were analyzed in 
the present study. Each task included 30 unique images that were 
presented for 6 s with 4-s inter-stimulus intervals (Figure 3B), a 
design driven by the larger study’s broader goal of characterizing 
the relationship between cardiovascular and neural reactivity. 
The alcohol cues were drawn from prior studies in our and 
others’ laboratories (34, 54, 55). Each participant’s self-reported 
preferred beverage (i.e., beer, wine, “straight” liquor, or mixed 
drinks) made up approximately 50% of the images to which they 
were exposed. Participants were instructed to pay attention to 
the images and to press a response box button when they saw an 
image that contained their preferred drink. 

Between the A1 and A2 cue sets, participants in the active 
intervention (resonance breathing) synchronized their breathing 
with a visual pacer at the rate of 0.1 Hz (i.e., 6 breaths per minute). 
Compliance to the breathing task was verified via analysis of the 
respiratory signal. Time series respiratory frequency data were 
Fourier transformed, and the shape of the spectrum was visually 
inspected; all participants showed a respiratory peak at 0.1 Hz 
and spectral characteristics consistent with resonance breathing. 
Participants in the control intervention group completed a 
low-demand cognitive “vanilla” task wherein different colored 
rectangles were presented for 10 s each; they were instructed to 
silently count the number of blue rectangles (56).

After exiting the scanner, participants were compensated for 
their time. Those who met the criteria for alcohol dependence 
were given an informational brochure on alcohol use disorders 
and treatment options. This study was approved by the university’s 
institutional review board for the protection of human subjects 
involved in research. 

Imaging Parameters and Pre-Processing
Imaging data were collected using a 3T Siemens Trio scanner 
and 12-channel head coil. Standard localizer, anatomical, scout, 
and field map scans were collected. High-resolution anatomical 

FIGURE 3 | Visual depiction of the study and cue task design. Panel (A) shows the complete study design. Participants first viewed a set of nature picture cues 
(data not shown). Participants then viewed a set of alcohol picture cues (A1), followed by a 5-min intervention task (active condition: resonance breathing; control 
condition: vanilla task). They then immediately viewed a second, distinct set of alcohol picture cues (A2). The study ended with a 6-min resting state task (data not 
shown). Panel (B) shows representative images from the alcohol cue tasks, both of which involved viewing 30 unique images that were presented for 6 s, with 4-s 
inter-stimulus intervals.
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images were acquired using a T1-weighted MPRAGE protocol 
with parameters: repetition time (TR) = 1,900 ms, echo time 
(TE) = 2.51 ms, matrix = 256 × 256 voxels, field-of-view (FOV) = 
256 mm, voxel size = 1 × 1 × 1 mm, 176 1-mm sagittal slices 
(.5 mm gap). Functional blood oxygen level-dependent (BOLD) 
data were acquired using single-shot gradient echo-planar 
imaging (EPI) sequences with parameters: TR = 2,000 ms, 
TE = 25 ms, flip, angle = 90°, matrix = 64 × 64 voxels, FOV = 
192 mm, voxel size = 3 × 3 × 3 mm, 35 contiguous 3-mm sagittal 
slices (1 mm gap). ECG and respiration data were collected using 
a MRI-compatible BIOPAC acquisition system (Biopac Systems, 
Goleta, CA) as part of the larger study.

FSL 5.0.9 software was used to conduct image preprocessing 
and data analysis (FMIRB’s Software Library, https://fsl.fmrib.
ox.ac.uk). Non-brain tissue was removed from all anatomical 
and BOLD images using FSL’s Brain Extraction Tool (BET, 57) by 
estimating each image’s center of gravity and manually adjusting 
BET parameters as necessary until an optimal result was obtained. 
BOLD data were motion-corrected using FSL’s MCFLIRT 
(58), and the output was reviewed to identify participants with 
excessive motion during the resting-state scan. Excessive motion 
was defined conservatively as mean absolute and/or relative 
displacement greater than .5 mm. A paired t-test was performed to 
compare mean framewise displacement between the randomized 
intervention groups. No significant differences were observed 
in motion between the groups (p  >  0.05). BOLD images were 
segmented into gray matter, white matter (WM), and cerebral 
spinal fluid (CSF) using FSL’s FAST (59). Probability maps of CSF 
and WM were derived, and time-series data for these signals were 
extracted from each participant. These nuisance parameters (i.e., 
WM, CSF) along with extended head motion parameters were 
used as covariates in the linear regression models implemented in 
FSL to decrease the effects of signals-of-no-interest. BOLD data 
were registered to standard space with a two-step process using 
FMRIB’s Linear Image Registration Tool (FLIRT) (60). The data 
were first registered to the T1-weighted anatomical image and 
then to MNI-152 standard space using 9 degrees-of-freedom 
and SINC interpolation. All data were visually inspected for 
gross errors in registration. A high pass temporal filter was set to 
50 s, and spatial smoothing was set to a 6-mm full-width at half-
maximum Gaussian kernel.

Statistical Analyses
Analyses of the BOLD data from the A1 and A2 cue reactivity 
tasks were performed using a two-step process. Subject-level 
effects were calculated using first-level analyses in FSL’s FEAT, 
and group effects were determined using higher-level analyses. 
In the first-level analysis, each alcohol image event was modeled 
and convolved with a double-gamma hemodynamic response 
function (HRF), and the mean task activation for A1 and A2 
was calculated for each participant. In the higher-level analysis 
stage, two sets of analyses were performed using Randomise, the 
non-parametric permutation-testing tool implemented in FSL 
(61). First, one-sample t-tests were conducted to characterize 
neural activation in each intervention group before (A1) and 
after (A2) the intervention. Next, to examine intervention 

effects on neural activation to visual stimuli, paired t-tests with 
two contrasts were conducted on each intervention group (i.e., 
resonance breathing, control) separately (61). For each contrast, 
5,000 permutations were calculated. One contrast (A1 > A2) was 
designed to determine brain areas that demonstrated greater 
activation pre- compared to post-intervention task, and the 
second contrast (A2 > A1) was designed to determine brain 
areas that demonstrated greater activation post-intervention 
compared to pre-intervention task. Threshold-free cluster 
enhancement was employed (62), and activation was considered 
significant at p < 0.05 (corrected for multiple comparisons using 
FSL Randomise).

A repeated-measures mixed model was used to assess the 
effect of resonance breathing on VAS craving scores. Craving 
data for one participant was missing due to equipment failure; 
thus,  data from 40 participants were available for analysis. 
A between-subjects factor of intervention group (resonance 
breathing, control) and a within-subjects factor of craving scores 
following A1 and A2, as well as their interaction, were modeled. 
To examine the relationship between VAS craving scores and 
brain regions that exhibited significant pre-intervention to post-
intervention changes, regions-of-interest (ROIs) were defined by 
creating 6-mm spheres around the peak voxel of each significant 
cluster of activation for the A1 > A2 and A2 > A1 contrasts. 
Mean activation values of these ROIs were extracted for each 
participant from the subject-level A1 and A2 cope images. 
Pearson correlations were then used to test the associations 
between ROI activation and VAS craving scores at A1 and A2. 
Point biserial correlations were used to examine the relationship 
of binary drinking status (low-risk = 0, alcohol dependent = 1) 
to ROI activation at A2 in the resonance breathing group. These 
analyses were performed using SAS 9.4 software (SAS Institute, 
Cary, NC, USA). 

RESULTS

Neuroimaging
Both intervention groups exhibited widespread neural activity 
in response to the visual alcohol cues, including in bilateral 
posterior parahippocampal gyri, temporal occipital fusiform 
cortices, lateral occipital cortices (inferior and superior 
divisions), postcentral gyri, and cerebellum at A1 and A2. 
The resonance breathing group (n = 22) additionally showed 
significant activation in bilateral inferior frontal gyri, left insula, 
left pallidum, left putamen, left amygdala, and left thalamus 
(A1,  A2), and left precentral gyrus (A1). The control group 
(n = 19) additionally showed significant activation in the right 
thalamus (A1) and left precentral gyrus (A2). These results are 
shown in Figure 4.

Participants in the resonance breathing group demonstrated 
greater activation in response to alcohol cues pre-breathing 
compared with post-breathing (A1>A2) in left inferior and 
superior lateral occipital cortices and right inferior lateral occipital 
cortex, as well as bilateral occipital pole and temporal occipital 
fusiform cortices. They also demonstrated greater activation 
post-breathing compared with pre-breathing (A2  >  A1) in 
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voxels spanning precuneus cortex, posterior cingulate gyrus, 
and bilateral lingual gyri, as well as in medial prefrontal cortex 
(MPFC), paracingulate gyrus, and anterior cingulate cortex 
(ACC). These results are shown in Table 1 and Figure 5.

The control group analysis yielded no significant activation in 
either the A1 > A2 or A2 > A1 contrasts, indicating that there were 
no statistically significant changes in brain activation in response 
to visual alcohol cues in the group that performed the control task.

Self-Report
Surveys administered prior to the neuroimaging session revealed 
that the sample as a whole had low-moderate perceived stress 
(mean ± standard deviation = 17 ± 6), and positive (mean ± standard 
deviation = 30.7±9.7) and negative (mean ± standard deviation =  
13.9 ± 6.2) affect scores that were similar to those reported 
from the original general adult normative sample (52). There 
were no differences in affect or stress between the intervention  
groups nor between the drinking groups (all p > .05). 

Craving was measured in the scanner after exposure to 
each cue block. The results of a repeated-measures (A1, A2) 
mixed model indicated that there was a significant main effect 
of group on craving, but no main effect of task (i.e., from 
pre- to post-intervention). Participants randomized to the 
resonance breathing intervention group reported lower levels 

FIGURE 4 | Significant Neural Activation to Visual Alcohol Cue Sets. One-sample t-tests were used to identify areas of significant neural activation during alcohol 
cue set viewing. The neural responses of the active intervention (resonance breathing) group are shown in Panels (A) (A1 task, cues viewed prior to the intervention) 
and (B) (A2 task, cues viewed after the intervention). The neural responses of the control intervention (vanilla task) group are shown in Panels (C) (A1 task, cues 
viewed prior to the intervention) and (D) (A2 task, cues viewed after the intervention). Axial slices are shown in MNI standard space at z = −6 (first slice) and every 
fourth subsequent slice. Images are oriented using radiological convention. Areas of significant activation are shown in red.

TABLE 1 | Anatomical location at peak voxel coordinates in significant clusters 
of activation in resonance breathing group.

A1>A2 Contrast

MNI Coordinates

Cluster Size Z x y z Peak Voxel Anatomical 
Location

2,433 6.80 −30 −96 10 Occipital pole (L)
1,339 6.95 28 −90 4 Occipital pole (R)
10 4.74 28 −38 −24 Temporal fusiform cortex 

(R)

A2>A1 Contrast

MNI Coordinates

Cluster Size Z x y z Peak Voxel Anatomical 
Location

2,141 7.81 2 −78 42 Precuneus Cortex
283 5.89 −2 50 0 Paracingulate Gyrus/

Medial Prefrontal Cortex
150 4.74 −16 −50 −2 Lingual Gyrus (L)
16 5.35 6 −24 40 Posterior Cingulate 

Cortex
15 4.44 2 −22 32 Posterior Cingulate 

Cortex
2 3.81 0 −56 10 Precuneus Cortex
1 6.87 −2 −6 36 Anterior Cingulate Cortex

https://www.frontiersin.org/journals/psychiatry#articles
https://www.frontiersin.org/journals/psychiatry
www.frontiersin.org


Resonance Breathing and Neural ResponseBates et al.

8 September 2019 | Volume 10 | Article 624Frontiers in Psychiatry | www.frontiersin.org

of in-the-moment craving compared to those randomized to 
the control intervention group [F(76,1) = 5.76, p = 0.0188; 
least square mean  ± standard error of resonance breathing 
group = 28.1 ± 4.5 and of control group = 43.7 ± 4.7]. The group–
task interaction was not statistically significant, suggesting that 
changes in subjective reports of craving pre- to post-intervention 
did not significantly differ between the two groups.

No significant correlations were observed at A1 between 
VAS craving scores and the ten cluster activation scores in the 
full sample (r range, −0.24 to 0.09, all p > .05). In addition, there 
were no significant correlations at A2 between craving scores and 
the ten cluster activation scores within either group (resonance 
breathing group r range, −0.32 to 0.28, all p >.05; control group 
r range, −0.42 to 0.44, all p > .05). Lastly, there were no significant 
correlations at A2 between drinking status (AUD vs. low risk) 
and the ten-cluster activation scores in the resonance breathing 
group (r range, −0.27 to 0.28, all p > .05).

DISCUSSION

Evidence that visceral afferent signaling influences stimulus 
processing argues for intervention development aimed at 
manipulating cardiovascular signals to alter detection and neural 
processing of affective stimuli (63). The results of the present 
study provide the first proof-of-concept evidence that a brief 
behavioral intervention of resonance breathing can significantly 
alter drinkers’ neural activation to visual alcohol cues. The 
observed changes in brain activity included both decreases and 
increases in the activation of distinct brain regions. 

In the group that performed resonance breathing between the 
visual cue tasks, but not in the control group, there was reduced 
activation in occipital regions from the first set of alcohol cues to 
the second, different set of alcohol cues. This pattern of results 
suggests that the breathing intervention prompted a subsequent 
decrease in visual cortex activation when individuals were 
confronted with alcohol-related visual stimuli. The specificity of 
these changes to alcohol-related content is unclear as this proof-
of-concept study did not include a cue set of non-alcohol–related 
images presented before and after the intervention. Indeed,  

visual cortex activation to many types of images, including faces, 
is modulated by their emotional and social significance (64–66). 
Multiple lines of evidence also support the involvement of the 
visual cortex in appetitive cue processing. Several meta-analyses 
found that drug users consistently showed increased activation 
in occipital regions in response to drug-related cues compared 
to controls, even when non-visual drug-related stimuli were 
presented (41, 67–69). Increased visual cortex activation has 
been observed in individuals with behavioral addictions, such 
as pathological gambling, as well (70–72). Thus, although the 
literature suggests that the role of the visual cortex in alcohol 
and drug cue reactivity is not specific, decreased activation in 
the lateral occipital cortices following resonance breathing would 
be consistent with decreased perception, representation, and 
recognition of the images (73) and/or may potentially reflect less 
attention being directed toward the cues by the amygdala (66) or 
higher cortical areas (74).

In parallel with reduced visual processing of the cues, we 
observed increased activation in bilateral medial prefrontal, 
anterior and posterior cingulate, and precuneus cortices during 
the second alcohol cue task, only in the resonance breathing 
group. The ACC and MPFC, as regions of the central autonomic 
network, bi-directionally influence, and are influenced by, 
afferent cardiovascular signaling. Resonance breathing increases 
cardiovascular input to the brain via activation of brainstem 
nuclei that share connectivity with the ACC and MPFC (4) and 
are thought to give rise to the visceral experience of emotion (75). 
Functionally, the ACC is a part of the mesocorticolimbic circuit, 
which is thought to be involved in conflict monitoring and the 
regulation of cognitive and emotional processing by integrating 
input and modulating processing in other regions (76, 77). The 
MPFC is considered to be part of a cognitive control system in 
the brain that promotes goal-directed behaviors (78) by using 
incoming information to predict the most adaptive response 
based on past experience (79).

Hypothetically, increased activation of MPFC and ACC in 
response to alcohol cues following the breathing intervention 
would be consistent with heightened internal monitoring of 
cognitive-emotional state and enhanced cognitive control. At the 
same time, some studies have identified these regions as sites of 

FIGURE 5 | Significant Clusters of Activation in Resonance Breathing Group. Blue-cyan clusters represent regions with greater activation during A1 compared to A2 
(A1 > A2), and red-yellow clusters represent regions with greater activation during A2 compared with A1 (A2 > A1). Voxels were thresholded at p < 0.05. Image is 
shown in MNI standard space at x = −4, y = −66, z = 6, and oriented using radiological convention.
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heightened reactivity to alcohol and other drug cues (42), and 
heightened reactivity in these regions has been related to post-
treatment drinking and relapse, although the results in this 
area have not been consistent (80). Thus, it is unclear whether 
or under what circumstances these and other brain regions 
accentuate or restrain cue-elicited craving and substance use 
behaviors. Evidence for individual differences in brain areas most 
reactive to appetitive cues (42) and inconsistencies in replication 
add further complication to interpretation. More nuanced 
examination of intra-individual changes in neural activation 
across brain areas, and perhaps also across simultaneously 
operating psychological and physiological systems involved in 
motivated behavior, are needed.

The posterior cingulate cortex (PCC) and the precuneus 
showed increased activation to visual alcohol cues following the 
breathing intervention, but not the control task. Both of these 
regions are considered core nodes of the default mode network, 
a functional brain network involved in self-referential thought 
and mind-wandering (81) that shows preserved connectivity 
during cognitive load (82). The lingual gyrus, a brain region 
involved in visual encoding and higher-order analysis of 
complex visual stimuli (83), also showed increased activation 
only in the resonance breathing group. This gyrus has been 
implicated in spontaneous thought and often co-activates with 
the default mode network (84). Whether increased activation 
in these regions potentially plays a role in promoting self-
regulation in response to alcohol or other affectively valenced 
cues is unknown, but warrants further investigation. One 
possibility is that following resonance breathing the brain 
reverts to its “baseline” resting state (85) for some amount of 
time despite activation by salient cues, rather than transitioning 
to a heightened state of arousal. 

We did not observe acute changes in self-reported craving 
levels in the resonance breathing group following the second 
presentation of alcohol cues (absence of significant cue task 
by group interaction), nor were craving levels related to brain 
clusters of activation in response to cues at A1 or A2. Several 
factors likely contributed to these null findings. Randomization 
into resonance breathing and control groups in the present study 
did not result in equivalent mean craving rating scores; the 
resonance breathing group reported significantly lower craving 
levels throughout the study. Failures of randomization in small 
samples are common (86), and future studies may benefit from 
selecting participants with high levels of self-reported craving 
and/or matching on craving levels across intervention groups. It 
may also be that the brief 5-min duration of resonance breathing 
did not affect conscious self-estimates of craving in the present 
sample, or that resonance breathing works in a way that affects 
a different pathway, such as the operation of cue salience (50), 
rather than consciously experienced craving levels. The present 
data are limited in not speaking to these alternative speculations. 

Implications for Clinical Translation
If replicated and extended, the current findings that a brief, 
5-min bout of resonance breathing changed neural activation 
in brain areas implicated in affective and appetitive stimulus 

processing could have clinical implications for individuals 
who show elevated neural reactivity in response to appetitive 
cues  (44). Resonance breathing is the active mechanism of 
heart rate variability biofeedback, an empirically supported 
behavioral intervention for disorders with core features of 
affective and emotional dysregulation (13, 14, 17, 26) including 
alcohol use disorders (44, 87, 88). Emerging evidence suggests 
that heart rate variability biofeedback and paced breathing 
interventions reduce self-reported craving for alcohol and other 
appetitive stimuli, such as food (27, 89). While standard heart 
rate variability biofeedback delivery protocols include five to ten 
1-h sessions and home practice (90, 91), resonance breathing 
itself produces immediate physiological effects (see Figure 2). 
This proof-of-concept study was novel in examining whether 
resonance breathing also elicits immediate neural effects. 
The findings provide an initial step in validating resonance 
breathing as an in-the-moment behavioral tool that potentially 
could be used ad lib in the natural environment to alter neural 
activation, both before and during contexts of heightened risk for 
substance use. Accessible smart phone applications are available 
to self-administer resonance breathing and HRV biofeedback, 
suggesting promise for a scalable intervention tool if future 
research is successful in demonstrating that such effects are 
linked to reduced alcohol and drug use behaviors.

Limitations and Directions for  
Future Research
As a proof-of-concept study, these findings should be 
interpreted with caution and used for the generation of future 
hypotheses regarding the effects of resonance breathing on 
neural activation to alcohol-related visual stimuli, behavioral 
correlates of alcohol use such as in-the-moment craving, and 
actual use behaviors. Importantly, the changes observed in 
neural activation to the cues following the resonance breathing 
intervention should not be considered specific to alcohol-
cue reactivity, as this study did not include a comparison 
condition of matched, non-alcohol cues presented before 
and after the intervention. This study also was limited in not 
being sufficiently powered to examine sensitively the relation 
of individual differences in alcohol use behaviors to changes 
in neural activation following resonance breathing. We note 
that the cue presentation paradigm of the present study 
was designed in line with the goal of better understanding 
afferent cardiovascular input to neural reactivity and thus was 
not typical of those used in many other fMRI studies of cue 
reactivity. A recent meta-analysis found that cue paradigm and 
type did not significantly influence neural response patterns 
associated with cue reactivity however (28), suggesting the 
fMRI assessment of neural activation is robust to multiple cue 
presentation approaches. Future studies should include larger 
samples to link current and chronic substance use behaviors to 
cue reactivity, and a design that counterbalances and compares 
neural response to alcohol-related and non-alcoholic beverage 
cues. Specificity may be addressed also by comparisons to non-
alcohol or drug-related, yet positive or negative affectively 
valenced, visual cue sets. 
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Conclusion
In summary, this study presents preliminary evidence that 
individuals ranging in drinking behaviors from low-risk to 
alcohol-dependent may be less visually engaged by alcohol 
cues and initiate greater top-down cognitive processing of 
cues following resonance breathing. This is consistent with 
the broader literature on resonance breathing that shows it 
normalizes neurocardiac feedback and improves autonomic 
nervous system regulation (25). Moreover, it points to a potential 
neural foundation for the effects of resonance breathing and 
adds to the scientific premise for the use of heart rate variability 
biofeedback as an intervention for brain-based mental and 
physical health conditions. More highly powered studies are 
needed to replicate and extend these neural activation results. 
Critical next steps are to understand how the cardiovascular 
and neural changes elicited by resonance breathing are linked 
to changes in the subjective experience of craving and alcohol 
use behaviors.
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