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Abstract

To know the map between transcription factors (TFs) and their binding sites is essential to reverse engineer the regulation
process. Only about 10%–20% of the transcription factor binding motifs (TFBMs) have been reported. This lack of data
hinders understanding gene regulation. To address this drawback, we propose a computational method that exploits never
used TF properties to discover the missing TFBMs and their sites in all human gene promoters. The method starts by
predicting a dictionary of regulatory ‘‘DNA words.’’ From this dictionary, it distills 4098 novel predictions. To disclose the
crosstalk between motifs, an additional algorithm extracts TF combinatorial binding patterns creating a collection of TF
regulatory syntactic rules. Using these rules, we narrowed down a list of 504 novel motifs that appear frequently in syntax
patterns. We tested the predictions against 509 known motifs confirming that our system can reliably predict ab initio
motifs with an accuracy of 81%—far higher than previous approaches. We found that on average, 90% of the discovered
combinatorial binding patterns target at least 10 genes, suggesting that to control in an independent manner smaller gene
sets, supplementary regulatory mechanisms are required. Additionally, we discovered that the new TFBMs and their
combinatorial patterns convey biological meaning, targeting TFs and genes related to developmental functions. Thus,
among all the possible available targets in the genome, the TFs tend to regulate other TFs and genes involved in
developmental functions. We provide a comprehensive resource for regulation analysis that includes a dictionary of ‘‘DNA
words,’’ newly predicted motifs and their corresponding combinatorial patterns. Combinatorial patterns are a useful filter to
discover TFBMs that play a major role in orchestrating other factors and thus, are likely to lock/unlock cellular functional
clusters.
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Introduction

Gene expression is regulated by the attachment of transcription

factors (TFs) onto DNA binding sites located in promoter or

enhancer gene regions. Each TF has a propensity to bind to a

specific set of binding sites. This set can be represented by a

binding motif [1]. Currently, only 10%–20% of the total human

TF binding motifs (TFBMs) have been identified [2,3]. The most

widely used databases of experimentally validated TFBMs are

Jaspar [4] and Transfac [5]. Considering only globally traceable

TFBSs (those for which the collection of all the loci targets is

documented in the database across the whole genome), 228 and

281 TFBMs exist in Jaspar and Transfac databases, respectively. It

is estimated that the total number of human TFs ranges between

1400 [2] and 2600 [3], hence 80% to 90% of the TFBMs are

unknown. Furthermore, there are TFs that use more than a

TFBM, originating the so called secondary motifs [6]. Such motifs

add major variation and complexity to the TFBM repertoire

implying a much higher number of unknown motifs. Thus, to gain

a comprehensive understanding of the gene regulation process, it is

necessary to discover the unknown TFBMs set. Once this set of

TFBMs is predicted, the crosstalk with their corresponding TFBSs

can be analyzed in a more comprehensive way.

The average length of the known TFBMs is 11.53 base pairs (see

section S1.1 in Supporting Information S1). This is shorter than

the required length to achieve enough binding specificity (30

information bits as shown by Wunderlich et al. [7]). The TFBMs of

eukaryotes are shorter than those of prokaryotes [7], and therefore

their binding specificity is lower. To compensate for this effect,

gene expression in eukaryotes is regulated by the orchestration of

multiple TFs [8]. By clustering several short motifs together, the

effective spanned length of the combined pattern achieves a

greater level of specificity. Given all TFBMs and their corre-

sponding binding sites, it is worthy to extract common syntactic

structures that arise in the promoter binding topologies since such

structures can constitute regulatory rules that provide additional

insights in the transcriptional regulation process. Such rules can

also be used to select TFBMs that frequently appear with other

motifs and therefore control a larger amount of functionality.

Here, we provide algorithms and databases that answer the

following questions: What do unknown TFBMs look like? Given

all possible TFBMs, what is the motif combinatorial binding

topology of each promoter? What genes have common TF

combinatorial binding patterns and are therefore likely to be

switched simultaneously? Do genes regulated by the same TFs

have common functions?
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In order to answer such questions, we have developed new

computational methods that acquire knowledge from the already

known TFBSs. The novelty of these methods includes an adaptive

choice of the number of aligned sequences from different species

using a permutation prefix method, clustering of the selected

sequences using a new distance function (conglomerative distance)

to gain granularity, and an adaptive choice of the number of

features to be learn from each known TFBM thanks to a new

filtering technique that we term dynamic dimension selection

(DDS). These methods generate a database with the following

major features. Firstly, the database provides a dictionary of

‘‘DNA words’’ that contains all the possible binding sites. This

dictionary is not associated to any particular cell type but is a key

element for inferring the transcription regulations on genomic

scale. Such types of dictionaries are a key tool of the techniques

that break cryptographic codes [9]. Secondly, our algorithm

generates a list of ab initio TFBM predictions that cover the

unknown 80%–90% of human TFBMs. Thirdly, our method

distills a list of common TFBM combinatorial ‘‘syntax’’ rules that

arise in the gene promoters region. Fourthly, a sublist of TFBMs,

based on motifs that appear in the discovered combinatorial

syntax rules, can have a greater ability to regulate larger modules

of cellular functionality. Finally, we predict the potential biological

functionality of the newly found TFBMs and their combinatorial

patterns annotating them with the gene ontology enrichment

analysis of their associated gene targets.

The task of finding ab initio TFBMs has been tackled in the past

with a large number of algorithms. A recent survey [10] states that

even after a considerable effort, DNA motif finding still remains an

open problem as motif finding algorithms are not able to detect

motifs in mammals. Here we describe the two main categories of

motif finding algorithms.

Constrained discovery algorithms
The first category is composed of algorithms [10] that work on

small sequence fragments. Initially developed for predicting

TFBMs from co-expressed gene clusters determined by transcrip-

tomics experiments, and also used for searching TFBMS in the

DNA fragments generated by wet-lab analyses such as DNAse

footprinting assay, Electrophoretic Mobility Shift Assay (EMSA)

and more recently ChIP-Chip and ChIP-Seq [11]. After sequence

mapping, such experiments deliver loci of limited length and each

of these loci is assume to hold a binding site with a certain

probability. The algorithms operate on the sequences finding

common motifs. Examples of these techniques include AlignAce

[12], Gibbs Motif Sampler [13], MEME [14], PhyloGibbs [15] or

Weeder [16]. We term them constrained algorithms since they are

designed to find only one motif or a small set of motifs from an

experiment. Their outcome is cell type specific and they do not

extrapolate the knowledge from known motifs to perform ab initio

predictions. Elemento and Tavazoie [17] argued that such

techniques are not appropriate, primarily because binding site

density is low. They also mentioned that those algorithms are

relatively slow and can miss many regulatory elements as they are

based on stochastic methods [18–21]. In practice, such approaches

are reported to work only on small genomes like yeast [10]. The

described problems render these algorithms ineffective as the

genome becomes more complex [10]. Our objective is to discover

from whole eukaryote genomes ab initio cell type independent

motifs using computer learning techniques that take advantage of

the intrinsic binding properties of the known motifs.

Unconstrained discovery algorithms
The second category comprises algorithms that systematically

discover ab initio motifs [17,22–25]. These algorithms rely on the

small number of known TFBMs compared to the number of TFs.

They try to generalize the properties of the already known TFBMs

to find new TFBMs. This is a challenging task since the number of

binding sites targeted by TFBMs is very small compared to the

number of all the possible subsequences of a genome. Table 1

shows a list of whole genome motif discovery methods and their

performance characteristics. Success rates vary widely among

different algorithms. In the yeast case, better results were achieved

[26] due to the lower genome complexity in this organism. Since

previous methods have been tested with different motif discovery

conditions, the number of validations varies considerably. E.g., in

the human, Elemento et al. [24] employed 309 validation motifs

whereas Xie et al. [22] used only 123. Regarding the number of ab

initio predictions, in human, FastCompare [24] produced 284

novel predictions whereas the method proposed by Xie et al. [22]

provided 184. These numbers are still far from the final goal of

1400–2600 TFBMs. Furthermore, all methods besides the one

presented in this publication, employ IUPAC (International Union

of Pure and Applied Chemistry) [27] symbols to describe motifs.

This is a drawback since the generated motifs are too coarse, and

therefore their biological accuracy is reduced. None of the

previous methods employs machine learning techniques to find

properties intrinsic to known TFBMs. A common trend is to

employ one-dimensional overrepresentation/conservation scores

[22], but this is a very limiting approach to describe complex

binding patterns. Finally, TF combinatorial co-occurrence that is a

valuable filter to find TFs controlling large modules of function-

ality in the cell, is not performed by previous approaches.

Our algorithm significantly improves the state of the art by

fundamentally changing the way to tackle the problem. First, we

add features intrinsic to known TFBMs (see Table 2 ) that are

processed with a machine learning approach. This allows our

algorithm to focus not only on overrepresented and overconserved

elements but also on elements that match closely existing TFBMs

in a hyperdimensional space. TFs are projected onto multidimen-

sional vectors, and we attempt to find novel motifs that are in the

vicinity of existing points (known TFs). Second, our system does

not employ IUPAC symbolic simplification to generate motifs.

Instead, it takes advantage of the richer information carried by the

collection of binding site sequences targeted by each TF. Third, it

uses similarity search to create more natural and biologically

meaningful motifs with very high Pearson correlation with already

known TFBMs. Fourth, our algorithm employs a combinatorial

filter that finds motifs that are common in multiple gene promoters

in a predictable topological form. This allowed us to obtain the

best results with the largest validation set, the highest number of

novel predictions, and the highest success rate reported so far in

the literature for unconstrained whole genome motif discovery

algorithms.

Results

Prediction of 4089 new transcription factor binding
motifs and validation against known motifs

To disclose ab initio TFBMs on genomic scale, we designed a

pipeline of algorithms that decrease progressively the amount of

genomic data to be processed. First, we compiled ‘‘DNA word’’

dictionaries from all the gene promoters of 5000 base pairs

upstream the transcription start site of the human genome. We

designed three new filters to reduce the number of ‘‘DNA words’’

in the dictionaries. The reduction achieved by each filter is shown

Human Combinatorial Regulatory Motifs
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in Table S1 in Supporting Information S1. The parameters

employed for the dictionaries generation are shown in Figure S1 in

Supporting Information S1, and examples of how such filters work

are shown in Tables S2 and S3 in Supporting Information S1. The

‘‘DNA word’’ reduction achieved by these filters facilitates at a

second stage, to complete the TFBM map through clustering. To

decrease the potential TFBM candidates to an amenable number,

we created a novel Dynamic Dimension Selection (DDS) filter,

that using the parameters depicted in Table S4 in Supporting

Information S1 dramatically condenses the number of potential

TFBM as shown in Table S5 in Supporting Information S1. A

final merging step identifies 4598 motifs. This number is higher

than the estimated upper bound of 2600 TFs [3], but one has to

consider that a TF can use several binding modes which can

generate the so called secondary motifs [6]. Using as a similarity

criterion a Pearson correlation of at least 0.85, our predictions

matched 83% known TFs from Jaspar [4] (228 TFBMs) and 81%

of Transfac [5] (281 TFBMs) datasets. To achieve these results, for

each motif of length w, wminƒwƒwmax (where

wmin~4,wmax~16) we trained our algorithms with a subset of

known TFBMs with a length different from w. Then we predicted

the existence of the trained TFBMs in the disjoint validation subset

composed by the TFBMs of length w. Once known motifs were

removed, there remained 4089 novel predictions. To verify that

our predictions do not occur by chance, we measured the

percentage of predictions that match a random control TFBM

dataset. Since each TFBM is characterized by a position weight

matrix (PWM) [28], to generate a dataset without nucleotide

compositional biases, the elements of each of the Jaspar and

Transfac PWMs were shuffled for each column while keeping the

column order. We calculated how many of our predictions had a

similarity higher than a threshold against at least one of the

random PWMs. We selected the similarity threshold following

[22], considering that a prediction matches a known TFBM when

the Pearson correlation of its respective PWMs is §0.85. We

found that only 1% of our predictions matched the random

dataset, thus, the probability that our ab initio TFBMs have been

generated by chance is low. Figure 1 presents the known motifs

predicted by our method with the highest two matches obtained

for each prediction of a specific length. The entire list of

predictions is shown in the Table S6 in Supporting Information

S1. Our algorithm is able to predict not only individual TFBMs

but also possible combinations, such as the OCT4+SOX2

(MA0142.1) pair, which is well known in embryonic stem cells

(ESCs) [8,29]. In ESCs, OCT4 activates downstream genes by

binding to enhancers carrying the octamer-sox motif (OCT-SOX

enhancer) for synergistic activation with SOX2 [30], playing a key

role in the maintenance of pluripotency [31–33]. The pair

OCT4+SOX2 is also crucial for cellular reprogramming, since

both OCT4 and SOX2 are members (together with KLF4 and

MYC) of the Yamanaka reprogramming cocktail [34], and

(together with LIN28 and NANOG) of the Thomson reprogram-

ming cocktail [35]. The ability to discover OCT4+SOX2 shows

possible follow up applications of our algorithm for understanding

the reprogramming mechanisms. When comparing with other

unconstrained discovery algorithms, we found that though our

method was validated with the largest amount of known TFBMs

(509), it still achieved the highest success rate (81%) reported in the

literature (see Table 1 ).

Table 1. Comparison of unconstrained motif discovery algorithms.

Method Year Species Succ. Test Novel ML Comb. HR

Kellis et al.[26] 2003 Sc 65% 55 72 N N N

FastCompare[24] 2005 Sc; Sb 8% 309 398 N N N

FastCompare[24] 2005 Ce; Cb 4% 309 437 N N N

FastCompare[24] 2005 Hs; Mm 5% 309 284 N N N

Xie et al.[22] 2005 Hs 56% 123 174 N N N

Stark et al.[68] 2007 Dm 46% 87 145 N N N

MDOS[69] 2008 Pf 20% 30 26 N N N

Kumar et al. [23] 2010 Fg 21% 76 108 N N N

This publication 2012 Hs 81% 509 4098 Y Y Y

The method and the year of publication is displayed along the species. ‘‘Succ.’’ is the success rate of the algorithm or the percentage of known motifs rediscovered.
‘‘Test’’ is the number of known motifs tested in the validation step. ‘‘Novel’’ is the number of novel motifs predicted. ‘‘ML’’ indicates whether a machine learning
approach is used. ‘‘Comb.’’ indicates whether a combinatorial filter is employed. ‘‘HR’’ indicates whether high resolution predictions are available. If IUPAC symbols are
used during the enumeration phase, the prediction resolution is low. Species: Cb = Caenorhabditis briggsae; Ce = Caenorhabditis elegans; Dm = Drosophila melanogaster;
Fg = Fusarium graminearum; Hs = Homo sapiens; Mm = Mus musculus; Pf = Plasmodium falciparum; Sb = Saccharomyces bayanus; Sc = Saccharomyces cerevisiae.
doi:10.1371/journal.pone.0049086.t001

Table 2. Intrinsic properties of the TFBMs used by our
algorithms.

D Feature Description

w Entropy curve Entropy-based fingerprint

w Distance distribution Inter binding site Hamming
distance distribution of the
prediction

1 Conservation score Conservation score from Xie et
al.[22]

1 Number of conserved sites Total number of conserved
sites for each prediction

1 Conservation per base Average number of conserved
species per base for each
prediction site

1 Entropy per base Average motif entropy per base

For each dictionary of ‘‘DNA words’’ of length w, the algorithm works in a
(2wz4) dimensional space defined by six multidimensional feature fingerprints.
‘‘D’’ is the number of feature dimensions.
doi:10.1371/journal.pone.0049086.t002
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The TFBMs emerge forming combinatorial binding
patterns

Since the TFBMs are short, they do not have enough specificity,

and there are multiple evidences that TFs work together in

combinatorial assemblies, such as the OCT4+SOX2 partnership

[30]. We hypothesized that when a motif appears together with

the same set of motifs in multiple promoters, the motif is more

likely to play a relevant role in gene transcription regulation. We

denote this arrangement of TFBM co-occurrence as combinatorial

binding patterns (CBPs), i.e., CBPs are ‘‘motifs of motifs’’. To

discover such patterns, we developed a computational method that

identifies combinations of motifs that bind to more than one

promoter. The 17831 CBPs we found cover 73% of already

known TF-TF binary interactions listed in the Transcompel [5]

dataset. The best CBP match against each Transcompel entry is

shown in the Table S7 in Supporting Information S1.

From the initial set of TFBM predictions, we found a subset of

504 motifs that also co-occur with other motifs in multiple gene

promoters. This set is denoted as STFBM (significant TFBM).

Figure 2 shows the top two matches for each motif prediction set of

length w that include statistically significant gene ontology (GO)

enrichment over the genes targeted by the CBPs. The complete

STFBM is presented in the Table S8 in Supporting Information

S1. By applying the GO enrichment analysis over the genes

targeted by such motifs (section S1.5 in Supporting Information

S1), we annotated successfully 51% of STFBMs with GO terms

with statistical significance (Pƒ0:05), and found that this subset is

constituted exceptionally by TFs and enriched with pattern

formation and morphogenesis related GO terms (section S2 .1

in Supporting Information S1).

To visualize the topology of the CBPs, we designed a technique

(see section S1.5.1 in Supporting Information S1) based on

performing multiple alignments of the predicted TFBS loci

coordinates. Figure 3 gives three examples of this visualization.

Figure 3A shows a very specific CBP that applies to 16 promoters.

Our ab initio TFBM predictions ‘‘b-11-3-0’’ and ‘‘b-7-53-8’’ are

mixed with the TFs Sp1, FAC1, and Zic3. Gene expression

microarrays [36] have already shown that Sp1 and Zic3 are

members of one gene regulation cluster in cardiac cells (cluster 7),

whereas FAC1 and Zic3 belong to clusters 22, 63, and 101.

Finally, Sp1 and FAC1 belong to cluster 72. Figure 3 B shows a

CBP that involves AP-1/Sp1 interactions. This interaction has

already been documented [37] and is related to 12-O-tetradeca-

noylphorbol-13-acetate (TPA) response in keratinocytes. This

example shows the ability of our system to find co-occurrence of

the same motif in different directions (see the multiple appearances

of the Sp1 complement). Finally, Figure 3 C displays a

comprehensive CBP that applies to 1218 genes. The TF Pax-8

is surrounded by three of our predictions. The CBP subset with the

strongest connection is composed of ‘‘b-7-110-0’’, ‘‘b-6-116-1’’,

and ‘‘Pax-8’’. As PAX-8 is an excellent marker for primary tumor

sites [38], our ab initio TFBMs associated with Pax-8 could provide

insights into tumor formation regulation. We found 9 additional

CBPs that apply to more than 1000 genes (see CBP gallery in

Table S9 in Supporting Information S1), indicating that a small

subset of CBPs has the potential to exert regulation over large

sections of the genome.

The intrinsic specificity of the CBPs is limited to subsets
of ten or more genes

To study to which degree the CBP are specific to genome loci,

we analyzed the distribution of the gene targets covered by each

CBP. Figure 4 A depicts the cumulative percentage of CBPs that

apply to a certain number of genes and shows an elbow at the level

of 10 genes. Figure 4 B displays the number of genes versus the

CBPs of a specific motif count showing that the average number of

genes switched by CBPs is always equal to or greater than 10.

These results indicate that, on average, 90% of those CBPs are

shared among 10 different genes. The analysis of the average

number of genes covered by CBPs with a specific amount of motifs

shows that as the number of motif count increases (Figure 4 C), the

gene count reduces and stabilizes at about 30 motifs. Few CBPs

hold more than 30 motifs. Such observation is highlighted by the

heat map in Figure 4 D, showing that the percentage of CBPs that

holds x motifs and y genes has a high density region in the area of

10 genes targeted by less than 30 motifs. These results reveal that

the newly discovered arrangements of TFBMs into CBPs increase

the binding specificity only to an extent that a CBP can switch 10

Figure 1. Comparison of predicted motifs against known
regulatory motifs. ‘‘ID’’ is the TFBM identification string and r is
the Pearson correlation of the similarity between the predicted and the
known TFBMs. The TF names starting with MA correspond to Jaspar
TFBM identifiers, the names with a $ symbol correspond to Transfac
identifiers.
doi:10.1371/journal.pone.0049086.g001

Human Combinatorial Regulatory Motifs

PLOS ONE | www.plosone.org 4 November 2012 | Volume 7 | Issue 11 | e49086



genes on average. Thus, the CBPs exert clusters with a granularity

of more than 9 genes. This suggests that the simultaneous

switching of fewer than 10 genes requires other mechanisms

besides TF combinatorial binding. These computational results

are in agreement with the findings of Lieberman-Aiden et al. [39],

who coupled proximity-based ligation with massively parallel

sequencing (Hi-C) and with the gene expression microarray results

of Vogel et al. [36]. The former showed that chromatin segregates

into two genome-wide compartments, where the open one is

consistent with a knot-free fractal globule that preserves the ability

to unfold any genomic locus. The latter showed that a large

proportion of the human transcriptome is organized into gene

clusters that are partially regulated by the same TFs.

The ab initio predicted TFBS and CBPs are related with
developmental functions and transcription regulation
processes

To reveal the possible biological meaning of the newly

discovered TFBMs and CBPs, we generated a list of significantly

enriched GO terms associated with the genes targeted by the

motifs and CBPs. We were able to annotate with a statistical

significant enrichment the GO terms of 93% of the predicted

CBPs and 51% of the TFBMs, which shows that the newly

discovered TFBMs and CBPs are likely to be biologically

meaningful. We developed the concept of ‘‘ontology maps’’ to

visualize the relationship between GO terms and TFBMs or CBPs

(section S1.6.2 in Supporting Information S1) with ‘‘graphs as

maps’’ (GMAP) [40]. Figure 5 presents the map of CBP molecular

function ontologies. All elements enclosed in the same ‘‘country’’

of the map have links to similar sets of ontologies and therefore

cluster together. The visualization shows that the surrounding

CBPs also bind to genes exhibiting similar ontologies. The text size

reflects the most common, significant GO terms. Interestingly, we

found that such terms are related to molecular function ontologies

of TFs revealing a cascade of TF binding events, i.e. the CBPs we

discovered have a trend to bind to the regulatory region of other

TFs. As an example of TF activity, the white highlight in the upper

left region of Figure 5 (near the nucleic acid binding TF activity

‘‘country’’) marks the position of the c-10688 CBP, whose CBP

arrangement is depicted in Figure 3 A. Additionally, the upper

right corner of Figure 5 depicts a cluster of CBPs connected

strongly with the ‘‘RNA binding’’ ontology. The corresponding

‘‘RNA splicing’’ term is found to be a biological process

significantly regulated by CBPs, as shown in Figure 6. This

correspondence suggests that the modular nature of the protein

blocks codified in sets of exons to generate different isoforms could

require the concurrence of a large number of TFs. Figure S6 in

Supporting Information S1 depicts the ontology map of CBPs

cellular components. We also found a significant enrichment in the

TFBMs GO analysis of transcription regulation related terms such

as ‘‘transcription factor regulator activity’’ and ‘‘transcription

factor binding’’, and of developmental related terms such as

‘‘developmental process’’, ‘‘anatomical structure development’’,

‘‘tissue development’’ and ‘‘organ morphogenesis’’ (see Figures S7,

S8 and S9 in Supporting Information S1).

Figure 2. Novel predicted motifs that appear frequently in CBPs (STFBM). The position within this subset is included along the motif ID, the
motif logo, the significance z score, the corresponding CBP ID. Additionally, the most significant molecular function, biological process and cellular
component ontologies are included for each motif.
doi:10.1371/journal.pone.0049086.g002
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Discussion

We have created novel proximity algorithms that infer a catalog

of human regulatory motifs and their combinatorial binding

patterns from previously known TFs. Our methods predicted

81%–83% of the known TF binding motifs and discovered 4089

novel TFBMs. This is the highest success rate achieved so far in

mammalian whole genome TFBM discovery and it is the most

widely validated method with rediscovering 509 known motifs of

the Jaspar and Transfac databases. This success rate shows that

our machine learning approach is useful to improve the

predictions quality. Since our algorithm is not based on IUPAC

strings, it creates smoother motifs that closely match experimen-

tally discovered TFBMs than the methods based on IUPAC

representations.

A combinatorial pattern filter selected a subset of 504 motifs

that co-occur frequently with other motifs in 17831 CBPs. These

motifs hold co-occurrence patterns that span hundreds of genes. A

high percentage of our CBP and TFBM predictions can be

annotated with statistical significance with GO terms. Such

annotation reveals that our CBP and TFBM predictions are

strongly related to transcription activity and development. Thus,

the TFs show a trend to target other TFs. This additional level of

regulation has been discovered in several specific cases such as the

Microphthalmia-associated transcription factor (MITF) regulation

by SOX-10 and PAX-3 in the Waardenburg syndrome [41], the

modulation of chondrogenesis onset by Runx [42], the specifica-

tion of lymphoid cell fates [43], or the ESC regulatory circuitry

[44,45]. We found that such property seemed to be an intrinsic

genomic sequence hallmark with expanding influence on genomic

scale. In our study, genes involved in pattern formation,

morphogenesis and development were also regulated by our ab

initio TFBMs and CBPs with high significance. This identifies

development as one of the most demanding regulatory processes,

in agreement with the pivotal role of transcription regulation

during development [46].

Figure 3. Visualization of discovered CBPs. Visualization of CBPs with (A) , (B) low and (C) high number of target genes. Each arrow connecting
two motifs a and b implies that the motif b is to the ‘‘right’’ of the motif a. The arrow thickness reflects the percentage of promoters where the motif
relationship occurs. The gradient ‘‘D’’ is the number of base pairs separating each binding site. ‘‘CBP’’ is the unique identifier for each discovered
pattern. ‘‘COV’’ (coverage) is the average number of base pairs available for binding. ‘‘GEN’’ (generality) is the number of genes targeted by the
pattern. ‘‘ROB’’ (robustness) is the average number of times a motif is repeated within the pattern. ‘‘SIG’’ (significance) is the z-score of the actual GEN
in the distribution of GEN that would be generated if the promoters were randomly shuffled. ‘‘AL’’ is the motif multiple alignment score. Higher
values of ‘‘AL’’ represent better alignment.
doi:10.1371/journal.pone.0049086.g003
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The discovered TFBMs and CBPs hold properties that appear

to be intrinsic to the genome, as they have been revealed using a

method that applies the same algorithm over all promoter regions.

Potential features encoded in the genome confer additional

regulatory capabilities onto the cell, the degree of which may

depend on the particular cell type. Thus, gene regulation at the TF

level appears to be focused on the regulation of other TFs

influencing the development of the organism. Accordingly, the

development of an organism could entail cellular functions whose

regulation requires higher levels of complexity.

The predicted CBPs are generated greedily in an attempt to

extract potential syntactic patterns that are as general as possible.

We have created a computational approach to stretch general

genomic syntactic rules as much as possible, with as many motifs

as possible. Even though we accepted a correct CBP as a syntactic

rule that applies to at least two genes, we discovered a consistent

and surprising trend to generate sets of rules that apply to 10 or

more genes.

Previous unconstrained motif discovery approaches [22],

generate less specific motifs as more species are added, and their

sensitivity analysis showed that their method predicted with less

accuracy (69 hits out of 123 tested motifs). Instead, our method

takes advantage of additional information provided by the growing

number of aligned species in databases such as the UCSC genome

browser [47]. It has the capability to improve its performance as

more genomic data becomes available, because we employed a

permutation technique whose key feature is to select adaptively the

number of closer species to focus on relevant matches only (see

Materials and methods section).

Our method is designed to learn from some additional TF

intrinsic properties (Table 2 ) that profit from the extended

sequence alignments. These properties do not require sequence

overrepresentation and focus on the fingerprints of specific

sequences. Thus, our algorithm searches for TFBMs that do not

necessarily occur frequently in the genome. Our usage of TF

intrinsic properties allows considerable reduction of the input noise

(see section S1.4 in Supporting Information S1). Our ‘‘DNA

word’’ dictionary compilation algorithm adapts locally to evolution

changes. Besides evolution, the multiple alignment heuristic [48]

employed may also introduce artifacts into the data. Since our

method learns from the feature space, better results have been

achieved.

We hypothesized that evolution occurs at different rates along

the genome. Therefore, local genomic regions may have different

conservation levels among species [49]. Such difference may not

be considered in a general phylogenetic tree based on whole

genome sequences. Other methods take such a generalistic

approach [23], but the adaptive selection of aligned sequences

provided by our permutation prefix approach for filtering ‘‘DNA

words’’ makes our algorithm more flexible by adapting locally,

depending on learned features. Permutation prefixes have been

used recently as fingerprints in the field of similarity search [50–

53].

Figure 4. CBPs apply to 10 or more genes. (A) Cumulative percentage of CBPs (x axis) that apply to a given number of genes (y axis). (B)
Relationship between CBP motif count and gene count. The y axis represents the average number of genes contained in the CBPs. One standard
deviation surrounds each point. The x axis represents all the CBPs with a certain number of motifs. The horizontal red line marks the 10 gene
boundary. (C) Frequency of CBPs for different motif counts. The x axis represents the motif count for all the CBPs. The y axis represents the
percentage of CBPs that hold the given size. (D) Percentage of CBPs that apply to a given number of genes and motifs.
doi:10.1371/journal.pone.0049086.g004
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Figure 5. Map of significant CBP molecular function ontologies. Regions with the same color represent the same cluster of objects. Borders
of the ‘‘countries’’ underline boundaries of CBP clusters. The ontology term font size is adjusted to reflect the frequency with which it is associated to
the CBPs. The CBP c-10688 has been enhanced for readability in the upper left corner of the visualization map.
doi:10.1371/journal.pone.0049086.g005

Figure 6. Map of the significant CBP biological process ontologies. Regions with the same color represent the same cluster of objects.
Borders of the ‘‘countries’’ underline boundaries of CBP clusters. The ontology term font size is adjusted to reflect the frequency with which it is
associated to the CBPs.
doi:10.1371/journal.pone.0049086.g006
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The DDS algorithm introduced a novel way to handle high

dimensional data by focusing on certain features of the space. This

allowed us to project each prediction into a high dimensional

space without the need to evaluate the relevance of different

features. The important features are found at classification time

and depend on the target object. By concentrating on a limited

subset of components, the DDS algorithm removes noise and

focuses on the important features. The dimension selection is

dynamic and depends on each object, and unlike the Euclidean

metric, other lp metrics, and some recent approaches [54,55], the

differences of the components are not mixed when the similarity is

calculated. Since the DDS treats each single component indepen-

dently, there is no need to normalize data with different

magnitudes. The combination of these key properties allowed

the DDS to remove vast amounts of spurious noise (see Table S5

in Supporting Information S1), thus, reducing the number of false

positives.

With our algorithms we generated a catalog of predictions that

contains the ‘‘DNA words’’ dictionary, the motif predictions, the

binding site location for each known and novel motifs, the CBPs

predictions, and the visualizations for motifs and CBPs which can

be downloaded from http://computational-biology.mpi-muenster.

mpg.de/publications/TFBM/.

Materials and Methods

Our method for TFBM discovery first creates a dictionary of

‘‘DNA words’’ with high probability to be bound by TFs is

employed to predict binding motifs using a new clustering method.

Once binding motifs are predicted, the algorithm finds TF

combinatorial binding patterns (CBPs). Figure 7 is an overview of

our computational pipeline.

Compilation of ‘‘DNA word’’ dictionaries
The first step is to create a dictionary of DNA sequences of

length w, with wminƒwƒwmax (where wmin~4,wmax~16), that

includes potential binding sites for all the TFs. To compile this

dictionary, our algorithm learns intrinsic properties (see Table 2 )

of known TFBSs and then generates a universal list of ‘‘DNA

words’’ that are likely to be a TFBS. The input of the method is

the multiple alignment format (MAF) dataset of 45 species

provided by the UCSC genome browser [47], and known TFBMs

from Jaspar [4] and Transfac [5] that are used as learning/

validation data. To reduce the number of ‘‘DNA words’’, and

thus, to decrease the computational burden we designed three

filtering techniques, the conservation curve, the permutation

prefix, and a merging method.

The first filtering method is based on the conservation curve

(Figure 7 C), is employed in order to reduce the number of ‘‘DNA

word’’ candidates. Note how the entropy inversely matches the

conservation curve in this example. This entropy/conservation

relationship does not necessarily have always to match, but it does

reveal that the shape of the conservation profile carries an

important intrinsic property of the TFBS.

The second filtering method is based on similarity permutations.

For each ‘‘DNA word’’ of length w (Figure 7 A), we employ the

order of similarity between the aligned sequences of 45 different

species and the ‘‘DNA word’’ that is to be analyzed. This order

creates a permutation. The similarity criteria used to create the

permutations is based on the Hamming distance [56] (defined as

the number of positions d that differ between two sequences). This

permutation of species sequences is a valuable fingerprint to prune

the search space as shown in Figure 7 B. The compilation

dictionary algorithm keeps track of the closest species of the known

binding sites, and uses them as learning data. Since the species

order changes depending on the similarity of the aligned

sequences, such alignment creates a permutation. The permuta-

tions that belong to known TFBSs become the learning set. Then,

it is possible to filter each site only when the permutation is present

in the learned set. Since a permutation of 45 elements will likely be

unique for each site in the genome, we take as a prefix the first p

Figure 7. Method overview. (A) Extract ‘‘DNA words’’ of length w. (B)
Filter the ‘‘DNA words’’ with the permutation prefix method, by
ordering the aligned sequences of different specie genomes (Spec.) by
the closeness d to the target sequence. The horizontal red line marks
the end of the species permutation prefix. (C) Reduce the number of
‘‘DNA words’’ by the conservation curve. (D) Gather the intersection of
‘‘DNA words’’ generated in (B) and (C) with the merging method. (E)
Predict the TFBM candidates using the DDS filter over a projection of
(2wz4) features (see Figure 8). (F) Take the predicted TFBMs to
generate the catalog of combinatorial binding patterns of all the
discovered motifs.
doi:10.1371/journal.pone.0049086.g007
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closest species, that is smaller than the total number of species. The

prefix value p was set to 5 for DNA dictionaries greater than

w~10 bases (for wv10 see Figure S1 B) in Supporting

Information S1. In Figure 7 B, the red line represents the

permutation prefix in the example.

The ‘‘DNA word’’ extraction process shown in Figures 7 B and

7 C creates two different sets of ‘‘DNA words’’. We take the

intersection of them to feed the TFBM prediction algorithm using

the merging method (Figure 7 D). This set intersection of ‘‘DNA

words’’ is analogous to a universal dictionary of potential TF

binding targets. Table S1 in Supporting Information S1 shows the

resulting sizes for each dictionary generated by the conservation

curve method, the permutation prefix method and the merging

method. This reduction is crucial for increasing the quality of the

results and for making it computationally feasible to generate the

motif clustering. Once this dictionary is created, we proceed to

predict TFBMs using clustering techniques (Figure 7 E).

Completion of the TFBM map through clustering
Once obtained a set Bw of ‘‘DNA words’’ of potential regulatory

meaning, the next step is to extract biologically meaningful motifs.

We expanded previous work on the subject of motif prediction

[22–25] to integrate with a machine learning approach, not only

comparative genomics, but also intrinsic TF properties. We

assume that each ‘‘DNA word’’ in Bw is the center of a cluster

of size k. This cluster is generated by obtaining the k closest

(measured with a conglomerate distance) elements in Bw. The

algorithm find the subset of elements that create an entropy curve

that matches better the entropy curves generated from the training

set T . Each cluster is ranked according to a quality criteria based

on phylogenetic conservation and on average entropy. Then the

predictions that do not follow the general patterns of motifs are

eliminated using the new developed DDS filter. Finally, the

clusters that share similar motifs are removed and the similar

clusters are grouped.

Binding site cluster creation. Our TFBM discovery

method is based on the search for signature ‘‘DNA words’’ using

a similarity search strategy [57] using a novel sequence distance

approach that we term ‘‘conglomerate distance’’. The idea behind

this metric is to consider in the distance computation, the groups

of identical sub-sequences shared between two sequences,

providing extra weight to clusters of fragmented sub-sequences.

Given two sequences s1 and s2 of length w we define its

‘‘conglomerate distance’’ as

D(s1,s2)~w2{
Xc

i~1

L(si)
2, ð1Þ

where c is the number of identical sub-sequences si between s1 and

s2, and L(si) is the length of each of such sub-sequences. The

conglomerate distance is smaller when a larger number of

contiguous bases or ‘‘chunks’’ is equal. It provides higher

granularity than the Hamming distance and is specially useful

for large sequence lengths. Thus, we have obtained better results

with the ‘‘conglomerate distance’’ than with the Hamming

distance. For a detailed explanation of the ‘‘conglomerate

distance’’ see section S1.4.2 in Supporting Information S1 and

pseudo-code in Figure S2 in Supporting Information S1. For each

‘‘DNA word’’ we take the top k closest ‘‘DNA words’’ based on the

conglomerate distance (Eq. 1) and create an initial TFBM

prediction. We refine the ‘‘DNA words’’ with a greedy filtering

algorithm (see section S1.4.2 and pseudo-code in Figure S3 in

Supporting Information S1), so that the entropy profiles match

better known entropy profiles of other motifs. Figure 8 A is an

example of this clustering. Each ‘‘DNA word’’ cluster becomes a

TFBM prediction. We employed recent similarity search tech-

niques [58,59] that allowed us to perform large scale searches at

very high speed to obtain ‘‘DNA word’’ clustering. The algorithm

projects each ‘‘DNA word’’ into a low dimensional space of 16

bits. This allows high speed similarity searches and the efficient

construction of the nearest neighbors graph [60] of the ‘‘DNA

word’’ dictionary.

Cluster prediction ranking. Once the clusters are fitted,

they are ranked according tro two quality criteria. During the

dictionary generation, we keep for each ‘‘DNA word’’ of length w,

the number of times the word is conserved, c, and the number of

its appearances, t. With the recorded ci and ti of each site i of the

cluster, we calculate the phylogenetic conservation

score~
P

ci=
P

ti dividing the total number of conserved

instances
P

ci by the total number of instances
P

ti. Additionally,

to deal with the case of large w in which sequences appear only

once, we define a cscore, normalizing the total number of

appearances divided by the maximum number of appearances

max(t). We add both scores to create a ranking value.

R~scorezcscore~

P
ciP
ti

z

P
ti

max(t)
: ð2Þ

Higher values of R represent a better score. Finally, in the case of

equal score, the order is decided by the average entropy:

AH(PWM)~
{
Pw

j~1

P4
i~1 pj(xij) log4 pj(xij)

w
, ð3Þ

where xij are the elements of the PWM with w columns, and pj is

the probability of occurrence of the base represented by xij in the

column j. Figure 8 B shows an example of this ranking criterion.

Binding site cluster filtering by dynamic dimension

selection (DDS). Once the predictions are sorted by its

relevance provided by the ranking criterion (Eqs. 2 and 3), the

motifs that emerge naturally are filtered with a novel algorithm

called DDS filter (Figure 7 E). This filter is necessary since the

intrinsic properties describing the potential TFBM are of a

different nature (see Table 2 ). Depending on each TFBM, the

weight of their contribution to the cluster generation is different.

The DDS adaptively searches which components of the feature

space are most appropriate to cluster each potential motif. To

determine which motif predictions are more likely to belong to

TFs, we look at feature projections of the TFBMs. The filter is a

machine learning algorithm that processes as learning data, known

TFBMs. Then, it discriminates between predictions that follow

intrinsic properties of TFBMs. For each motif of length of w, the

filter works on the projection of the motif into a feature set of

(2wz4) fingerprints. Thelist of feature fingerprints is given in

Table 2 .

Since the projected space is of high dimension, the curse of

dimensionality [61] makes it difficult to discriminate between

motifs, e.g., for w~15, it generates 34-dimensional fingerprint

vectors and standard methods like one-class support vector

machines [62] do not prune the search space effectively. To solve

this filtering problem we developed the DDS filter. Given a d-

dimensional object query Q~(q1, . . . ,qd ), for each component qi

the DDS orders the objects in the database according to their

distance to qi. These sorted lists of results L~(l1, . . . ,lm) (where m
is the number of object in the database) are iterated one list lj at a

time. The DDS records incrementally the object IDs found in each
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component until it finds an object that appears a minimal number

of times or until the search reaches a maximum number of

iterations. An additional stage stores as a binary vector the

components used to validate the training data. The algorithm also

precomputes a binary vector B for all the objects in the database

(that remains when the object in question is removed) and finds the

closest mask in B for each query Q. The query is accepted to

belong to a cluster if the Hamming distance between the closest

vector of the cluster and the query is less than a threshold. The

DDS filter and its pseudo-code implementation (Figure S4 in

Supporting Information S1) is described in the section S1.4.2 in

Supporting Information S1. The key property that DDS filter

exploits to remove spurious TFBM predictions is that only a subset

of the feature set is relevant to perform the filtering and this subset

is different depending on the target object. Figure 8 C shows an

example of how the DDS filter works for three vectors of 10

components each. Vector 2 is compared against vectors 1 and 3.

The components of vector 2 that are closer to vector 1, are shown

in dark blue. and those closer to vector 3 in orange. The Euclidean

distance between vectors 1 and 2 is 98.60, and between vectors 2

and 3, 58.98. d2 is the only component in which vectors 2 and 3

are closer. If we remove this component, the Euclidean distance

between vectors 1 and 2 decreases to 1.01. The final clustering step

purges similar predictions (those with more than 80% of shared

sites) and clusters with low ranking score. Additionally, those

clusters with Pearson correlation r§0:85 are merged. Figure 8 D

depicts two predictions that are combined into a cluster since

r§0:85. Once the prediction of TFBMs is complete, the output is

a list of groups of ‘‘DNA word’’ clusters or TFBMs.

CBP prediction algorithm
After discovering TFBMs, and their respective binding sites, we

uncover the syntax of the crosstalk among them on the genomic

scale, estimating the combinatorial binding patterns (CBPs) of the

TFBMs. To achieve this, we developed a computational method

that finds common ‘‘motifs of motifs’’ based on the similarity of

their topological features. The algorithm extracts the promoters

that closely resemble an initial ‘‘query’’ promoter. Then, an

iterative process links the motifs so that their multiple alignments

are as large as possible and target as many genes as possible. We

define a ‘‘group’’ as a set of motifs, each separated by not more

than 1000 base pairs. The first step of the CBP generation

algorithm is to create these groups. For each extracted group, the

algorithm starts by searching for groups that share at least 3 motifs.

Once this candidate list is made, it is ordered according to the

degree of similarity shared with the group. The similarity is the

number of shared motifs, and higher similarity is preferred. The

algorithm greedily adds candidates. Next, we perform a multiple

alignment using the center star algorithm [63]. First, this algorithm

finds a center group and uses it to compute pairwise alignment

with the other sequences adding spaces as needed. The pairwise

alignment is calculated with the Smith Waterman aligner [64]. We

set the difference cost to 5, and the open and extended gap

penalties to 0. Motifs must align in at least 3 groups to be

considered. Thus, we generate CBPs with motifs that are

topologically aligned. We explain the pseudo-code (Figure S5 in

Supporting Information S1) of the CBP prediction algorithm in

detail in the section S1.5 in Supporting Information S1. Those

TFBM predictions that occur frequently with others are extracted

into CBPs which help us to decipher the common elements

required in gene regulation (Figure 7 F). The motifs that appear in

the generated CBPs set are extracted as the subset STFBM.

Figure 8. TFBM prediction method. (A) Cluster ‘‘DNA words’’ of length w by the conglomerate distance. A greedy algorithm removes sites that do
not keep the motif within a certain distance of the learning set. (B) Sort predictions by the phylogenetic score given by Eqs. 2 and 3. (C) Filter those
predictions that are far away from the learning set in the projected space of (2wz4) features. An example of how the DDS filter works is represented
in the table with three vectors of 10 components each. (D) Post-process similar predictions by grouping them if they are close (r§0:85), and an
example of two similar grouped predictions.
doi:10.1371/journal.pone.0049086.g008
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Ontology analysis and visualizations
We calculated the statistical significance of the ontologies of the

list of gene targets associated with all the STFBM and the CBPs

generated. To predict the gene targets of each STFBM, we used as

in [65] the Berg-von Hippel method [66]. The GO terms were

obtained from the AmiGO web server [67]. The statistical

significance of the GO terms of each list of genes was analyzed

using an enrichment approach based on the hyper-geometric

distribution. The GO terms were backpropagated from the final

term appearing in the gene annotation to the root term of each

ontology. As a background set, we used the list of all the genes in

the human genome with annotation on AmiGO. The multitest

effect influence was corrected by controlling the false discovery

rate, using the Benjamini-Hochberg correction. We developed the

‘‘ontology maps’’ concept to visualize the relationship between

TFBMs or CBPs and ontology terms. For two sets of ontologies A
and B, associated to TFBMs or CBPs, we calculated the ontology

similarity with the following distance:

ontd(A,B)~
2|DA\BD
DADzDBD

, ð4Þ

where DAD is the cardinality of set A. We take the top k TFBMs or

CBPs based on Eq. 4, to establish a topological graph linking those

top closest objects. Finally, we create a link between each TFBM

or CBP and their correspondent GO terms whose enrichment P-

values satisfy a significance level a. We chose k~10 and

a~0:00001 (for cellular component GOs, a~0:0001). We use

the GMAP algorithm [40] to visualize the topological graph.

Supporting Information

Supporting Information S1 Section S1 of this document

contains a more detailed description of the materials and methods;

section S2, additional ontology maps, validation results of TFBMs

and CBPs, and lists of newly found STFBMs and CBPs; and

section S3, a detailed description of the generated database files

and their formats. The predicted catalog of regulatory elements

can be downloaded from: http://computational-biology.

mpi-muenster.mpg.de/publications/TFBM/

(PDF)
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50. Chávez E, Figueroa K, Navarro G (2008) Effective proximity retrieval by

ordering permutations. IEEE Transactions on Pattern Analysis and Machine

Intelligence (TPAMI) 30: 1647–1658.
51. Skala M (2009) Counting distance permutations. Journal of Discrete Algorithms

7: 49–61.

52. Tellez E, Chavez E, Graff M (2011) Scalable pattern search analysis. In: Pattern

Recognition, Springer Berlin/Heidelberg, volume 6718 of Lecture Notes in

Computer Science. pp. 75–84.

53. Tellez ES, Chavez E (2010) On locality sensitive hashing in metric spaces. In:

Proceedings of the Third International Conference on Similiarity Search and

Applications. New York, NY, , USA: ACM, SISAP ’10, pp. 67–74.

54. Tung AKH, Zhang R, Koudas N, Ooi BC (2006) Similarity search: a matching

based approach. In: Proceedings of the 32nd international conference on Very

large data bases. VLDB Endowment, VLDB ’06, pp. 631–642.

55. Aggarwal CC, Yu PS (2000) The igrid index: reversing the dimensionality curse

for similarity indexing in high dimensional space. In: Proceedings of the sixth

ACM SIGKDD international conference on Knowledge discovery and data

mining. New York, NY, , USA: ACM, KDD ’00, pp. 119–129.

56. Deza MM, Deza E (2009) Encyclopedia of Distances. Berlin Heidelberg:

Springer.

57. Zezula P, Amato G, Dohnal V, Batko M (2005) Similarity Search: The Metric

Space Approach. Secaucus, NJ, , USA: Springer-Verlag.

58. Müller-Molina AJ, Shinohara T (2009) Efficient similarity search by reducing i/

o with compressed sketches. In: SISAP. IEEE, pp. 30–38.

59. Müller-Molina AJ (2009) Obsearch: a high performance similarity search engine

for java. In: Proceedings of the 2009 Second International Workshop on

Similarity Search and Applications. Washington, DC, , USA: IEEE Computer

Society, SISAP ’09, pp. 143–145.

60. Samet H (2005) Foundations of Multidimensional and Metric Data Structures.

San Francisco: Morgan Kaufmann Publishers Inc.

61. Chavez E, Navarro G, Baeza-Yates R, Marroquin JL (2001) Searching in metric

spaces. ACM Comput Surv 33: 273–321.

62. Schölkopf B, Smola AJ, Williamson RC, Bartlett PL (2000) New Support Vector

Algorithms. Neural Comput 12: 1207–1245.

63. Gusfield D (1997) Algorithms on Strings, Trees, and Sequences: Computer

Science and Computational Biology. New York: Cambridge University Press.

64. Smith TF, Waterman MS (1981) Identification of common molecular

subsequences. Journal of Molecular Biology 147: 195–197.
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