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In this article, we describe and analyze the chaotic behavior of a conductance-based

neuronal bursting model. This is a model with a reduced number of variables, yet it

retains biophysical plausibility. Inspired by the activity of cold thermoreceptors, the model

contains a persistent Sodium current, a Calcium-activated Potassium current and a

hyperpolarization-activated current (Ih) that drive a slow subthreshold oscillation. Driven

by this oscillation, a fast subsystem (fast Sodium and Potassium currents) fires action

potentials in a periodic fashion. Depending on the parameters, this model can generate

a variety of firing patterns that includes bursting, regular tonic and polymodal firing. Here

we show that the transitions between different firing patterns are often accompanied by a

range of chaotic firing, as suggested by an irregular, non-periodic firing pattern. To confirm

this, we measure the maximum Lyapunov exponent of the voltage trajectories, and the

Lyapunov exponent and Lempel-Ziv’s complexity of the ISI time series. The four-variable

slow system (without spiking) also generates chaotic behavior, and bifurcation analysis

shows that this is often originated by period doubling cascades. Either with or without

spikes, chaos is no longer generated when the Ih is removed from the system. As the

model is biologically plausible with biophysically meaningful parameters, we propose it

as a useful tool to understand chaotic dynamics in neurons.

Keywords: chaos, hyperpolarization-activated current, conductance-based model, bursting, period doubling

1. INTRODUCTION

Chaotic behavior in neural systems has been observed for many years. Experimental observations
of non-periodic responses range from molluscan neurons (Aihara et al., 1984) to rat sciatic nerves
(Gu, 2013), including lobster CPGs (Abarbanel et al., 1996) and fish’s Mauthner cells (Faure et al.,
2000) (for a review, see Korn and Faure, 2003). In addition, chaotic behavior has been analyzed in
detail in several models of neural excitability. Notable examples include the Plant model for the R15
bursting cell in Aplysia (Plant and Kim, 1976) that shows a chaotic regime between bursting and
beating firing modes (Canavier et al., 1990); the Chay model of pancreatic β cells (Chay and Rinzel,
1985); and the Huber & Braun (H&B) model of cold thermoreceptors (Braun et al., 1998; Feudel
et al., 2000).
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Most of the models reported to show chaotic activity present
different types of bursting oscillations, that arise from the
interaction between fast membrane voltage dynamics and a
slower current or intracellular mechanism, such as Calcium
dynamics (Chay and Rinzel, 1985; Canavier et al., 1990; Falcke
et al., 2000). Because of this evidence, the interaction of different
time scales has been proposed as the origin of the chaotic
behavior. A simpler model, of only 3 variables, that produces
burst firing and is known as the Hindmarsh-Rose model
(Hindmarsh and Rose, 1984), presents chaotic dynamics for some
parameter combinations. Despite its simplicity, it shows a variety
of aperiodic behaviors that are being actively studied by several
groups (Holden and Fan, 1992; Abarbanel et al., 1996; Barrio
and Shilnikov, 2011; Barrio et al., 2014), giving useful insight
into the intrinsic mathematical mechanisms that drive bursting
dynamics. However, a drawback of the Hindmarsh-Rose model is
that some of its equations and parameters lack actual biophysical
meaning, and thus its usefulness to interpret biological data is
somewhat limited.

Instead, here we report and analyze the chaotic behavior
of a bursting model inspired on the temperature-dependent
firing patterns observed in cold thermoreceptors (Braun et al.,
1980). Our model is derived from the H&B model (Braun
et al., 1998), in which a slow membrane oscillation is driven
by a mixed Sodium/Calcium current and a Calcium-activated
Potassium current. Fast Sodium and Potassium currents produce
action potentials, and the usual effect of temperature on channel
kinetics makes the model to display different spiking patterns
such as bursting, tonic, skipping and chaotic. Recently, a
hyperpolarization-activated current (Ih) was added to the model
in order to reproduce and explain experimental results with
genetic and pharmacological suppression of Ih (Orio et al., 2012).
This extended model will be referred here as HB+Ih and it
is the main object of study in this paper. We present here
a parameter sweeping approach (Barrio and Shilnikov, 2011;
Barrio et al., 2014) to explore the regions of chaotic behavior and
its dependence on certain model parameters.

The original H&B model shows chaotic behavior at very
low temperatures (<10◦ C), thus limiting the possible biological
interpretations of this behavior. In contrast, we found that the
new HB+Ih model displays chaotic behavior at physiological
temperatures, namely in the 32–38◦C range. Moreover, the
chaotic behavior is highly dependent on the presence of Ih and
its associated activation parameters; this is one of the most
relevant features of the extended model. Importantly, we also
show that chaos relies only in the slow oscillation subsystem,
as chaos persists in the absence of the fast conductances that
cause spiking. In addition, a bifurcation analysis shows that the
transition from periodic to aperiodic behaviour—that is, from
simple to chaotic dynamics—is organized by period doubling
cascades (Guckenheimer and Holmes, 1983).

The manuscript is organized as follows: in Section 2 we
describe the HB+Ihmodel and the numerical methods employed
to analyze chaotic behavior. In Section 3, we present the results
that include numerical simulations of the full system where we
calculate different measures of chaos as we vary the system’s
parameters. Then we switch to the slow subsystem, doing

systematic parameter explorations and bifurcation analysis. In
Section 4 we summarize and discuss our findings.

2. METHODS

2.1. Mathematical Model
The basis of our model is the Orio et al. (2012) model that
reproduces the static firing patterns of cold thermoreceptors. The
equation for the membrane voltage V is:

Cm
dV

dt
= −Isd − Isr − Ih − Id − Ir − Il , (1)

where Cm is the membrane capacitance; Id, Ir , Isd, Isr are
depolarizing (NaV), repolarizing (Kdr), slow depolarizing (NaP /
CaT) and slow repolarizing (KCa) currents, respectively. Ih stands
for hyperpolarization-activated current, and lastly Il represents
the leak current. Currents are defined as:

Ii = ρ(T)giai(V − Ei) i = d, r, sd, h, l; (2)

Isr = ρ(T)gsr
a2sr

a2sr + 0.42
(V − Esr) , (3)

where ai is an activation term that represents the open probability
of the channels (al ≡ 1), with the exception of asr that represents
intracellular Calcium concentration. Parameter gi is the maximal
conductance density, Ei is the reversal potential and the function
ρ(T) is a temperature-dependent scale factor for the current. The
activation terms ar , asd, and ah follow the differential equations:

dai

dt
= φ(T)

a∞i (V)− ai

τi
i = r, sd, h, (4)

where

a∞i (V) =
1

1+ exp
(

−si
(

V − V0
i

)) . (5)

On the other hand, asr follows

dasr

dt
= φ(T)

−ηIsd − κasr

τsr
. (6)

Finally,

ad = a∞d =
1

1+ exp
(

−sd
(

V − V0
d

)) . (7)

The function φ(T) in Equations (4) and (6) is a temperature
factor for channel kinetics. The temperature-dependent
functions for conductance ρ(T) in Equations (2–3), and for
kinetics φ(T) in Equations (4) and (6) are given, respectively, by:

ρ(T) = 1.3
T− 25
10 φ(T) = 3

T− 25
10 . (8)

Unless stated otherwise, the parameters used are given inTable 1.
Note that our set of equations presents some modifications from
the original model in Orio et al. (2012). The first difference is
that we do not consider the cold-inhibited trek current. This
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TABLE 1 | Parameters of the HB+Ih model.

Parameter Value Units

Cm 1.0 µF/cm2

gd 2.5 mS/cm2

gr 2.8

gsd 0.21

gsr 0.28

gl 0.06

gh 0.4

V0
d

−25 mV

V0r −25

V0
sd

−40

V0
h

−85

κ 0.18 –

η 0.014 cm2/µA

τr 2 ms

τsd 10

τsr 35

τh 125

sd 0.25 mV−1

sr 0.25

ssd 0.11

sh −0.14

Ed ,Esd 50 mV

Er ,Esr −90

El −80

Eh −30

potassium current also contributes to the cold response as its
inhibition produces depolarization of the cell (Viana et al., 2002;
Noël et al., 2009). As the temperature dependence of the model
is secondary to our objective, for simplicity reasons we omitted
it. Secondly, and partially compensating the absence of the trek
current, the leak current Il is now temperature-dependent (as the
rest of ionic currents) due to the ρ(T) temperature factor. We
also want to stress a departure from the original H&B model,
namely the introduction of a saturable asr-dependent expression
in equation 3. This modification, already introduced byOrio et al.
(2012), is necessary in order to perform a meaningful parameter
exploration. In the original H&B formulation, asr can grow far
above 1 when Isd is high, making the gsr parameter no longer to
be themaximal sr conductance.

2.2. Numerical Estimation of Chaotic
Behavior
2.2.1. Numerical Calculation of Maximal Lyapunov

Exponent for Ordinary Differential Equations
The Lyapunov exponents give a measure of the
exponential separation of nearby trajectories in a given

direction (Guckenheimer and Holmes, 1983; Liu, 2010; Strogatz,
2014). In particular, a maximal Lyapunov exponent (MLE)
greater than zero indicates sensitive dependence to initial
conditions and, hence, is widely used as an indicator of chaos.

We calculated MLEs from trajectories in the full variable
space, following a standard numerical method based on that of
Sprott (2003) (see also Jones et al., 2009).

2.2.2. Calculation of Lyapunov Exponent from Interval

Time Series
In order to determine the Lyapunov exponent (LE) of the inter-
spike interval (ISI) series, we proceeded as described in Kantz and
Schreiber (2004). The method is based on Takens reconstruction
theorem (Broer and Takens, 2011). Briefly, an ISI time series of
length n is transformed into anm-dimensional reconstructed Rm
phase space, in which every k-th state point is specified by a vector
with m elements, each one of them taken from the original ISI
time series:

Pk = [ISIk, ISIk+ 1,ISIk+ 2, . . . ,ISIk+m− 1], k = 1, . . . , n−m+ 1.

For a given state point Pi ∈ Rm, we select all its neighbors {P
∗
i }

within a certain vicinity of radius ǫ and we measure the mean
Euclidean distance d0 from Pi to the elements in {P∗i }. The value
of ǫ is chosen and constantly adjusted so that a maximum of
0.05% of points in Rm fall within the vicinity. Next, the distances
d1, d2, . . . dr are calculated from the following points in the series
Pi+ 1, Pi+ 2, . . . , Pi+ r to the corresponding points that follow the
elements in {P∗i }, namely the sets {P∗i+ 1}, {P

∗
i+ 2}, . . . , {P

∗
i+r}. The

procedure is repeated for every single point in the series, thus
obtaining a large number of distances d0, d1, . . . , dr .

Finally, we take the averages of the distances over all points
〈

d0
〉

,
〈

d1
〉

, ...,
〈

dr
〉

and the LE is taken to be the slope of the plot
log(

〈

di
〉

) vs. i. We employed r = 6 and calculated LE for m
(reconstructed dimension) = 7, 9 and 11. If for any value ofm the
regression yielded a p-value lower than 0.05 for the slope being
different to 0, then we averaged the corresponding LE values. The
number r, steps taken into account to advance the ISI series, and
m, the embedding dimension, were empirically chosen by looking
at the consistency of the results.

2.2.3. Lempel-Ziv Complexity Estimation
Lempel-Ziv complexity estimation method is an approximation
to the Kolmogorov and Martin-Löf definition (Lempel and Ziv,
1976). This uses the idea that a computer program—as it scans
an n-word string S = s1s2 · · · sn from left to right—adds a new
word to its memory (or “vocabulary”) every time it discovers a
sub-string of consecutive digits not previously encountered. The
size of the vocabulary encountered and the rate at which new
words are found along S are used in the Lempel-Ziv complexity
measure. In this paper we are interested in the analysis of spike
trains, thus to generate a binary sequence for a given spike-train
it is necessary to divide the complete interval of measurement
analysis in small sub intervals of size less than the minimum ISI
and put one if there is a spike in the interval and zero if not.

Roughly speaking, the calculation of complexity is given by
c(n)/b(n) where b(n) = n/ log2 n and c(n) counts the number
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of steps necessary to reconstruct the sequence s1s2 · · · sn of size
n. The procedure to find c(n) can be explained with the diagram
given in Kaspar and Schuster (1987) and summarized as follows:
the first digit s1 is always inserted to the vocabulary. Then, let sr
be the last digit of the sequence S that has been reconstructed.We
consider Q = sr+ 1 and ask if Q is contained in the vocabulary
of S. If sr+ 1 can be obtained by repeating elements from the
vocabulary, we define a new Q = sr+ 1sr+ 2 and ask if it is in
the vocabulary of S and so on until Q becomes so large that it
cannot be obtained by copying a word from the vocabulary of
SQπ (the operator π discards the last string added to SQ). Then,
a new word is inserted into the vocabulary. c(n) is the number c of
production steps to create a string, being the steps the vocabulary
elements plus any repetition operation.

2.3. Bifurcation Analysis
Equilibrium states and periodic solutions of a dynamical system
may undergo critical transitions under parameter variation.
These re-arrangements may result in drastic changes —known
as bifurcations— of the global dynamics including the onset
of chaos (Guckenheimer and Holmes, 1983; Broer and Takens,
2011; Strogatz, 2014). Among the most simple bifurcation
phenomena that one can find are saddle-node or limit
point (LP) bifurcations —characterized by the sudden birth
or disappearance of two equilibrium points—; and a Hopf
bifurcation (HB) —where a periodic orbit is born from an
equilibrium.

For the purposes of this work, the so-called period doubling or
flip bifurcation plays a crucial role to understand the transition to
chaos. This bifurcation is characterized by the loss of stability of
a periodic orbit of period, say T, and the simultaneous birth of
a secondary periodic orbit with period ≈ 2T. This process may
repeat itself many times under parameter variation —within a
relatively small range of parameter values— in a phenomenon
knows as a period doubling cascade. At each occurrence of
a period doubling bifurcation within the cascade a new orbit
emerges with approximately twice the period of the one that had
been born at the previous bifurcation. The consequence of this
mechanism is the existence of aperiodic (chaotic) dynamics for a
range of parameter values at one end of the cascade bifurcation
values; see (Guckenheimer and Holmes, 1983; Broer and Takens,
2011) and the references therein formore details. Today, different
software packages allow one to detect and continue a given
bifurcation in one or two control parameters. In this paper, we
make use of XPPAUT (and the numerical routines within it) to
carry on a careful, detailed computational bifurcation analysis of
equilibria and periodic orbits.

2.4. Numerical Simulation and Analysis
For long simulations, to obtain large ISI sequences, the model
was implemented and run in theNeuron simulation environment
(Hines and Carnevale, 2001) and run from Python scripts
(Hines et al., 2009). Typically, ISI sequences were obtained
from 1,000 s of simulation after 30 s of equilibration that were
discarded to remove transient behaviors. For MLE calculation,
simulations were solved with a fourth-order Runge-Kutta scheme
written in Python. No detectable differences were found between

Python and Neuron simulations. Data analysis and plotting was
performed with Python and the libraries Numpy, Scipy, and
Matplotlib.

3. RESULTS

3.1. Chaotic spiking in the HB+Ih Model
The HB+Ih model (Equations 1–8) studied here is an extension
of the Huber & Braun (H&B) model of cold thermoreceptor
(Braun et al., 1998). To this model, a hyperpolarization-activated
current (Ih) was added in order to agree with experimental
data obtained with Ih blockers and HCN1 knock-out mice
(Orio et al., 2012). Like the original model, and reproducing
the behavior of cold thermoreceptors under static temperature
conditions, this model shows a variety of firing patterns as
the temperature is changed. Figure 1 shows typical time series
(voltage trace) of deterministic simulations of the model at five
different temperatures. At 20, 24.76, and 26 ◦C themodel displays
a periodic bursting pattern, decreasing the number of spikes per
burst as temperature increases. At 33 ◦C, periodic tonic firing
is observed, and at 36.3 ◦C, the pattern becomes irregular with
“skipping,” i.e., some oscillations do not generate a spike and thus
the intervals are distributed in a polymodal fashion. The irregular
firing, evidenced in the ISI plot and the ISI histogram at 36.3 ◦C,
suggest a typical chaotic dynamic.

Figure 2A shows an ISI bifurcation plot against temperature.
Visual inspection shows a high multiplicity of ISI values at
almost every transition between firing modes: around 35 ◦C
when skipping patterns appear (right zoom), around 29 ◦C when
bursting occurs (left zoom) and then each time a new spike
is added to the bursting pattern. This multiplicity of intervals
suggests an irregular firing which is characteristic of chaotic
behavior. However, calculation of the Lyapunov Exponent (LE)
from the ISI time series (color code in Figure 2) reveals that not
all the spike patterns that have a large number of ISI values are
chaotic. Some of them, like the pattern at 24.76 ◦C in Figure 1B,
have a large number of ISI values but still are highly repetitive
and thus display a LE value near 0. We designate these firing
patterns as “complex” but not chaotic. There are also some
chaotic firing patterns around 10 ◦C, near the transition to
the tonic firing behavior, like the original H&B model, which
display chaos only between 7 and 12 ◦C (Feudel et al., 2000).
However, the H&B model does not display chaotic dynamics at
higher temperatures, where the model becomes physiologically
more relevant. We suspect that chaos at high temperatures is
introduced by the presence of the Ih, and this is confirmed in
Figure 2B where our model is simulated in the absence of Ih
(gh = 0). This diagram looks different to what has been described
for the original H&Bmodel (Feudel et al., 2000), because of some
differences in parameters and the use of a saturable function of asr
in the Isr expression (equation 3). However, important qualitative
features are conserved: no chaos (nor complex firing patterns)
is observed above 10 ◦C, and chaotic firing patterns are only
seen near the transition to tonic firing at low temperatures. This
means that chaos at high temperatures is mainly introduced by Ih
and not by the other minor modifications that were made to the
model (see Section 2.1).
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FIGURE 1 | Firing patterns observed in the HB+Ih model. (A–E) Typical voltage time series (left), Inter-spike intervals (ISIs, middle) and ISI histograms (right) for

the model at the shown temperatures. In (A–D) the histograms consider around 1100 spikes from 150 s simulations. In (E), the histogram was built from 2977 spikes

obtained in a 1000 s simulation.

Although the HB+Ih model was inspired in the firing
patterns of cold thermoreceptors at different temperatures, the
combination of ion currents in this model is not exclusive to
sensory neurons. The dynamics of this model can resemble other
neurons in the CNS, where temperature changes are of lesser
importance. Thus, we decided to study how the chaotic dynamics
of the model depends on other parameters and the rest of the
work presented here was performed with the temperature fixed
at 36 ◦C, very close to the physiological value.

3.2. Chaotic Behavior in the Full System
and the Role of Slow Conductances
We simulated the model with different combinations of the slow
currents maximal densities gsd, gsr , and gh, and calculated the
Lyapunov exponent of the ISI time series and the maximum
Lyapunov exponent (MLE) from the voltage trajectories. As
an alternative measure of chaotic behavior, we calculated the
Lempel-Ziv complexity of the ISI data which has been used
previously to prove the existence of chaos in neural models
(Xu et al., 1997; Lu et al., 2008; Yang et al., 2009) and other
disciplines (Frank and Stengos, 1988; Lu et al., 2008). MLE and
complexity measures are shown in Figures 3B,C, respectively,
together with the mean firing rate (average spikes per second)
in Figure 3A and the firing pattern (bursting, tonic, skipping
or no firing) in Figure 3D. In particular, Figure 3A shows that
most of the explored region in parameter space corresponds to

firing rates below 10 spikes/s. Though MLE (Figure 3B) and
Complexity (Figure 3C) results are not completely overlapping,
a high degree of correspondence can be seen on the results.
Moreover, LE from ISIs mostly agrees with the results of MLE
(not shown in Figure 3 but see for instance Figure 6A ). Chaotic
behavior is concentrated in regions with low (<5) firing rate
mostly, where skipping or polymodal firing pattern occurs. There
is also chaotic firing at higher firing rates, but in narrower regions
of the parameter space.

By looking at the center column of Figure 3 (gsd vs. gh),
we note that as gsd increases the system alternates between
several firing patterns and it exhibits chaotic firing in a vicinity
of almost every transition. To illustrate this better, we selected
gh = 0.2 (white dashed line in B and D) and performed
an ISI bifurcation diagram on the parameter gsd. Figure 4A
shows that the model displays several firing modes and most
(if not all) of the transitions between them imply a chaotic
behavior. We find noteworthy the transitions between different
skipping (polymodal) firing patterns —three of which are shown
in Figure 4B—, and a transition between “skip-bursting“ and
regular tonic modes (denoted as (4) and (5), respectively).
Figure 4 also shows how these chaotic transitions that separate
different firing modes are created. Take for instance firing mode
(1) where the ISI value is kept almost constant for a relatively
large range of gsd values. As parameter gsd becomes greater than
a certain critical value (inset), there are two possible ISI values.
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FIGURE 2 | (A) ISI bifurcation plot of the HB+Ih model as temperature is changed. Each temperature was independently simulated (from 0 to 40 ◦C in 0.01 ◦C

intervals), and the spikes were considered to occur each time the voltage crossed a −15 mV threshold. The color of the dots represents the Lyapunov exponent

calculated from the ISI series. Two sections are shown below in expanded horizontal scale. (B) ISI bifurcation plot of the model in the absence of Ih (gh = 0).

This duplication of ISI values continues as gsd is further increased,
giving rise to what can be effectively understood as a cascade of
“ISI doublings” —very much like in a period-doubling scenario.
We confirmed this by repeating the plot at a much higher
resolution (i.e. more values of gsd, separated by 10−5mS/cm2)
(inset). It is important to recall that each value of gsd was
independently simulated, so there is no possible effect of the
direction of parameter change; we also inspected the critical ISI
time series to check that there were no transients involved in the
results, thus ruling out an artifact due to initial conditions.

The limit behaviour where gh = 0 can readily be seen in
the center and right columns of Figure 3. This visual inspection
suggests that in the absence of Ih there is no chaotic behavior. To
test this idea, we explored again the (gsd, gsr) parameter subspace
but now considering gh = 0 in Figure 5. The calculations clearly
show that, in the absence of Ih, no chaotic behavior is detected,
even though similar firing rates and firing patterns are produced.

In order to better characterize the involvement of Ih in the
chaotic behavior of the model, we explored how the system
depends on the time constant for this slow current, namely
the parameter τh. Figure 6A shows an ISI bifurcation diagram
against τh, showing that indeed the chaotic behavior depends
on this parameter. In particular, the chaotic features disappear
when the time constant is above 210 ms. In this Figure, we also
show the good correspondence between theMLE calculated from

voltage traces (top) and the LE calculated from the ISI sequences
(see color code). Figures 6B,C show that the chaotic behavior
depends on all the slow time constants, τh, τsr and τsd.

3.3. The Chaotic Behavior in the Slow
Subsystem
We further reduced the model by eliminating the fast spike
mechanism and leaving only the slow oscillation mechanism.
In other words, we take the instantaneous variable ad(t) ≡ 0
and the fast recovery variable ar(t) ≡ 0, which is the same as
setting the parameters gd = gr = 0. In this way, the system
now reduces, effectively, from five to four dimensions. As shown
in Figure 7, the model still retains a chaotic behavior, showing a
complex oscillatory pattern. Computations also show that —for
certain parameter values— the solutions of interest converge in
the long term to a strange attractor which is shown in Figure 7C

in a projection onto the subspace of the ah, asr , and asd variables.
To characterize this system, Figure 7B shows a return interval
map (measured inms) considering the voltage at the equilibrium
point as a threshold (red line in Figure 7A). Figure 8A shows a
bifurcation diagram that depicts the dependence of these return
intervals on parameter gsd; in addition, the color scale shows
the corresponding LE measures. Note that chaotic regions are
preceded —as gsd is increased— by doublings of return intervals
very much like in Figure 4A.

Frontiers in Computational Neuroscience | www.frontiersin.org 6 March 2017 | Volume 11 | Article 12

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Xu et al. Ih-Induced Chaos in Cold Thermoreceptor Model

FIGURE 3 | Chaotic behavior of the model at different combination of the slow conductance densities gsd , gsr and gh. (A) Firing rate in spikes/s. (B) MLE

of the voltage trajectories. (C) Lempel-Ziv complexity. (D) Firing pattern. The color bar indicates: 0, no oscillations; 1, sub-threshold oscillations (no spikes); 2,

oscillations and spikes with skipping; 3, regular tonic spiking; 4, burst firing (the shade represents the number of spikes per bursts); 5, tonic with firing rate between 20

and 50 spikes/s; 6, firing rate higher than 50 spikes/s.

With this 4-dimensional reduced system we were also able
to perform a bifurcation study of equilibrium points and
periodic orbits, shown in Figure 8B for the voltage vs. the gsd
parameter (the inset shows only the fixed points in a wider gsd
range). This bifurcation diagram shows the birth of a stable
periodic orbit at a Hopf bifurcation (labelled as HB). As gsd
increases, this primary periodic orbit becomes the germ of a
period doubling cascade (indicated by arrows in the enlargement
in Figure 8C). This sequence of period doubling transitions
coincides with the generation of chaotic regions identified in
the return intervals plot. Note that only a limited number of
period doubling branches were calculated and are shown here,
because of space constraints. The period doubling events kept
appearing as more branches were followed in the bifurcation. The
chaotic regime is pulled back by a “reversed” period doubling
mechanism as gsd is further increased; two of these bifurcations
are illustrated here in inlet C2. Finally, for gsd > 0.3, a single
stable periodic orbit exists. The oscillations eventually disappear

at the gsd value corresponding to label LP which coincides
with a saddle-node or limit point bifurcation of equilibria;
this phenomenon is known as an infinite-period bifurcation or
saddle-node homoclinic point (Aguirre, 2015). This combination
of homoclinic phenomena and period-doubling cascades has
been also reported and described as one of the mechanisms that
produce chaos in the Hindmarsh-Rose equations (Linaro et al.,
2012; Barrio et al., 2014, 2017).

A 2-parameter bifurcation diagram for the slow system is
shown in Figure 9A. In this plot, we see how the period-doubling
points, the Hopf bifurcation, and the Limit-Point bifurcation
that ends the oscillation extend as bifurcation curves as both
parameters gsd and gh are allowed to vary. As the maximal
conductance gh is increased, more period doubling curves are
added, enlarging the region of parameter values that allow chaos.
Figure 9B shows the same bifurcation curves superimposed to
theMLE values calculated from voltage trajectories. The resulting
picture is revealing in that it shows how the regions of higher
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FIGURE 4 | (A) ISI bifurcation of the model as the gsd parameter is changed and gh is fixed to 0.2 mS/cm2. Numbers denote different firing modes between which

chaotic regions are found. Inset shows a detail of the ISI-doubling events to the right of region (1), from gsd = 0.217–0.219. (small black bar in the large plot) (B)

Sample voltage trajectories showing the firing modes. (1), (2), and (3) correspond to different skipping patterns; (4) is bursting with skipping; (5) is regular tonic; and (6)

is regular bursting. In all traces the scale bar is 250ms.

MLE fit perfectly into the predicted limits of chaotic dynamics
generated by the period doubling phenomena. Hence, these
findings emerge as another strong evidence to point out Ih as the
main responsible for the chaotic behavior of the model.

This result is further enforced by the realization that —as with
the full (spiking) system— there is no chaos in the absence of Ih.
Indeed, the period doubling bifurcation curves actually do not
touch the gh = 0 axis. This fact becomes evident when the 1-
parameter bifurcation is done with gh = 0. Figure 10 shows that
this system with gh = 0 indeed has no period doubling events,
retaining only the Hopf and Limit-Point bifurcations.

4. DISCUSSION

In this article we have shown that a conductance-based model
(denoted as HB+Ih model) displays chaotic behavior in many
biologically plausible regions of the explored parameter space.
These results are based on different numerical techniques to

uncover and try to explain the regions of chaotic oscillations.
To show the presence of chaos in a quantitative way, we have
measured the maximal Lyapunov exponent of the system for
different parameter scenarios, the Lyapunov exponent of the inter
spike interval series and estimated the Lempel Ziv complexity.
Bifurcation analysis on the reducedmodel without spikes allowed
us to identify several period doubling cascades and propose them
as the mathematical mechanism that originates chaos.

We discovered that the appearance of chaotic dynamics is
related to the presence of a hyperpolarization-activated current
(Ih), commonly found in neurons throughout the Central
Nervous System (Biel et al., 2009; He et al., 2014) and that
plays important roles in rhythmic firing, also controlling the
membrane potential and regulating synaptic plasticity. The other
distinctive elements of the model resemble persistent Sodium
currents (INa,P) and Calcium-activated Potassium channels
(IK,Ca), also found in neurons that generate oscillatory rhythms
(Llinás, 1988; Sanhueza and Bacigalupo, 2005). Thus, this
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FIGURE 5 | Absence of chaos in the model when gh = 0. (A–D) are as described in Figure 3.

model can serve as a general framework for studying how the
interactions between different ion currents can generate chaotic
oscillations.

The HB+Ih model offers the advantage of having a few
number of variables while its equations and parameters are
biophysically meaningful. In particular, chaos is observed
in a 4-dimensional reduced model that considers the slow
variables only. Unstable orbits and chaotic dynamics have
been experimentally described in thermoreceptors (Braun et al.,
1999a,b). The original H&B model, however, only exhibits such
complex dynamics at around 8◦C, far from the physiological
range (Feudel et al., 2000). The HB+Ih model, on the other hand,
readily displays irregular and chaotic dynamics at temperatures
above 30◦ C, and thus it may be a more suitable system
to explain the dynamics of cold thermoreceptors. Most of
the parameter explorations presented here are based on the
maximum conductance densities, that reflect the constantly
changing levels of ion channel expression. Thus, the variety of
firing patterns that we found here and the chaotic transitions
between them are expected to be found under physiological
conditions.

Some adjustments incorporated by Orio et al. (2012)
(compared to the original H&B model Braun et al., 1998) made a
further shift toward biological plausibility. These changes include
a slightly higher voltage dependence of the INa,P – in accordance
to what has been measured in somatosensory neurons (Herzog
et al., 2001). Also, in the original H&B model the Isr current
depends linearly on asr , a variable that is not naturally bound

by the model. Therefore, in a parameter space exploration where
Isd can increase to high levels (because of a high gsd value), asr
would follow it to values much higher than 1, then losing its
meaning as a channel open probability. In contrast, in the HB+Ih
model, this term was replaced by a saturable binding term (see
Equation 3) that allows the model to remain meaningful at high
values of gsd.

Under the variation of parameters, even minimal 3-variable
models of bursting neurons exhibit a rich variety of periodic and
aperiodic dynamical patterns corresponding to different spiking
and bursting regimes. The transitions between these patterns
may contain complex dynamical structures such as period-
doubling (PD) cascades and deterministic chaos. For instance,
it has been reported that transition mechanism from tonic
spiking to bursting in a class of bursting neurons (square-wave
bursters) is based on periodic spiking with a series of period-
doubling bifurcations followed by a homoclinic bifurcation
of a saddle equilibrium (Terman, 1992; Wang, 1993; Feudel
et al., 2000). Moreover, chaos has been proposed as a key
signature for the transition between bursting and tonic firing
(Chay, 1985; Rinzel and Ermentrout, 1989; Canavier et al.,
1990; Terman, 1992; Feudel et al., 2000) (Terman (1992) gives
a rigorous proof of the existence of Smale horseshoes). Then
it has been shown that chaotic spiking can be generated close
to the transition from spiking to bursting through period-
doubling cascades (Medvedev, 2006). In our model, chaotic
regimes have been detected in regions at the transitions
between different types of oscillations. The first region of chaos
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FIGURE 6 | Chaotic behavior dependency on the time constants of slow conductances τsd , τsr and τh. (A) ISI bifurcation diagram as τh is changed. Color

of ISIs represents the LE of the ISI sequence. At the top, the line depicts the MLE of the voltage trajectories for the same values of τh. (B) MLE of voltage trajectories

for different combinations of τh and τsd . (C) MLE for different combinations of τh and τsr . In (B,C), the white line indicates the corresponding region of the parameter

space that is explored in (A).

FIGURE 7 | Chaotic behavior in the slow subsystem of the model. (A) Voltage trajectory of the model with gd = gr = 0, and gsd = 0.222
(

mS/cm2
)

. The rest

of parameters are as given in Table 1. The red line depicts Veq, the value of V at the unstable singular point associated to the attractor. (B), Time intervals between

successive crossings (with positive slope) of the Veq value. (C), 3D plot of a strange attractor in the asd , asr , ah sub-space (black trace). The 2-D projections onto the

corresponding planes are shown in color.

appears through the transition from subthreshold oscillations
(with no spikes) to irregular spiking (also called polymodal
firing or skipping). This chaos appears through a cascade
of Period Doublings, unrelated to the Hopf bifurcation that
causes the appearance of subthreshold oscillations. In fact,
when exploring different combination of gsd and gh, the
range of gsd exhibiting subthreshold oscillation with no spikes
become widened as gh increases, thus separating the Hopf

bifurcation from the chaotic region. Even though at smaller
gh the onset of chaos gets closer to the bifurcation, they
seem to be unrelated. A second region of chaos emerges
via periodic spikes to aperiodic spiking transition. These two
kinds of transitions from periodic to aperiodic oscillations
have been described as a mechanism that triggers chaotic
spiking action potentials via period-doubling bifurcations. In
the higher firing rate regimes, the HB+Ih model generates
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FIGURE 8 | Bifurcation analysis of the slow subsystem. (A) Intervals between Veq crossings at different gsd values. The colors represent the LE of the interval

sequence. (B) Bifurcation of the system, as calculated by continuation methods in XPPAUT. Red lines represent stable fixed points; black line is an unstable fixed

point. Green lines are maxima and minima of stable periodic atractors, blue are maxima and minima of unstable periodic attractors. The inset shows only the

stable/unstable fixed point in a wider gsd range. HB = Hopf bifurcation, LP=Limit point. (C), zoom of the C1 and C2 regions shown in (B). In C1, the arrows show

period doubling events. In this Figure, gh = 0.4

the third type of chaos at the transition from skipping to
burst firing. In this case, the HB+Ih model exhibits chaotic
bursting.

The period-doubling scenario was generally detected at one
boundary of the chaotic regions (for instance, increasing gsd
but not decreasing), being the other boundary of a different
type. While other possible transitions to chaos have been found

to be related to a boundary crisis (Arnol’d et al., 1994) as in
the Hindmarsh-Rose model (Holden and Fan, 1992), here this
question will remain the subject for future work.

The importance of time-scale differences in Hodgkin-Huxley
type equations has already been investigated by some authors
(Doi et al., 2001; Doi and Kumagai, 2005). In our case,
we explored the contribution of different time scales and
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FIGURE 9 | (A) Two-D parameter bifurcation of the slow subsystem. The HB, LP and PD (period doubling) points identified in Figure 8B are followed as gsd and gh
change. Note that the PD curves do not touch the gh = 0 axis. (B), The bifurcation curves are superimposed to the MLE calculated from voltage trajectories of the

same system, to show that PD cascades delimit the chaotic regions. Dotted lines in (A,B) (black and white, respectively) refer to the parameter region explored in

Figure 8.

FIGURE 10 | Bifurcation analysis of the slow subsystem in the absence of Ih (gh = 0). (A) Intervals between Veq crossings at different gsd values. The colors

represent the LE of the interval sequence. (B) Bifurcation of the system, as calculated by continuation methods in XPPAUT. Red lines represent stable fixed points;

black line is a unstable fixed point. Green is maxima and minima of stable periodic atractors. The inset shows only the stable/unstable fixed point in a wider gsd scale.

HB = Hopf bifurcation, LP = Limit point.
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found that chaos appears only in certain ranges of slow
time constants τsd, τsr and τh. However, in contrast to
the mentioned previous works, our model exhibits chaotic
behavior within the biologically plausible values of these
parameters.

Our findings emerge as an important contribution to the
existing literature on the role of homoclinic bifurcations in
concrete neuronal models (Feudel et al., 2000; Shilnikov and
Cymbalyuk, 2005; Shilnikov, 2012). Future work on the chaotic
behavior of the HB+Ih model can include a more detailed
geometrical analysis of the chaotic attractors and a deeper
investigation of bifurcations occurring at the onset of chaos.
Indeed, chaotic dynamics can also be triggered by a wide
range of global bifurcations such as homoclinic and heteroclinic
phenomena (Aguirre et al., 2013, 2014) which have yet to be
analyzed in the HB+Ih model. The simplicity of this model and
the fact that its equations and parameters maintain biophysical
meaning, can make it a useful tool to understand how chaotic
brain dynamics can be shaped by changes in ion channel

expression or to give crucial insight to characterize properties of
healthy and ill brains.
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