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Abstract

Cone photoreceptors mediate visual acuity under daylight conditions, so loss of cone-mediated central vision of course
dramatically affects the quality of life of patients suffering from retinal degeneration. Therefore, promoting cone survival has
become the goal of many ocular therapies and defining the stage of degeneration that still allows cell rescue is of prime
importance. Using the Rpe65R91W/R91W mouse, which carries a mutation in the Rpe65 gene leading to progressive
photoreceptor degeneration in both patients and mice, we defined stages of retinal degeneration that still allow cone
rescue. We evaluated the therapeutic window within which cones can be rescued, using a subretinal injection of a lentiviral
vector driving expression of RPE65 in the Rpe65R91W/R91W mice. Surprisingly, when applied to adult mice (1 month) this
treatment not only stalls or slows cone degeneration but, actually, induces cone-specific protein expression that was
previously absent. Before the intervention only part of the cones (40% of the number found in wild-type animals) in the
Rpe65R91W/R91W mice expressed cone transducin (GNAT2); this fraction increased to 64% after treatment. Correct S-opsin
localization is also recovered in the transduced region. In consequence these results represent an extended therapeutic
window compared to the Rpe65-/- mice, implying that patients suffering from missense mutations might also benefit from a
prolonged therapeutic window. Moreover, cones are not only rescued during the course of the degeneration, but can
actually recover their initial status, meaning that a proportion of altered cones in chromophore deficiency-related disease
can be rehabilitated even though they are severely affected.
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Introduction

Two main factors compose the success of a therapy: the

efficiency of the therapeutic strategy and the status of the cells to

save. As good as the treatment can be, it will never offer its full

action if it is applied too late in the natural course of the disease.

Thus the detailed description of the disease progression is of prime

importance to determine the latest stage that can be targeted for

success of the treatment before irreversible damage. Extensive

technological advances in therapies and imaging now offer a large

panel of possibilities to heal ophthalmologic diseases that were so

far incurable.

Gene therapy has found in ophthalmology the advantage of a

field that includes many different monogenic hereditary diseases of

a relatively accessible organ, offering scientists a rich ground to

develop different strategies of gene therapy. Confirming the

dynamism in this field, RPE65 gene replacement for Leber

congenital amaurosis (LCA) [1] is now in Phase I/II clinical trials

driven by three different teams all using AAV2/2 vectors [2–5].

Most gene transfer studies show success only when the treatment

was applied early or even before the onset of the degeneration. In

consequence, it is still unclear whether cones can recover a normal

state when treatment occurs during advanced stages of cone

degeneration. In many models of retinal degeneration, rods die

first, and the following lack of trophic support as well as the

alteration in the architectural structure, induces cone death. Thus

cone rescue and rehabilitation can not be evaluated in such models

because cone survival will inevitably be impaired in these affected

retinas. From this point of view, Rpe65-deficient mice are

interesting models to study cone degeneration, since in this case

cone loss occurs before rod loss [6]. RPE65 is expressed in the

retinal pigment epithelium [7], which is juxtaposed to the

neuroretina. This protein belongs to the visual cycle, and is

responsible for the regeneration of 11-cis-retinal, the chromophore

essential for the visual pigments (contained in rod and cone

photoreceptors) to capture light. Deletion of the RPE65 isomerase

blocks the generation of this retinoid resulting in a severe loss of

photoreceptor function as well as cone and rod death [7].

Conversely, the restoration of RPE65 expression allows to rescue

rod function and the proof of principle of this approach was widely

demonstrated in mouse [8–14] and dog models [15–17]. Cone

function can also be rescued after RPE65 gene transfer, but the

therapeutic window is very limited in RPE65 knockout mice which

undergo a rapid cone degeneration [13,18]. The first results of the
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Phase I clinical trials, started end of 2007, have shown no adverse

effects so far and even improvement of some visual functions in

certain cases [2–5,19]. These encouraging results lead to the

second step of these trials consisting in treating younger patients.

As in most progressive diseases, the time of intervention during

the disease progression determines the efficiency of the rescue [10].

Measurements of the retinal thickness in young RPE65-affected

patients revealed inter-individual differences not clearly related to

age [20], which might have a consequence on the efficiency of a

potential treatment. The general genetic background as well as

modifier genes influencing RPE65 function may be important

factors in the phenotypic variability [21]. Moreover, among the

patients suffering from RPE65 gene defects, more than half bear

missense mutations [22]. These mutations are extremely hetero-

geneous, thus residual enzyme activity can be expected in certain

cases which possibly explains the high variability of the disease

severity [23–26]. The R91W mutation was described in patients

suffering from an early-onset retinal degeneration [25], who

experience useful cone-mediated vision in the first decade of life

[26]. As suggested by this favorable condition in young patients, a

low level of the mutated protein is present and allows production

of small amounts of 11-cis-retinal in the Rpe65R91W/R91W mouse

model [27], where cone degeneration is observed but with slower

kinetics compared to the null background for RPE65 [28].

Indeed, in Rpe65-/- mice, cones rapidly degenerate in young

adults, resulting in an almost complete loss of cones at 8 weeks of

age [6]. Expression of cone transducin a-subunit (GNAT2) as well

as of both cone opsins (short- (S-) and middle-/long- (M/L-)

wavelength opsins) is already severely impaired at 1 month of age

[6]. Rods degenerate more slowly, with residual function

demonstrated up to 24 months [29]. Consistent with these

observations, we previously showed that, using lentiviral-mediated

RPE65 gene transfer, cone rescue in Rpe65-/- mice is limited to

injection at P5 and absolutely inefficient if the treatment occurs at

1 month [13]. The cones appear to be too severely affected at 1

month of age in Rpe65-/- mice to benefit from the revitalization of

the visual cycle. The reason for cone death is not yet fully

determined however there are now several reports suggesting that

the lack of 11-cis-retinal is the main cause for cone degeneration in

different mouse models (Lrat-/- [30,31], Irbp-/- [32]). Because in

Rpe65-/- mice the level of 11-cis-retinal is undetectable, cone opsin

mislocalization becomes evident early in life [28,33] and the cones

rapidly degenerate. Treatment with 9-cis-retinal [32,33] or gene

transfer of RPE65 [13] corrects the localization of the cone opsins

to the outer segments, thus demonstrating the important role of

11-cis-retinal for the accurate trafficking of the cone opsins and

cone survival. In RPE65-deficient patients, cone loss is observed in

both the fovea [34] and the periphery, which is mainly populated

by S-cones and first affected [35,36]. We thus took advantage of

the milder cone phenotype of the Rpe65R91W/R91W mouse model to

assess the time-frame limit for effective cone rescue and whether

gene therapy preserves only the remaining healthy cones or can

revitalize severely affected cones. Such knowledge should bring

broad applications to therapies aiming to rescue cones during the

course of their degeneration.

Results

Early LV-RPE65 treatment in Rpe65R91W/R91W mice
improves retinal function

A gene replacement strategy requires expression of the

therapeutic gene in the appropriate cell type. In order to target

the retinal pigment epithelium (RPE), we used a HIV-1 derived

lentiviral vector known to target RPE cells very efficiently [37,38].

Additionally, to restrict expression of the transgene in RPE, we

used a 0.8 kb fragment of the human RPE65 promoter (R0.8)

[13,39,40]. We thus restored expression of wild type RPE65 in

Rpe65R91W/R91W mice by intraocular injection in postnatal mice

(postnatal day 5, (P5), Fig S1A) or by subretinal injection in adult

mice of LV-RPE65 vector (Fig S1C). This vector drives specific

expression of the RPE65 protein in RPE although in rare cases the

LV-GFP control vector also drives expression in Müller cells as

described previously (Fig S1B, [13]). We can distinguish the

RPE65 transgene expression from the endogenous mutant protein

mostly because of an increased RPE65 immunostaining within the

RPE near the injection site (Fig S1C, arrow). The area of

transduction obtained was similar for injection both in P5 and in 1

month-old animals, ranging from 0.1 to 3 mm2 (Fig S1D, this

heterogeneity in the transduction area is due to the injection

procedure). The eyes with the wider zone of transduction have

thus around 20% of the retina expressing the wild type RPE65

protein.

In order to evaluate the efficiency of RPE65 gene transfer to

restore a retinal function, the electrical activity of the retina was

recorded by electroretinography (ERG) 1 month and 4 months

post injection at P5. A control group injected with a vector

containing a GFP reporter gene (LV-GFP) was examined in

parallel. As previously described [27], Rpe65R91W/R91W retinal

function in photopic conditions is recordable. The photopic

responses of Rpe65R91W/R91W mice showed no differences in

sensitivity, only a diminished b-wave amplitude with age

compared to wild type mice. This particular response is

hypothesized to be a mixed cone-rod response and renders the

impact of gene transfer on cone function difficult to assess.

Consistently, there was no difference in the photopic responses

between the LV-RPE65 group, the LV-GFP group, untreated

animals or wild type animals (data not shown). However,

Rpe65R91W/R91W mice have reduced sensitivity to the rod response

which can be measured in scotopic conditions with low intensity

stimuli. In LV-RPE65-treated eyes expressing RPE65, a 3-log

increase in the b-wave response threshold in the scotopic ERG

clearly showed that the rod system acquires an improved

sensitivity (Fig 1A). This improvement of scotopic sensitivity was

maintained over 3 more months corresponding to the end of the

experiment (Fig 1B) and the maximum b-wave amplitude was

80% of wild-type. Moreover, the b-wave shape at higher stimuli

was extended compared to LV-GFP or untreated animals, which

is characteristic of the cone input for these light intensities.

Notably, at 4 months of age, the a-wave (reflecting the

photoreceptor activity, Fig 1C, arrow) became evident on the

ERG tracing of LV-RPE65-treated eyes whereas it was undetect-

able for LV-GFP-treated eyes (Fig 1C). The positive effect of LV-

RPE65 injection on rod sensitivity was clearly correlated with the

efficiency of gene transfer (Fig 1D). The limited number of eyes

expressing RPE65 (Fig 1D) is mainly due to the difficulty of the

injection in P5 pups as we already noticed in our previous study

[13]. Indeed, in our hands, this type of injection has a 30% success

rate.

We previously showed restoration of cone function after RPE65

gene transfer using Rpe65-/- Gnat1-/- mice [13]. In order to

demonstrate cone functional rescue after RPE65-gene transfer in

Rpe65R91W/R91W mice as well, we attempted to use the same

strategy using lentiviral vector injection in Rpe65R91W/R91W mice

with a rod deficiency background. As we demonstrated that rods

compete cones for 11-cis supply in the Rpe65R91W/R91W mice [28]

and might thus decrease the efficiency of gene transfer-mediated

cone rescue, we undertook lentiviral treatment in Rpe65R91W/R91W

Rho-/- mice which should minimize this phenomenon thanks to the

Cone Protein Re-Expression
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absence of the rhodopsin protein. However, so far, our P5

injections could not restore a convincing photopic response as

measured by ERGs 3 weeks post injection (data not shown).

Early LV-RPE65 treatment in Rpe65R91W/R91W mice
protects cones

To examine the extent of cone rescue after Rpe65 gene transfer

at P5, we performed immuno-histochemical analysis at the final

point of the experiment of 4 months post injection. In untreated

Rpe65R91W/R91W mice of 4 months of age, the different cone

markers S-opsin (Fig 2E,F, [28]), M/L-opsin [28] and GNAT2

were strongly reduced (Fig 2G,H, [28]) compared to wild type

animals (Fig 2A–D). As described in the literature, deprivation of

11-cis retinal affects S-opsin cellular localization and the remaining

cones expressing this protein at this age presented a mislocalized

labeling all along the cell body (Fig 2E, arrow) and at synaptic

endings (Fig 2E, arrowhead). Similar patterns of expression were

observed in LV-GFP-treated animals (Fig 2I–L). However, in the

region of wt Rpe65 gene transfer, a clear expression and correct

localization of these markers in the cone outer segments was

Figure 1. Lentiviral-mediated Rpe65 gene transfer at P5 in Rpe65R91W/R91W mice improved retinal sensitivity in scotopic conditions.
(A,B) Graphs representing the b-wave amplitudes of scotopic ERGs versus the intensity of the stimuli 1 month (A) and 4 months post injection (B) of
Rpe65R91W/R91W mice treated at P5 showed an improved sensitivity of the response in the group of animals treated with LV-RPE65 (squares) compared
to the group treated with LV-GFP (triangles). The response of the LV-RPE65 group was determined by the average response of eyes showing a
positive RPE65 labeling (n = 3). Statistical analysis using an ANOVA for repeated measurements showed significant group, stimuli intensity and group
versus stimuli intensity effects, p,0.01. For comparison, the scotopic response of age-matched wt animals (SV129) is shown (diamonds). Data are
represented as mean 6 standard error of the mean (SEM). (C) Representative ERG tracings of age-matched WT, LV-RPE65-treated and LV-GFP-treated
eyes 4 months post injection at P5 illustrate the improvement of the scotopic response of LV-RPE65-treated eyes. Note the increase in the a-wave as
well (arrow). The black vertical lines crossing the ERG tracings represent the stimulus time. (D) Plotting the b-wave threshold, corresponding to the
lowest stimulus which induces an ERG response, to the transgene expression area shows that the improved b-wave threshold correlates with RPE65
expression. LV-RPE65-treated animals (diamonds) without noticeable transgene expression present a threshold similar to the average of age-matched
untreated animals (triangle).
doi:10.1371/journal.pone.0016588.g001
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demonstrated (Fig 2M–P). Quantification of the number of cells

positive for these markers in the central section of the transduced

area of three eyes with the largest transduction area revealed

statistically significant differences between the LV-RPE65 group

(S-opsin: 4666% of wild type, GNAT2: 3466% of wild type) and

the LV-GFP (S-opsin: 664% of wild type, GNAT2: 461% of wild

type) or untreated groups (S-opsin: 1461% of wild type, GNAT2:

761% of wild type) (p,0.01, Fig 3A). The improvement in the S-

opsin labeling was possible because the transduced region was

central or even ventral in those eyes. However, a fourth eye with a

limited transduction in the dorsal region showed little increase in

the S-opsin cells because normal S-opsin expression is minimal in

this region. Moreover, the number of GNAT2 (Fig 3B) and S-

opsin (data not shown) labeled cells positively correlated to the size

of transduced area.

Furthermore, we determined the density of cones in the center

of the transduced area for 3 eyes using the GNAT2 marker which

is expressed in both S- and M/L-cones. For each treated region,

we expressed the cone density as a percentage of wild type cone

densities, determined at the same eye position in an average of 3 to

4 wt control eyes. Thus we can reliably evaluate the efficiency of

cone rescue for each eye with regards to the location of the

transduced region. This method allowed to assess efficiency of the

rescue at the site of wt gene expression and to avoid

underestimation of this effect because of the limited transduced

area (in the best case 20% of the retina). This quantification shows

that LV-RPE65 totally rescues the pattern of GNAT2 expression

with a density identical to wild type while untreated mice

(determined at the same location) presented only 23% of the wild

type GNAT2-cone density (Fig 3C).

Figure 2. LV-RPE65 injected at P5 protects cones up to 4 months post injection. (A–D) In wild type mice, S-opsin (red) and GNAT2 (green)
expressions are localized to outer segments. (E,F) In 4-month-old untreated Rpe65R91W/R91W mice, S-opsin is highly mislocalized in the cone
photoreceptors and the labeling shows distinctly cell bodies (in red, arrow) and feet (in red, arrowhead) of cones. (G,H) At the same age, the cone
transducin labeling (GNAT2 in green) is strongly reduced with only minor signals in some tips of shortened outer segments (star). (I,J) Similarly to
untreated animals, LV-GFP-injected Rpe65R91W/R91W mice show reduced and mislocalized expression of S-opsin (red, arrow), even in the region of GFP
expression (green). (K,L) The strong reduction of GNAT2 labeling (red, star) is also evident in the LV-GFP-treated region (GFP in green). (M,N) On the
contrary, after LV-RPE65 injection at P5, in the region of RPE65 expression (green), strong S-opsin expression is observed in cone outer segments (red)
while in the region devoid of WT RPE65 expression there is evidence of S-opsin mislocalization to the cell body (arrow) and synaptic termini
(arrowhead). (O,P) RPE65 gene transfer also rescues GNAT2 expression (green) in cone outer segments in the region of RPE65 expression (red).
GNAT2: cone-specific transducin a-subunit; S-opsin: short wavelength cone opsin; the scale bar indicated in A represents 50 mm for A-P.
doi:10.1371/journal.pone.0016588.g002
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LV-RPE65 treatment in adult Rpe65R91W/R91W mice
improves retinal function

We previously showed that Rpe65 gene transfer at post natal day

5 in the Rpe65 knockout model allows to protect cone survival and

function [13]. In contrast, the treatment of Rpe65-/- at 1 month of

age does not allow cone rescue despite a good expression of the

therapeutic Rpe65 gene in RPE [13]. Our present study aimed to

determine whether in Rpe65R91W/R91W mice, which show a milder

cone degeneration [27], intervention at a later stage still allows

preservation of cone photoreceptors. We performed subretinal

injections of LV-RPE65 in 1 month-old Rpe65R91W/R91W mice.

The retinal electrical activity was recorded 1 and 3 months post-

injection by ERG. As observed with the treatment at P5, LV-

RPE65-treated eyes displayed a clear increase in the sensitivity of

the scotopic b-wave 1 month post injection (Fig 4A). This effect

was sustained to the end point of the analysis 3 months post

injection (Fig 4B).

Retinal function mediates visual perception but also other vision-

linked reflexes such as the pupillary light reflex (PLR). Two

components are now recognized to mediate the input for PLR: a

subpopulation of retinal ganglion cells (ipRGCs) and the photore-

ceptors. While ipRGCs are responsible for the long-lasting PLR,

photoreceptors are the source for a PLR mediated by short stimuli

[41,42]. We thus recorded the PLR induced by photoreceptors in

untreated Rpe65R91W/R91W mice, LV-RPE65 or LV-GFP mice

treated at 1 month of age using short stimuli to emphasize on

photoreceptor-dependent PLR. Each eye was stimulated alterna-

tively while both were recorded. PLR was strongly diminished in

untreated Rpe65R91W/R91W mice of 4 months of age, where only

high intensity stimuli (more than 150 lux) provoked a partial

contraction (Fig 5A, B). The LV-GFP group behaved similarly to

untreated mice (Fig 5C). Interestingly, LV-RPE65-treated mice

displayed an increase in sensitivity and PLR response was observed

with the lowest stimulus tested (from 15 lux), being around 100-fold

more sensitive compared to LV-GFP control groups (Fig 5D). Thus

gene transfer in Rpe65R91W/R91W improves sensitivity of the PLR in

concordance with the improved ERG sensitivity.

In order to demonstrate an improvement of the supply of 11-cis

retinal to the retina in the region of wt RPE65 gene transfer, we

examined whether the trafficking of rod transducin a subunit

(GNAT1) became light-dependent again. In the dark (Fig 6A) or in

the case of absence of rhodopsin signaling in Rpe65-/- mice (Fig 6C,

D), most of the protein was localized in the outer segment.

However after light exposure (2500 lux for 20 min) and activation

of the transduction cascade by excited rhodopsin, the GNAT1

protein was translocated to the rod photoreceptor cell bodies and

feet in WT animals (Fig 6B, [43]), but not in the Rpe65-/- mice

(Fig 6D). As expected, in the region protected by LV-RPE65-

mediated gene transfer that was easily recognizable with corrected

S-opsin localization (Fig 6E), there was a clear expression of

GNAT1 all along the rods after light stimulation (Fig 6F). In

contrast, GNAT1 labeling in the region of the retina devoid of wt

RPE65 expression (Fig 6G) was mainly restricted to the outer

segments (Fig 6H). Thus, GNAT1 labeling indirectly indicates

restoration of the visual cycle in the region of wt RPE65 gene

transfer.

Similarly to our previous study [13], we attempted to

demonstrate cone function rescue after LV-RPE65 gene transfer.

We thus injected at 1 month of age both Rpe65R91W/R91W Rho-/-

mice and Rpe65R91W/R91W Gnat1-/- mice which are devoid of rod

function, to isolate a potential cone functional rescue. No

convincing cone function could be recorded 3 weeks post injection

for the former or 1 and 3 months post injection for the latter mouse

model despite the preserved retinal structure of the Rpe65R91W/R91W

Gnat1-/- mice for several months (data not shown).

LV-RPE65 treatment in adult Rpe65R91W/R91W mice
rehabilitated cones in the transduced region

Animals were treated at 1 month of age and cone survival was

then assessed three months later by immunohistochemical analysis

Figure 3. LV-RPE65 treatment of Rpe65R91W/R91W mice at P5 restores cone density comparable to wild type. (A) Quantification of the
number of outer segments expressing GNAT2 or S-opsin proteins in sections positioned in the middle of the transduced area was compared between
LV-RPE65-treated, LV-GFP-treated and untreated animals. The LV-RPE65 group shows a clear improvement in the number of cells correctly expressing
these cone markers (p,0.01, stars). Data are represented as mean 6 standard error of the mean (SEM). (B) When we plot the transduced area to the
number of GNAT2-labeled outer segments, a clear correlation shows that the wider the transgene expression area, the more GNAT2-positive outer
segments. (C) Finally, we estimated the density of cones correctly expressing the GNAT2 in the outer segments in the middle of the transduced area
of LV-RPE65-treated eyes. When compared to the density of cones in wild-type animals at the same position, we observed that LV-RPE65 injection at
P5 allows to rescue 100% of the cones (p,0.001, star). Data are represented as mean 6 SEM. 4m: 4 month old.
doi:10.1371/journal.pone.0016588.g003
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of cone markers S-opsin and GNAT2. We observed that this

relatively late delivery of wild type RPE65 protein still allowed the

preservation of the expression as well as the correct localisation of

S-opsin and GNAT2 (Fig 7D–H). Quantification of S-opsin-

expressing outer segments in the entire section located in the

center of the transduced area showed no differences between LV-

RPE65 (1262% of wild type) and LV-GFP (1263% of wild type)

or untreated groups (1561% of wild type) despite the clear

topological correlation of the correct S-opsin labeling in outer

segments with the LV-RPE65 transduced area (Fig 7D, F). To

note, injections in adults mainly lead to transduction of a region

located in the dorsal hemisphere which is known to be under-

represented by S-cones. However, similar quantification of

GNAT2 labeled outer segments revealed a significant increase in

the LV-RPE65 group (1963% of wild type) compared to the LV-

GFP (761% of wild type) or untreated groups (1361% of wild

type) (p,0.01). As these quantifications ignore the size of the

transduced area which directly affects the absolute number of

positive cells per section, we quantified the density of cones

expressing correctly the GNAT2 marker in the region of wt

RPE65 expression. With this method, the success of the rescue

corresponded to 64% of the wild type density (Fig 7I). Even if this

latter result showed not a full rescue compared to P5 treatment

(Fig 3C), the effect of gene transfer at this time point reflects more

than only preservation of cones expressing GNAT2 at the time of

treatment. Indeed, the GNAT2 cone density of 1 month-old

untreated Rpe65R91W/R91W mice (age of the treatment) is 36% of

wild type (Fig 7I), thus treatment at 1 month restored GNAT2

correct expression in 28% additional cones that regenerated after

Rpe65 gene transfer. Moreover, in the region of wt RPE65

expression, S-opsin-positive outer segments were also GNAT2-

positive (Fig 7D–F) showing that the expression patterns of both

markers were corrected in the rescued cells. Co-expression of these

markers strongly suggests the restoration of cone ability to respond

to light.

Discussion

The major finding of this study is that RPE65 gene transfer, and

a concomitant 11-cis-retinal supply, allowed revitalization of cones

that had lost their expression of phototransduction proteins and

showed an altered expression of cone outer segment markers. The

conclusion is the indication of a specific cell state during the

degeneration course that can be targeted for rehabilitation toward

a healthy cell state. The consequences of this observation are

important for the clinical application aspect of the treatments

targeting cone cells. First these results can be directly translated to

gene therapy in RPE65 patients bearing the R91W mutation.

Second, this study contributes to the general understanding of

cone degeneration following 11-cis deprivation that occurs in

several diseases due to chromophore deficiency. Both outcomes

are discussed below.

The proof of principle of RPE65 gene replacement was

previously clearly established in RPE65-null animals and has

already lead to clinical trials [2–5]. However the types of mutation

encountered in patients are heterogeneous and are often missense

mutations [22]. Residual RPE65 activity may account for the

clinical variability observed between the phenotypes [23–26] and

could have a consequence on gene transfer efficiency. First, after

gene transfer in a missense mutation background, the wild type

protein (derived from the transgene) has to compete with the

mutated forms, which are in place since early development, in

order to achieve its function. Depending on the residual properties

of the mutated proteins, interactions with partners, or the

availability of the substrate may differ from natural heterozygosity,

where both protein types cohabit since the beginning of their

expression. This hypothesis is highly unlikely with the RPE65

R91W mutant due to its extremely low level of expression

compared to the wild type protein (Fig S1C, [27]). Cell

responsiveness to a therapeutic intervention may also be altered

by a context of long-term mutant homozygosity. Second, the

Figure 4. LV-RPE65 injection in 1 month-old Rpe65R91W/R91W mice improves retinal function. (A,B) Retinal function was assessed by ERG in
dark-adapted conditions in Rpe65R91W/R91W mice 1 month (A) and 3 months (B) post injection at 1 month of age of either LV-RPE65 or LV-GFP.
Improved sensitivity was noticed for the LV-RPE65 group compared to the LV-GFP group. ANOVA for repeated measures showed for both time points
significant group, stimuli intensity and group versus stimuli intensity effects, p,0.01. Data are represented as mean 6 SEM.
doi:10.1371/journal.pone.0016588.g004
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natural course of cone degeneration is different between patients

and has to be assessed as precisely as possible to establish the optimal

intervention time. These concerns were approached using a

lentiviral-mediated RPE65 gene transfer into the Rpe65R91W/R91W

mice which are homozygous for a mutation encountered in patients

suffering from early-onset retinal degeneration [27].

We demonstrated that, consistently with the results obtained

with the Rpe65-/- mice [13], early injection of the therapeutic

vector (at P5) improves visual function and supports cone survival

to a wild type level by 4 months of age. We confirmed that

treatment at 1 month improves scotopic ERG sensitivity as well.

This effect is coherent with the improvement of scotopic ERG

observed after gene transfer in adult Rpe65-deficient mice which

are more severely affected than Rpe65R91W/R91W mice [9,11,13].

Interestingly, we also found evidence of an improvement in the

photoreceptor-mediated PLR, indicating that the brain visual

pathway implicated in PLR is at least able to drive pupil response

and can be recruited after gene transfer at 1 month of age. This

observation is consistent with previous studies showing residual

activity of the visual pathway implicated in PLR [44,45], in

cortical projections [46,47]or in the optomotor reflex [48] even in

the more severely affected RPE65 null background. The presence

of the R91W mutated protein does therefore not impair retina

functional improvement following RPE65 gene transfer.

Evidence that the visual cycle was restored after Rpe65 gene

transfer also comes from our immunohistological studies. First,

light exposure induces translocation of GNAT1 from the outer

segments to the rod cell bodies as a mechanism of light adaptation

[43,49]. This indicates that photons has been captured and

induced the phototransduction processes. This phenomenon is

only possible if the phototransduction cascade is initiated by a

receptive rhodopsin protein containing the 11-cis-retinal chromo-

phore. Thus, as expected in the region of increased 11-cis-retinal

production due to gene transfer, a clear translocation of GNAT1

following light exposure is observed in rods (Fig 6). Secondly,

mislocalization of the S-opsin protein was demonstrated to be a

consequence of 11-cis-retinal deprivation and to lead to cone

degeneration [27,30,31]. Consistent with the strong decrease in

the level of 11-cis-retinal, Rpe65R91W/R91W mice suffer from S-opsin

mislocalization at 1 month of age with a concomitant decrease in

the number of S-opsin-positive cells with time [28]. At 4 months of

age, the endpoint of our experiment, the number of S-opsin-

Figure 5. Pupillary light reflex (PLR) is improved after LV-RPE65 injection. PLR was measured following stimulation with increasing light
intensities from 15 lux to 1500 lux. Each eye was independently and sequentially stimulated with 50 ms white stimuli (represented by vertical bars on
the graphs) every 5 s. The pupil contraction was recorded and the diameter was plotted versus the time. (A) The average of 4 pupil responses of 1
month-old WT mice showed that eyes respond to even the lower stimulus tested without a noticeable increase of the amplitude of contraction with
increasing intensity of stimuli. (B) The pupil responses from 5 eyes of 4 month-old Rpe65R91W/R91W mice were averaged and showed a severe loss of
sensitivity at this age for Rpe65R91W/R91W animals. (C) The average pupil response recorded for 6 eyes injected at 1 month of age with LV-GFP shows
poor pupil light reflex 3 months post injection. (D) The average pupil response recorded for 4 eyes injected at 1 month of age with LV-RPE65 shows
improvement of the pupil light reflex 3 months post injection. Even for the lowest stimuli applied (15 lux), a pupil contraction is evident.
doi:10.1371/journal.pone.0016588.g005
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positive cones corresponded to only 16% of the wild type level

(personal data, [28]). After treatment either at P5 or at 1 month, in

the transduced area, S-opsin was re-localized to the outer segments

confirming that gene transfer induced sufficient production of 11-

cis-retinal to correct the trafficking of the S-opsin protein. These

observations show that, the increased production of 11-cis-retinal

due to the successful RPE65 gene transfer had an impact on both

rod and cone visual cells.

In 1 month-old Rpe65R91W/R91W mice 36% of the wild type

cones still expressed the GNAT2 cone-specific protein. Interest-

ingly, when animals were treated at this time point, Rpe65 gene

transfer reduced cone loss and allowed a cone preservation of up

to 64% of the wild type level at 4 months of age. Such rescue was

not observed in Rpe65-/- mice (where only 3% of the cones still

express the GNAT2 marker at 1 month of age, unpublished data)

demonstrating a prolonged therapeutic window in the

Rpe65R91W/R91W model. The success of cone rescue after gene

transfer at 1 month in Rpe65R91W/R91W mice is a direct

consequence of the slower cone degeneration observed in these

mice and may have a major impact for a human application.

Indeed, this knock-in mouse model is more similar to the patients

bearing missense mutations than the Rpe65-/- mouse model [27].

These patients may thus also benefit from a longer therapeutic

window compared to patients suffering from null mutations.

The second main advance illustrated by the success of treatment

at 1 month in Rpe65R91W/R91W mice is that not only did the

intervention stop cone loss and maintain the 36% of GNAT2-

expressing cones present at this age, but 28% additional cones

were also recruited to correctly re-express the GNAT2 cone

transducin protein, or at least to restore a detectable level of the

protein. Indeed the ventral expression of the S-opsin protein is

severely impaired in the retinas of 1 month-old Rpe65R91W/R91W

mice while the expression of the GNAT2 protein is drastically

reduced both dorsally and ventrally (36% of the wild type level).

Quantitative PCR showed that S-opsin transcription is already

reduced to 43% at this age and fell to around 10% at 4 months of

age, while GNAT2 transcription slowly decreased from 80% to

40% [28]. Thus, while the S-opsin mRNA level severely drops,

GNAT2 is primarily affected at the protein level. The necessity of

light capture ability and preserved phototransduction for photo-

receptor survival is now widely accepted. Not only do mutations of

phototransduction proteins lead to retinal degeneration [50] but

they also impact on the compartimentalization of other proteins

[31,51–53]. Our work supports the notion that, similarly, the 11-

cis-retinal supply is essential for correct expression and localization

of cone proteins. Once the cone opsins are correctly expressed and

can capture light, the expression of phototransduction proteins

such as GNAT2 can be re-established. Another possibility would

be that 11-cis-retinal acts as a cofactor for the transcription of

specific genes. Whichever mechanism is implied, gene transfer at 1

month of age allowed to recover GNAT2 protein up to 3 months

post injection in 28% additional cones that had lost the GNAT2

protein expression at the time of treatment. This rescue was

associated to the normalization of S-opsin protein expression in

the same cells, as well as improvement of outer segment structures,

showing that these cells are rehabilitated to capture light, and

suggesting that cone function is restored as well.

We previously showed that restoration of the cone marker

expression correlates with the cone function state after gene

transfer using Rpe65-/- Gnat1-/- mice [13]. Unfortunately we were

unable to show a rescue of cone function so far, using either the

Rpe65R91W/R91W Rho-/- mice injected at P5 or 1 month of age, or

Figure 6. LV-RPE65 gene transfer restores light-dependent rod transducin trafficking. (A) Dark-adapted wild type mice have a high
concentration of rod transducin (GNAT1, red) in the outer segments. (B) Upon light exposure (2500 lux for 20 min), GNAT1 (red) is translocated to the
rod photoreceptor cell bodies. (C) In dark-adapted Rpe65-/- retina, GNAT1 labeling is also concentrated in the outer segments. (D) After light exposure,
translocation of GNAT1 in rod cell bodies is strongly decreased because lack of 11-cis-retinal in these mice severely impairs phototransduction. (E,F) In
Rpe65R91W/R91W mice treated with LV-RPE65 at 1 month of age, in the region of RPE65 expression easily recognizable by the correct S-opsin
localization in the cone outer segments (E, red), light exposure induced GNAT1 translocation (F, green). (G,H) However in regions devoid of RPE65
gene transfer as shown by S-opsin absence or mislocalization (H, red), GNAT1 labeling remains concentrated in rod outer segments (G, green). Scale
bar A to D: 50 mm; E to H: 100 mm.
doi:10.1371/journal.pone.0016588.g006
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the Rpe65R91W/R91W Gnat1-/- model injected at 1 month of age.

The rod degeneration induced in the Rho-/- background may

interfere with a potential cone rescue. However, the lack of cone

function recovery after P5 treatment contrasts with the study of

Pang et al. who were able to recover a significant cone function in

Rpe65-/- Rho-/- animals 4 weeks after treatment at P14 [18].

Differences in the type of vector used (ssAAV and a strong

ubiquitous promoter) or the injection procedure may explain these

discrepancies. Moreover the rod function loss occuring prior to the

gene transfer could also have a deleterious effect on the cone and

rod environment (less neurotrophic support, release of toxic

agents, etc.) in the more stable Rpe65R91W/R91W Gnat1-/- model,

thus preventing functional cone rescue. Another possibility is that,

despite the success in increasing expression of cone markers in

Rpe65R91W/R91W retinas, treatment at 1 month of age is too late to

allow cone function recovery as well. Finally, as we observed a

limited effect with the early treatment of Rpe65-/- Rho-/- mice

compared to the study of Pang et al. (2010) [18], we may also have to

improve our protocol in order to increase the dose of RPE65 re-

expression to allow a functional cone recovery in these models.

Therefore, further experiments are needed to demonstrate cone

function rescue after gene transfer in the Rpe65R91W/R91W mouse

model. The difficulty of this model is mainly due to the residual cone

activity arising from the low amount of 11-cis retinal, and to rods

which, with minute amounts of chromophore, behave as cones.

Both of these activities mask the beneficial effect of the gene therapy.

Figure 7. LV-RPE65 injection in 1 month-old Rpe65R91W/R91W mice protects 64% of the cones. (A,B) At 4 months of age in untreated (A) and
LV-GFP- treated mice (B), residual S-opsin is seen in shorter outer segments and in cone’s cell bodies and feet. (C) GNAT2 staining is rare or even
absent in LV-GFP-treated mice on the ventral hemisphere. (D–H) Immunolabeling 3 months post injection of LV-RPE65 showed correct S-opsin (D,F:
arrow, red) and GNAT2 (E,G: arrow, green) labeling in cone outer segments in the region of RPE65 expression (H: red). Pictures (D) to (F) were taken at
a topological position in the eye similar to (A). Note in (F) that all S-opsin labeled outer segments are also GNAT2-positive (arrow, yellow). (I)
Quantification using the GNAT2 staining of cone density in the middle position of RPE65 expression area showed that gene transfer preserved 64% of
the cones compared to wild type. This rescue was significantly different from the value obtained from age-matched untreated Rpe65R91W/R91W mice
and was also significantly higher than the value obtained with Rpe65R91W/R91W mice of 1 month of age (36% of the wt) corresponding to the time of
intervention (p,0.001, star). Thus, LV-RPE65 treatment at 1 month regenerates 28% more cones that were already lacking the GNAT2 marker at 1
month of age. Data are represented as mean 6 standard error of the mean (SEM). D is a merge picture of B and C; scale bar in A–F: 50 mm.
doi:10.1371/journal.pone.0016588.g007
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The importance of 11-cis-retinal in preserving cone survival

confirms previous observations [27,28,30–32,54]. The mislocali-

zation of cone opsin is similar in other models deprived of 11-cis-

retinal (Lrat-/- [30,31], Irbp-/- [32]). However the kinetics of the

cone cell loss and the shortening of outer segments probably

depend on the severity of the mutations (complete or partial loss of

11-cis-retinal regeneration). The determination of the critical time

frame, when cones are deprived of phototransduction proteins but

can be re-mobilized to express them correctly (as shown by our

results), is an important point in order to be able to offer visual

rescue to patients. Some studies have already approached this

topic notably using measurement of the retina thickness in the

RPE65-affected patients as a criterion to determine the retinal

degeneration stage [20]. It is here of prime importance to note that

measuring the thickness of the outer nuclear layer, which reflects

the number of photoreceptor cell bodies still present in the retina,

using optical coherence tomography (OCT), is indeed a reliable

reference that can illustrate the amount of cell loss in patients.

However, the measurement of the thickness of the outer segments

which are severely affected in remaining cells deprived of correct

phototransduction proteins may lead to an underestimation of the

potential therapeutical effect. This hypothesis could be challenged

only if ‘‘ghost photoreceptors’’ negative for GNAT2 and for S-

opsin proteins can be detected by another marker allowing to

investigate the size and the potential of regeneration of the outer

segments. There is no data so far on cone gene expression during

the natural course of the disease in human but our data suggest

that a delay between cone protein defects and cone death may also

occur in the patients.

Finally our results illustrate the importance and the advantages

of animal models bearing identical mutations to those encountered

in human diseases for preclinical studies. In consequence, they also

highlight the importance of genotyping and phenotyping the

patients precisely in order to help design the appropriate models

and to collect relevant information from preclinical studies. These

data will subsequently offer the best conditions for translation to

human applications.

Materials and Methods

Ethic statement
The animals were handled in accordance with the statement of

the ‘‘Animals in Research Committee’’ of the Association for

Research in Vision and Ophthalmology, and protocols were

approved by the local institutional committee, the ‘‘Service de la

consommation et des affaires vétérinaires du canton de Vaud’’

(autorisation VD#1367.3).

Lentiviral vectors
The lentiviral vectors used in this study were previously

described in Bemelmans et al. 2006 [13]. Briefly, the transgene

plasmids contain the central polypurine tract and central

termination sequence (cPPT/CTS, [55]), the R0.8 promoter

(800 bp of the human RPE65 promoter [39,40]) which drives

expression of the mouse RPE65 cDNA (LV-RPE65 vector) or the

GFP gene (LV-GFP vector), and the woodchuck hepatitis virus

post-transcriptional regulatory element (WPRE, [56]) downstream

of the transgene.

Recombinant lentiviral particles were produced by transient

transfection of 293T cells, as previously described [38,57]. Viral

supernatants were concentrated by two successive ultracentrifu-

gations at 709000 g and 4uC for 90 minutes. Total particle

concentration of the viral stocks was estimated by quantification of

the p24 capsid protein using RETRO-TEK HIV-1 p24 Antigen

ELISA kit (ZeptoMetrixCorporation, Buffalo, NY USA) according

to the manufacturer’s instructions. In addition, infectious titers of

the LV-GFP vector were quantified by infection of 293T cells, in

which the R0.8 promoter is active, followed by flow cytometry on

a FACSCalibur (Becton Dickinson, Franklin Lakes, NJ, USA).

Animals and Surgical procedures
The mice were kept at 20uC under a 12 hours light/12 hours

dark cycle with light on at 7 am and fed ad libitum. The mice were

anaesthetized with volatile anaesthesia, and injections at post-natal

day 5 (P5) (intravitreously) or at 1 month of age (subretinally) were

performed as described in Bemelmans et al. 2006 [13]. For P5

treatment, 1.5 ml of viral suspension containing 140 ng or 100 ng

of p24 for LV-RPE65 and LV-GFP, respectively, were injected

per eye, while for 1 month treatment the same dose was injected

but in 2 ml of viral suspension per eye. After surgery, 0.5 mg/ml of

paracetamol was added in the water of the mice for 1 day.

Electroretinogram (ERG)
ERG recordings were performed on site at Jules-Gonin Eye

Hospital as described in Bemelmans et al 2006 [13] using a

Multiliner Vision apparatus (Jaeger/Toennies, Höchberg, Ger-

many) and a Ganzfeld stimulator adapted for rodent examination.

Retinal function was assessed with corneal DTL electrodes.

Amplitude of the a-wave (photoreceptor response) was defined as

the difference between the baseline level at the time of stimulation

and the peak of the a-wave. Amplitude of the b-wave (second-

order neurons) was defined as the difference between the peak of

the b-wave and the peak of the a-wave (or the baseline level when

the a-wave was not detectable). Amplitudes are expressed in

microvolts (mV).

Pupillary light reflex (PLR)
The A1000 pupillometer for small rodents was developed by

Neuroptics with the collaboration of Dr Randy Kardon (Univer-

sity of Iowa) and Dr Sinisa Grozdanic (Iowa state University)

(manuscript in preparation). The mice were anaesthetized with a

mixture of ketamine (45 mg/kg) and xylazine (17 mg/kg). A

protocol using 50 ms white light stimuli of increasing intensities

(15, 45, 150, 474 and 1500 lux) with 5 s of interval was applied

twice sequentially to the left and then to the right eye. The evoked

pupil response was recorded by two infrared cameras targeting

both pupils and the pupil diameter determined automatically by

the Neuroptics software. The averages of 4 to 6 pupil recordings

were then calculated and plotted using the Excel program.

Histology and immunolabeling
Before their sacrifice at 4 months of age, the mice injected at 1

month were dilated by topic administration of 0.5% tropicamide +
10% neosynephrine (1: 1) and exposed for 20 min to 2500 lux in

cages covered with aluminium foil to increase translocation of the

rod transducin to the rod cell body. After sacrifice, the mouse eyes

were cauterized at the nasal corner of the eye, enucleated, the

corneas were perforated and eyes were fixed for 1 hour in 4% PFA

in PBS. After overnight incubation in 30% sucrose, the eyes were

embedded based on the cauterization mark in albumin from hen

egg white (Fluka, Buchs, Switzerland) in order to provide sections

with both a dorsal and a ventral hemisphere, and cut in 14 mm

sections using a cryostat. Sections were collected on six serial slides

for each eye allowing multiple labeling throughout the entire eye

for each slide.

The antibodies against GNAT2, S-opsin, RPE65 and GFP and

the immunohistological conditions were already described in
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Bemelmans et al. 2006 [13]. Rabbit anti-GNAT1 (Santa Cruz) was

used at 1:2000, overnight at 4uC. Secondary antibodies, goat anti-

rabbit linked to Alexa 488 (1:4000, Invitrogen, Carlsbad, CA,

USA) or to Cy5 (1:500, F(ab) fragment, Jackson Immunoresearch,

Newmarket, England), were incubated for 1 hour at room

temperature. For co-labeling of both polyclonal antibodies anti-

RPE65 (Pin5) and anti-GNAT2, anti-RPE65 was first incubated

overnight and well washed before incubation for 6 hours at room

temperature with anti-rabbit-Cy5 F(ab) fragments to saturate the

epitopes [58]. Then we proceeded with the standard protocol for

GNAT2 staining.

Quantifications in the transduced areas of GNAT2 and S-opsin

were performed as previously described [13]. In order to obtain

the ratio to the wild type for each treated eye, we averaged

GNAT2 and S-opsin countings of corresponding sections (using

section of the same position in the eye on the nasal-temporal axis)

of 3 to 4 different wild type eyes as control values. Densities of

GNAT2-labeled outer segments were determined by the average

density at a given location on a section, for 3 sections located in the

center of the transduced area (most transversal sections). Densities

of the identical location on 3 similarly positioned sections of wild

type retinas of were averaged as controls. Similar quantifications

were performed in 1 month- and 4 month-old untreated

Rpe65R91W/R91W mice.

Statistical analysis
Statistical analyses of the electroretinograms were done using

StatViewH 5.0 software. Histological counting of cone markers was

analyzed by one way-ANOVA to determine the statistical

significance between the different groups (LV-RPE65 treated,

LV-GFP treated, untreated Rpe65R91W/R91W).

Supporting Information

Figure S1 Lentiviral-mediated Rpe65 gene transfer in
the retina. (A) Injection of LV-RPE65 at P5 allowed expression

of the wt RPE65 in the RPE (labeled in green). (B) Injection of LV-

GFP occasionally led to GFP expression in Müller cells (labeled in

green). (C) Subretinal injection of LV-RPE65 in 1-month old

Rpe65R91W/R91W mice also induced expression of the wt RPE65

protein (labeled in red). The limit of staining between the faint

R91W mutant protein detection and the strong WT RPE65

expression is indicated by an arrow. (D) The transduced area was

comparable between P5 and 1 month injections. The heteroge-

neity observed is due to the surgical procedure. RPE: retinal

pigment epithelium; OS: outer segment; ONL outer nuclear layer

(photoreceptor nuclei); the scale bar indicated in A represents

50 mm for A and B and 200 mm for C.

(TIF)
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