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Abstract: Oncolytic adenoviral vectors are a promising alternative for the treatment of 

glioblastoma. Recent publications have demonstrated the advantages of shielding viral 

particles within cellular vehicles (CVs), which can be targeted towards the tumor 

microenvironment. Here, we studied T-cells, often having a natural capacity to target 

tumors, for their feasibility as a CV to deliver the oncolytic adenovirus, Delta24-RGD, to 

glioblastoma. The Jurkat T-cell line was assessed in co-culture with the glioblastoma stem 

cell (GSC) line, MGG8, for the optimal transfer conditions of Delta24-RGD in vitro. The 

effect of intraparenchymal and tail vein injections on intratumoral virus distribution and 

overall survival was addressed in an orthotopic glioma stem cell (GSC)-based xenograft 
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model. Jurkat T-cells were demonstrated to facilitate the amplification and transfer of 

Delta24-RGD onto GSCs. Delta24-RGD dosing and incubation time were found to 

influence the migratory ability of T-cells towards GSCs. Injection of Delta24-RGD-loaded 

T-cells into the brains of GSC-bearing mice led to migration towards the tumor and 

dispersion of the virus within the tumor core and infiltrative zones. This occurred after 

injection into the ipsilateral hemisphere, as well as into the non-tumor-bearing hemisphere. 

We found that T-cell-mediated delivery of Delta24-RGD led to the inhibition of tumor 

growth compared to non-treated controls, resulting in prolonged survival (p = 0.007). 

Systemic administration of virus-loaded T-cells resulted in intratumoral viral delivery, 

albeit at low levels. Based on these findings, we conclude that T-cell-based CVs are a 

feasible approach to local Delta24-RGD delivery in glioblastoma, although efficient 

systemic targeting requires further improvement. 

Keywords: glioblastoma; oncolytic; cellular vehicles; GSC; T-cell therapy; virotherapy; 

Delta24-RGD 

 

1. Introduction 

Glioblastoma is the most frequently diagnosed primary brain tumor in adults, with a median 

survival of only 15 months after the initial diagnosis [1]. Despite the extensive scientific progress that 

has  been made into the molecular characteristics of glioblastoma, patient prognosis has remained 

virtually unaltered. As a result, translational research is warranted for the development of new 

therapeutic agents. Oncolytic virotherapy has been extensively studied for the treatment of 

glioblastoma and has proven to be a safe and feasible strategy from preclinical [2,3] and clinical safety 

studies [4,5]. Delta24-RGD is a conditionally replicating oncolytic adenovirus that has demonstrated 

therapeutic efficacy in preclinical models of glioblastoma [6–8]. The Delta24 mutation consists of a  

24-base pair deletion in the E1A gene of the serotype 5 adenovirus [9]. This alteration facilitates 

selective viral replication in cells that harbor altered Rb pathway signaling, which is a common (75%) 

phenomenon in glioblastoma [10]. The addition of the RGD motif enhances the potency of Delta24 by 

targeting the virus to alpha (V)-beta(3) integrins that are frequently expressed on tumor cells and 

vasculature [11]. This omits the dependency on the expression of the Coxsackievirus and Adenovirus 

receptor (CAR). 

One of the major hurdles for virotherapy to target glioblastoma is efficient vector delivery, 

preferably over a prolonged period of administration [12]. Several strategies have been proposed to 

overcome this problem [5], of which cellular vehicles (CV) are a particularly interesting option [13]. 

CV-systems are comprised of cells that are incubated with oncolytic virus ex vivo. Subsequently, these 

cells are administered systemically to employ their intrinsic tropism towards the tumor microenvironment, 

where efficient delivery takes place in the form of viral transfer or lysis of the CV [14]. Some of the 

proposed potential advantages of CV are the shielding of viral particles from systemic neutralizing 

barriers, the ability of dosage amplification by replication of virus within infected vehicle cells and the 

ability to target tumor cells in multiple administrations. 



Viruses 2014, 6 3082 

 

 

A myriad of vehicle cells from different tissue lineages have been investigated for their capacity to 

deliver oncolytic adenovirus into glioblastoma, such as mesenchymal [15–17], neural [18–20] and 

adipose-derived stem cells [21]. While other oncolytic viruses have been used in combination with 

hematological lineage-derived cellular vehicles [22], oncolytic adenovirus has to date not been utilized 

in such a CV-system. The use of myeloid derived cells as CV for oncolytic adenovirus has been 

proven effective in prostate cancer xenografts [23]. We have investigated the feasibility of the Jurkat 

T-cell line as a model for T-cell-based cellular delivery of Delta24-RGD in a glioblastoma stem cell 

(GSC)-based preclinical xenograft model. The presented study addresses the feasibility of this 

approach as a step towards targeted delivery of oncolytic adenovirus in combination with an adoptive 

immunotherapy treatment. 

2. Methods 

2.1. Cell Culture 

The glioblastoma stem cell line MGG8-Fluc-Mcherry was established and characterized as previously 

described [24,25]. Tumor spheres were grown in DMEM-F12 supplemented with penicillin-streptomycin, 

B27, EGF (5µg/mL), FGF(5µg/mL) and heparin(5mg/mL). Tumor spheres were passed by mechanical 

and chemical dissociation (Life Technologies, Bleiswijk, The Netherlands). For viability assays, cells 

were grown as monolayers by coating 96-well plates with growth factor-reduced matrigel coating (BD 

Bioscience, Breda, The Netherlands). The A549 lung adenocarcinoma cell line (ATCC, Manassas, 

VA, USA) was cultured in DMEM supplemented with 10% FCS and 1% penicillin-streptomycin. 

Jurkat T-cell E6.1 and Jurkat T-cell-GFP cells were grown in suspension in RPMI supplemented with 

10% FCS and 1% penicillin-streptomycin. For systemic delivery, retroviral vectors encoding human 

CD8α, as well as TCR genes (see below) were used to transduce Jurkat T-cells. The CD8α gene was 

described previously [26] and the TCRα and β genes originated from the gp100/HLA-A2-specific  

CTL clone 296 [27]. Following gene transduction, Jurkat T-cells were sorted for TCR expression (as 

described previously [28]). Our in vivo studies, using T-cells expressing a defined TCR, allowed us to 

use gp100 as a test target antigen for viral treatment of glioma. 

2.2. Virus Construction and Propagation 

Delta24-RGD was constructed as previously described [9]. For the construction of Delta24-RGD-GFP, 

a set of previously developed plasmids was used to create the virus HAdV-5.Δ24.Fib.RGD.eGFP. This 

virus combines the unique properties of Delta24-RGD with a replication-dependent expression of the 

eGFP imaging marker, as a result of incorporating eGFP in the viral promoter-driven E3 region [29]. 

To this end, the RGD motif was excised from the plasmid, pVK526 [30], by NdeI + PacI digestion  

and re-ligated into the plasmid, pShuttle-ΔE3-ADP-EGFP-F2 [29], resulting in  

pShuttle-ΔE3-Fib.RGD.ADP-EGFP. After removal of the kanamycin resistance gene (by ClaI digestion 

and re-ligation), PacI + AatII digestion was used to isolate the fragment containing the  

ΔE3-Fib.RGD.ADP-EGFP sequence, which was recombined with SpeI-linearized pAdEasy-1 [30], 

resulting in pAdEasy-ΔE3-Fib.RGD.ADP-EGFP. The 24-bp deletion was introduced in the plasmid, 

pSh + pIX [31], by replacement of the SspI-to-XbaI fragment with the corresponding fragment from 
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the plasmid pXE.Δ24 [32], resulting in the plasmid, pSh + pIX.Δ24. The full-genomic sequence of 

HAdV-5.Δ24.Fib.RGD.eGFP was constructed by recombination in E. coli of  

pAdEasy-ΔE3-Fib.RGD.ADP-EGFP with pSh + pIX.Δ24. The virus was rescued in 911 cells [33], 

using a previously described protocol. [30] To prevent heterologous recombination with the viral E1 

sequence present in the 911 genome, upscaling of the virus was performed in A549 cells. After 

preparation of the virus stock, the presence of Δ24 and Fib.RGD was confirmed by PCR and 

restriction analysis. 

2.3. Delta24-RGD Infection and Replication Assay 

Jurkat T-cells were infected with Delta24-RGD at multiplicities of infection (MOI) 1, 10, 50, 100, 

500 and 1,000 by plating cells for 2 h in serum free RPMI at room temperature. After 2 h, cells were 

washed and spun down twice in serum supplemented RPMI. Subsequently, cells were plated in 

triplicates of 1 × 10
3
 cells per well in flat-bottomed 96-well plates. Cells were allowed to proliferate 

for 4 and 6 days, after which we performed the Cell Titer GLO viability assay (Promega, Leiden, The 

Netherlands), as described by the manufacturer. For the treatment of MGG8-spheres, the MOI was 

calculated based on the seeded cells counted from dissociated spheres. Cells were incubated for one 

day in which spheres form through adherence, and incubation followed 24 h post-seeding, making the 

MOI in our hands reproducible and accurate. 

Transfer of Delta24-RGD-GFP from Jurkat T-cells towards MGG8-Mcherry-FLuc was assessed by 

infecting Jurkat T-cells at MOI 0, 1, 10 for 24 h, washed twice and co-cultured at a 1:1 ratio with 

MGG8 cells for 5 days. Microscopic examination and image capture were performed on a 

conventional wide-field fluorescence microscope. For these experiments, MGG8 cells were cultured 

on growth factor-reduced matrigel coating. 

The replication assay was performed with the above-described infection protocol at MOI 10, 50 and 

100. Jurkat T-cells were harvested 1.5 h and 4 days post-infection. Pellets and supernatants were 

collected and separately freeze-thawed three times, and subsequently, pellets were reconstituted  

in medium to equal volumes, as present in the supernatants. After 48 h, A549 cells were fixed with  

ice-cold methanol, and the Ad Rapid Titer plaque-forming assay (Clontech, Saint-Germain-en-Laye,  

France) was performed according to manufacturer's protocol. Experiments were performed twice,  

in triplicates. 

2.4. T-Cell Migration Assays 

Suspensions of 1 × 10
6
 cells/ml Jurkat T-cells in RMPI were prepared. Cells were infected with 

Delta24-RGD dilutions at an MOI of 10, 50 and 100 in 1 mL of serum free RPMI. Cells were 

incubated for 2 h and subsequently washed twice with serum supplemented RPMI and incubated for 

another 2, 24 or 48 h. Hereafter, 5 × 10
5
 cells were inserted onto matrigel-coated transwell chamber 

inserts with 5-μm pores (Corning Inc., Amsterdam, The Netherlands). Cells were allowed to migrate 

into the bottom compartment for 12 h, after which cell numbers were quantified by performing a Cell 

Titer GLO viability assay (Promega, Leiden, The Netherlands) according to the manufacturer’s 

instructions. Experiments were performed twice, in duplicates. 
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2.5. In Vivo Experiments 

All animal experiments were performed in accordance with the local Animal Ethical Committee, 

Erasmus MC Rotterdam. Experiments were performed on 10–12-week-old NOD-SCID (Non-obese 

diabetic severe combined immunodeficient) female mice (strain C.B-17/IcrHantmhsd-Prkdcs), Harlan, 

(Horst, The Netherlands). On Day 0, intra-striatal injections of 5 × 10
4
 MGG8-Fluc-Mcherry cells 

were performed as described previously [34]. In short, a burr hole was drilled 2.5 mm lateral and 0.5 

mm anterior to the bregma, through which 5 × 10
4
 MGG8-Fluc-Mcherry cells in 5 µL PBS were 

injected at a depth of 3 mm. After 14 days, mice were treated with intratumoral injections through the 

previously established burr hole. Treatment consisted of 5 µL PBS, Delta24-RGD 5 × 10
6
 IUs in 5 µL 

PBS or 5 × 10
4
 Jurkat T-cells infected with MOI 100 Delta24-RGD in 5 µL PBS. Jurkat T-cells were 

incubated in Delta24-RGD (MOI-100) 2 h prior to intratumoral injections. Mice were sacrificed upon 

symptoms of tumor burden or when more than 20% weight loss occurred. 

For systemic delivery of Jurkat T-cells infected with Delta24-RGD, mice were grafted with  

MGG8-Fluc-Mcherry, as described above. After 14 days, treatment consisted of tail vein injections 

with 5 × 10
5
 Jurkat T-cell-gp100

TCR
 cells pretreated with Delta24-RGD MOI 100 for 2 h, as described 

above. Animals were treated with one (n = 3), two (n = 3) or three (n = 3) subsequent injections with a 

two-day interval. Animals were sacrificed after 48 h, 96 h and 144 h after the first injection, allowing a 

cumulative dosing effect in the latter two time points. Control animals were treated with equivalent 

dosages of Delta24-RGD through tail vein injections. Brains were snap frozen and assessed for viral 

delivery by hexon staining. 

2.6. Immunohistochemistry 

Snap frozen tumor tissue sections (8–10 μm) were cut on a cryotome. Sections were fixed  

with acetone. After permeabilization (Triton-X 0.01%) and blocking, slices were incubated with goat 

anti-hexon (Millipore, Billerica MA, USA) and mouse anti-vimentin (from DAKO, Heverlee, 

Belgium). Negative controls were performed by omitting the primary antibodies. Counterstaining was 

applied using Vectastain mounting medium, including DAPI, according to the manufacturer’s 

instruction (Vector Labs, Peterborough, U.K.). 

2.7. Statistics 

Statistical analyses were conducted and illustrated in SPSS Statistics Software 19 (IBM, Amsterdam, 

The Netherlands). 

3. Results 

3.1. Delta24-RGD Efficiently Infects and Replicates in GSC and Jurkat T-Cells 

Delivery of Delta24-RGD by Jurkat T-cell-CV was assessed in a series of in vitro assays. First, the 

optimal dosage for Delta24-RGD-mediated lysis of MGG8 GSCs was assessed by viability assay 

(Figure 1A). MGG8 tumor neurospheres were found to be susceptible to Delta24-RGD-induced 

oncolysis with an IC50 value of MOI 0.89 at 96 h post-infection (R
2
 = 0.92–0.99). 
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Efficient adenoviral infection of leukocytes has been described as problematic in several reports [35,36], 

while others have demonstrated efficient use of conditionally replicating adenoviruses in a subset of  

T-cell derived neoplastic cell lines, including Jurkat T-cells [37,38]. To investigate the infectivity and 

replication capacity of Delta24-RGD in Jurkat T-cells, we performed viability and viral titer assays on 

cells and supernatants. A dose-response effect of Delta24-RGD on Jurkat T-cell viability  

at 96 h post-infection was found (Figure 1B). However, after 144 h, cells exposed to MOI 10 or lower 

had repopulated the well. This is reflected in the IC50 values of MOI 9.2 at 96 h and MOI 20.4, at  

144 h (R
2
 0.92–0.97). At MOI 50 and higher, the in vitro administration of Delta24-RGD was 

sufficient to warrant efficient lysis and prevent population renewal. 

The ability of Delta24-RGD to replicate and produce progeny in Jurkat T-cells is demonstrated in 

Figure 1C. The infection of Delta24-RGD in Jurkat T-cells was dose-dependent and reached a 

saturation level at MOI 100. This was observed by a decrease in viral concentration in supernatants at 

2 h post-infection at MOI 10 and 50 of 99.99% and 98% of input virus, respectively, whereas only a 

7% decrease in input virus was found at MOI 100 (Figure 1C, blue bars). In retrospect, we also derived 

an explanation from this data for the ability of Jurkat cells to repopulate after infection with an MOI 

below 10, since the infectivity will not suffice to cause timely replication in Jurkat cells. A significant 

amplification of input viral load was demonstrated at all three dosages by 48 h  

(5.28 × 10
2
–1.82 × 10

3
-fold), which further increased at 96 h (2.12 × 10

3
–9.16 × 10

3
-fold). Interestingly, 

the relative amplification was highest in MOI 10-treated cells, suggesting a plateau for the  

replication-to-infection ratio. 

Figure 1. Delta24-RGD effectively infects, replicates and amplifies in Jurkat T-cells.  

(A) Viability assay on MGG8-GSC neurospheres infected with a dose range of  

Delta24-RGD; (B) viability assay on Jurkat T-cells infected with a dose range of  

Delta24-RGD. Note the increased viability at MOI 1–10 after 144 h (C). The viral titer 

assay for Delta24-RGD-treated Jurkat T-cells after two wash steps at indicated time points. 

Lines are representative of viral yield at indicated time points post-infection.  

(IUs = viral infectious units). 
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3.2. T-Cells Efficiently Deliver Delta24-RGD to GSCs In Vitro 

Since both Jurkat T-cells and MGG8 cells were found to be susceptible to Delta24-RGD-mediated 

oncolysis, the ability of Jurkat T-cells to function as a carrier cell to deliver virus was tested. To this 

end, we utilized a GFP-expressing variant of Delta24-RGD with a GFP-imaging cassette inserted into 

the E3 region of the viral genome. First, we tested the ability of (twice washed) Jurkat T-cell-CV to 

deliver virus onto MGG8 cells in a co-culture experiment. Delta24-RGD-incubated Jurkat T-cells were 

able to efficiently transfer virus onto MGG8 cells, as demonstrated by the accumulation of  

hexon-positive Jurkat T-cells and MGG8 cells over a time-span of 96 h post-infection in co-cultures 

(Figure 2). Similar to viability assays with Delta24-RGD monotherapy, survival of both Jurkat T-cells 

and MGG8 was dose dependent in this co-culture experiment, as demonstrated by a greater loss of 

both cell types at MOI 10, as compared to MOI 1. 

Figure 2. Jurkat T-cells efficiently deliver Delta24-RGD onto MGG8-GSCs in vitro. Cells 

were co-cultured for 96 h after prior incubation (24 h) of Jurkat T-cells with Delta24-RGD 

at the indicated dosages. (Left) mCherry fluorescence as assessed by conventional 

fluorescence microscopy with 25× optic zoom. (Middle) GFP fluorescence, indicating the 

presence of Delta24-RGD-GFP within cells. (Right) A merge of both mCherry and GFP 

results, demonstrating colocalization (yellow cells) indicative of Delta24-RGD-GFP 

transfer onto MGG8-mCherry cells. 
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3.3. The Migratory Capacity of T-Cells Is Preserved Following Short Incubation Times  

with Delta24-RGD 

The brain tumor tropism of stem cells and leukocytes is influenced by secreted cytokines and 

chemokines by tumor and stromal cells [39–41]. Furthermore, the components of the extracellular 

matrix proteins can both attenuate and enhance T-cell infiltration into brain parenchyma [42]. Little is 

known about the role of adenoviral infection on leukocyte migration towards tumors. However, a 

positive influence on migration with low-dosages of oncolytic VSV (vesicular stomatitis virus) has 

been reported by others [43,44]. To address the influence of both Delta24-RGD and the 

aforementioned factors on Jurkat T-cell migration was assessed in a transwell migration assay 

(schematic representation in Figure 3A). To be able to fine-tune future administration of cells in vivo, 

separate time-points were chosen to correct for the latency between infection and administration. Both 

commercial extracellular matrix protein, as well as MGG8-derived matrix coating slightly reduced 

(non-infected) Jurkat T-cell migration towards the lower compartment (data not shown). The effect of 

Delta24-RGD infection on Jurkat T-cell tropism toward serum-supplemented medium was assessed in 

ECM-coated transwell filters at 2, 24 and 48 h post-infection (MOI 10, 50 and 100). A short virus 

incubation time of 2 h best conserved the migratory capacity of the Jurkat T-cells when compared to 

non-infected controls. Interestingly, dosing at MOI 10 led to increased migration, which may be a 

result of virus-mediated activation of the Jurkat T-cells [42]. Prolonged incubation (24–48 h) had a 

significant inhibitory effect on Jurkat T-cell migration (Figure 3B). 

Figure 3. The Jurkat T-cell cell migration ability is influenced by Delta24-RGD dosage 

and incubation time. (A) Schematic illustration of the transwell experiments; (B) titration 

of Delta24-RGD dosage and incubation window. All time points and dosages are 

significantly different (p < 0.05) when compared to the non-treated (NT) control. Note the 

increased cell count in MOI 10 after 2 h, which could be indicative of T-cell activation.  

(C) Quantification of Jurkat T-cell tropism towards serum-supplemented (SS), serum-free 

(SF) and MGG8-conditioned serum-free medium (SF cond.). All comparisons between NT 

and Delta24-RGD resulted in p < 0.05. SS NT vs. SF/SF cond. NT were both p < 0.05. 
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Furthermore, Jurkat T-cells migrated most efficiently to serum-rich medium. Both serum-free  

(EGF and bFGF supplemented) as well as MGG8-conditioned medium led to similar levels of 

reduction of Jurkat T-cell migration over matrix-coated inlays (Figure 3C). 

3.4. Delta24-RGD-Loaded T-Cells Demonstrate Intraparenchymal Tumor Tropism and  

In Vivo Viral Transfer 

Based on the optimal dosing and incubation time in vitro, we proceeded to assess the in vivo 

potential of CV-based delivery of Delta24-RGD. For this, virus-loaded Jurkat T-cell CVs were injected 

intratumorally in MGG8-bearing mice (schematic representation of the experiment is provided in 

Figure 4A). Jurkat T-cells were incubated for 2 h at MOI 100 to achieve maximal infection and 

minimal loss of migratory capacity. First, the distribution of viral hexon-positive cells was assessed at 

early time points (24–144 h) post-intratumoral Jurkat T-cell delivery. Hexon staining revealed the 

presence of adenovirus, both in the core of the tumor, as well as at the peripheral margins (such as the 

contralateral hemisphere) of the tumor, where infiltrating single tumor cells reside (Figure 4B). Jurkat 

T-cell-GFP cells were especially present in (and around) the tumor core, suggesting preferential 

targeting for the xenografted tumor cells (Figure 4C). Encouraged by these results, the distribution of 

virus after contralateral injections (in the non-tumor-bearing hemisphere) at early time-points was 

assessed (schematic representation in Figure 4D). As expected, hexon staining was demonstrated 

within the Jurkat T-cell injection site, suggestive of the T-cell-based Delta24-RGD distribution, which 

left a necrotic cavity (Figure 4E). Strikingly, additional hexon staining was detected in the  

tumor-bearing hemisphere in small tumor colonies at the invading margins of the tumor. These results 

demonstrate the intraparenchymal tropism of CV to the tumor, subsequently resulting in the in vivo 

transfer of oncolytic adenovirus to distant tumor cells (Figure 4E). 

3.5. Intratumoral Delivery of Delta24-RGD by T-Cells Leads to Prolonged Survival 

Therapeutic effect of Jurkat T-cell-mediated Delta24-RGD delivery was compared to both PBS and 

Delta24-RGD intratumoral injections. Delta24-RGD-loaded T-cells (CV) prolonged the overall 

survival of mice bearing MGG8 orthotopic xenografts to a similar extent as direct intratumoral 

injection of Delta24-RGD. When compared to PBS-treated controls (mean: 38.6 days), both treatment 

conditions prolonged survival significantly (CV mean survival: 46.2 days, Log Rank p = 0.007; and 

Delta24-RGD mean: 49.6 days, Log Rank p < 0.001) (Figure 5A). There was no difference in survival 

between the CV and Delta24-RGD treatment groups (p = 0.251). 
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Figure 4. Intratumoral and contralateral Jurkat T-cell injections target GSC in vivo:  

(A) Schematic representation of the injection site and early time point assessment of  

cellular vehicle (CV)-Delta24-RGD distribution experiments. (B) Coronal HE 

(hematoxylin and eosin stain) section of a mouse brain (Day 4 post-injection) with  

MGG8-derived tumor in the right hemisphere (injection site) and spreading to the left 

hemisphere. Inlays demonstrate tumor and Delta24-RGD distribution at three localizations 

after intratumoral virus injection. (Upper right) Tumor core (vimentin = green, adenoviral 

hexon protein = red); (lower left) contralateral hemisphere; (lower right) right hemisphere 

basal localization of tumor and Delta24-RGD. (C) Schematic representation of the 

injection sites and early time point assessment after CV-Delta24-RGD injections into the 

contralateral hemisphere. (D) Coronal HE section with inlays demonstrating in the upper 

left and right panel the cortical invasion of localized tumor cells in both HE and 

immunofluorescence images. The upper right inlay demonstrates hexon distribution in the 

upper right hemisphere (contralateral from Jurkat T-cell-CV injection) adjacent to 

dispersed invasive MGG8 cells. The lower left and lower right panel illustrate the necrotic 

cavity resulting from the contralateral injections of Jurkat T-cell-CV, together with 

fluorescence images demonstrating hexon-positive cells locally. In the bottom two inlays, 

a second localization of Delta24-RGD localized in the proximity of tumor cells is 

demonstrated from the basolateral margins of the right hemisphere. 
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Figure 5. Intratumoral injection of Jurkat T-cell-CV leads to prolonged survival, and 

systemic therapy is a feasible mode of administration for intracranial targeting of MGG8 

xenografts. (A) Schematic representation of the survival experiment with PBS and 

Delta24-RGD monotherapy as control groups for the Jurkat T-cell-CV treatment of MGG8 

xenografts. Kaplan Meier graphs demonstrating a significant treatment effect of both 

intratumoral Delta24-RGD, as well as Jurkat T-cell-CV treatment. p-values are derived from 

a Wilcoxon log rank pairwise comparison to PBS-treated controls. There was no significant 

difference between CV and Delta24-RGD monotherapy. (B) MGG8 xenografts  

attract systemically-administered Delta24-RGD-loaded Jurkat T-cell-gp100
TCR

.  

(Upper left) Intratumoral controls after systemic Delta24-RGD monotherapy with 

localized hexon staining (arrow). (Upper right) Intratumoral hexon-positive cells (arrow) 

48 h after Jurkat T-cell delivery, indicative of the homing of Jurkat T-cells to the tumor. 

(Bottom left) Similar hexon-positive cells (arrows) at 96 h post-treatment.  

(bottom right) No hexon-positive cells were noted at 144 h post-treatment. 

(vimentin = green, adenoviral hexon = red). 

 

3.6. Delta24-RGD-Loaded T-Cells Demonstrate Tropism for Intracranial Tumors 

Based on these results, a study was undertaken to assess the ability of CV to deliver Delta24-RGD 

after systemic tail-vein injections. To this end, MGG8-bearing mice received i.v. injections of  

Delta24-RGD-loaded Jurkat T-cells. The control group received i.v. injections of similar doses 

Delta24-RGD virus. To enhance CV tropism towards MGG8, Jurkat T-cells were transduced with a  

T-cell receptor that specifically recognizes gp100 antigen presented bij HLA-A2. Gp100 is a tumor-antigen 

commonly expressed in Glioblastoma and MGG8 in vitro and in vivo (data not shown) [45,46]. 

Intratumoral dispersion of CV and/or infection of the tumor cells was assessed by hexon staining after 
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sacrificing the animals after 48–144 h post-treatment. Analyses of the brains revealed that direct 

intravenous injection of Delta24-RGD did not lead to infection of MGG8 tumors in any of the 

analyzed animals, with the exception of a small vascular structure in one animal at 144 h post-injection 

(Figure 5B, upper left). Contrary to virus-only injections, in mice that received Delta24-RGD-loaded 

Jurkat T-cells, we observed multiple small hexon-positive cells at 48 and 96 h post-injection  

(Figure 5B, upper right and lower left). At 144 h after systemic administration, however, no  

hexon-positive cells were detected, nor where there any indications of intratumoral viral spreading 

observed (Figure 5B, lower right). 

4. Discussion 

In the current study we investigated the feasibility of T-cell-mediated delivery of Delta24-RGD to 

glioblastoma. The application of cellular vehicles to deliver oncolytic viruses potentially overcomes 

several limitations of oncolytic virotherapy as a therapeutic alternative for glioblastoma (e.g., limited 

window of drug administration). For this reason, the use of leukocytes as cellular vehicles would be a 

step up in studies investigating targeted autologous T-cells, as a means to combine oncolytic 

virotherapy with immunotherapy. The data presented here demonstrate the ability of Delta24-RGD to 

efficiently infect and amplify viral progeny in a T-cell-derived cellular vehicle system. Indeed, T-cell 

cells were found to succumb to Delta24-RGD infection, albeit at higher MOIs compared to the dose 

ranges used in glioma cell cultures [6]. This is congruent with a previous study by Yotnda et al. [38], 

demonstrating that higher dosages are needed to efficiently start replication and lysis in leukocytes. 

This can be accomplished by inserting the RGD-motif into the surface exposed loop of the fiber-knob, 

which results in increased infectivity. 

Based on these in vitro findings, we set-up a proof of concept study, which demonstrated that 

intratumoral CV-based delivery of Delta24-RGD yields comparable results to direct Delta24-RGD 

injections with regard to therapeutic efficacy. Importantly, delivery of Delta24-RGD into peripheral 

tumor regions was demonstrated after injections of cellular vehicles into the contralateral hemisphere 

in GSC xenografts. This indicates the strong tropism and migratory capacity of virus-loaded T-cells in the 

tracking of tumor cells in the brain environment. Moreover, systemically delivered Delta24-RGD-loaded 

CVs were detected in small numbers within the orthotopic xenografts within 48–96 h, although 

efficient virus handover to the tumor was not observed in this setting. We conclude that T-cells have 

the ability to serve as cellular vehicles to deliver Delta24-RGD to glioblastoma at a distance, in 

particular to infiltrating tumor cells in the brain parenchyma. This may suggest a potential for CV 

approaches as a post-surgical adjuvant therapy, where CVs may be deposited in the resection cavity to 

track residual and surgically-inaccessible tumor cells. 

Several hurdles for successful implementation of this T-cell-mediated CV delivery strategy have 

been addressed. Our in vitro studies demonstrate an inhibitory effect of Delta24-RGD infection on 

Jurkat T-cell migration in tropism assays, which is dependent on both incubation time, as well as viral 

dosage. Intriguingly, lower MOIs seemed to increase tropism in our transwell assay. Similar 

enhancement of the T-cell migratory phenotype was reported in a VSV-based cellular vehicle  

system [44]. It remains to be determined whether infection with lower MOIs would further improve 

efficient delivery of Delta24-RGD in vivo. At present, lower dosages could not be applied in our 
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xenograft model for the risk of developing hematological malignancy from remaining Jurkat T-cells 

that escape from viral infection; however, the use of an autologous T-cell population may possibly 

circumvent this problem. As shown, tail vein injections in orthotopic xenograft-bearing mice did not 

lead to widespread intratumoral delivery of Delta24-RGD. The administration of L1210 leukemic cells 

in a syngeneic CV model did yield appreciable intracerebral carrier cell infiltration in a VSV delivery 

model for lung cancer [22], indicating that the choice of oncolytic virus or tumor type may influence 

intracranial tropism. With regard to this route of administration, it is important to consider that 

administration through injections into the common carotid artery may increase intratumoral delivery of 

CVs to the brain, as demonstrated by others for Delta24-RGD delivery by mesenchymal stem cells [15]. 

The in vitro transwell migration assays demonstrated that MGG8-conditioned medium was  

less effective for the attraction of T-cells compared to serum-supplemented medium. This could either 

be due to immunologically repressive factors secreted by the tumor or the relative abundance of  

chemo-attractants available in serum-supplemented medium for T-cells. Recent studies have shown 

that the secretion of several chemokines plays a crucial role in the influx of both mesenchymal stem 

cells, as well as lymphocytes in the glioblastoma microenvironment [39,47,48]. Further investigation is 

warranted to appreciate which factors contribute to CV tropism, and the development of  

patient-tailored vectors (i.e., specific TCRs, chemokines, suicide genes) may need to be included into 

the CV system to enhance therapeutic efficacy. 

We conclude that CV-mediated delivery of Delta24-RGD holds promise for future therapeutic 

application. The current results warrant further investigations into the delivery of Delta24-RGD by  

T-cells, possibly in combination with adoptive immunotherapy strategies. 
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