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Information coding by precise timing of spikes can be faster
and more energy efficient than traditional rate coding. How-
ever, spike-timing codes are often brittle, which has limited their
use in theoretical neuroscience and computing applications. Here,
we propose a type of attractor neural network in complex state
space and show how it can be leveraged to construct spiking
neural networks with robust computational properties through
a phase-to-timing mapping. Building on Hebbian neural associa-
tive memories, like Hopfield networks, we first propose threshold
phasor associative memory (TPAM) networks. Complex phasor
patterns whose components can assume continuous-valued phase
angles and binary magnitudes can be stored and retrieved as sta-
ble fixed points in the network dynamics. TPAM achieves high
memory capacity when storing sparse phasor patterns, and we
derive the energy function that governs its fixed-point attrac-
tor dynamics. Second, we construct 2 spiking neural networks
to approximate the complex algebraic computations in TPAM,
a reductionist model with resonate-and-fire neurons and a bio-
logically plausible network of integrate-and-fire neurons with
synaptic delays and recurrently connected inhibitory interneu-
rons. The fixed points of TPAM correspond to stable periodic
states of precisely timed spiking activity that are robust to per-
turbation. The link established between rhythmic firing patterns
and complex attractor dynamics has implications for the interpre-
tation of spike patterns seen in neuroscience and can serve as a
framework for computation in emerging neuromorphic devices.

spiking neural network | associative memory | oscillations |
phasor networks | phase-to-timing

The predominant view held in neuroscience today is that the
activity of neurons in the brain and the function of neural

circuits can be understood in terms of the computations that
underlie perception, motion control, decision making, and cog-
nitive reasoning. However, recent developments in experimen-
tal neuroscience have exposed critical holes in our theoretical
understanding of how neural dynamics relates to computation.
For example, in the prominent existing theories for neural com-
putation, such as energy-based attractor networks (1, 2), pop-
ulation coding (3), and the neural-engineering framework (4),
information is represented by analog variables that are typi-
cally related to the firing rates of spiking neurons in the real
brain. Properties of rate-coding (5–7) are hard to reconcile with
experimental observations, such as precise sequences of action
potentials (8–11) and computation during perception involving
only few spikes per neuron (12), as well as spike-timing codes
using the phase of neural oscillations, as in refs. 13 and 14.
Thus, theories that go beyond rate-coding and that can eluci-
date the functions of spike timing and rhythmic activity patterns
are required.

Here, we develop such a theory based on complex-valued neu-
ral networks and a “phase-to-timing” mapping that translates a
complex neural state to the timing of a spike. We first intro-
duce a model of fixed-point attractor networks in complex state
space, called “threshold phasor associative memory” (TPAM)
networks. The model dynamics is governed by a Lyapunov func-
tion, akin to Hopfield networks (15); it has high memory capacity
and, unlike Hopfield networks, can store continuous-valued data.
Second, we propose spiking implementations of TPAM, one
as direct as possible, and one more biologically plausible. Our

framework can be used to design circuits of spiking neurons
to compute robustly with spike times, potentially trailblazing a
path toward fully leveraging recent high-performance neuromor-
phic computing hardware (16). Concurrently, the framework can
help neuroscientists understand the computational purpose of
experimental observations, such as sequential and rhythmic fir-
ing dynamics, balance between excitation and inhibition, and
synaptic delays.

Background
Fixed-point attractor models and, more generally, energy-based
models (17) have played an eminent role in the fields of neural
networks and theoretical neuroscience. The appeal of these mod-
els comes from the fact that their dynamics can be described by
the descent of an energy or Lyapunov function, often conceptu-
alized as an “energy landscape.” While energy descent does not
describe all of neural computation, it enables important types of
computations, such as optimization (18) and denoising/error cor-
rection, an essential ingredient for making neural computation
robust and reliable (15).

The Landscape of Fixed-Point Attractor Neural Networks. Here, we
focus on a prominent class of fixed-point attractor networks with
Hebbian one-shot learning to store a set of neural activity pat-
terns. To retrieve a pattern, the network is first initialized with
a cue—typically, a noisy or partial version of a stored pattern.
For retrieval, an iterative dynamics successively reduces the ini-
tial noise and converges to a clean version of the stored memory.
The models can be distinguished along the following dimensions:
real-valued versus a complex-valued neural state space; neurons
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with discretizing versus continuous transfer functions; and the
neural firing patterns in the network being sparse versus dense
(Fig. 1).

The traditional models of attractor neural networks, which
have a symmetric synaptic matrix that guarantees Lyapunov
dynamics and fixed points (25), were inspired by the Ising model
of ferromagnetism (26). The neural transfer function is step-
shaped (describing the spiking versus silent state of a neuron),
and the models can store dense activity patterns with even ratio
between active and silent neurons (15, 19). The inclusion of
“thermal” noise yielded networks with a sigmoid-shaped neural-
transfer function (1, 23, 27), which produces continuous real-
valued state vectors that could be conceptually related to firing
rates of spiking neurons in the brain. Further, following the insight
of Willshaw et al. (28), attractor networks for storing sparse activ-
ity patterns were proposed, which better matched biology and
exhibited greatly enhanced memory capacity (21, 29–31).

One drawback of these traditional memory models is that all
attractor states are (close to) binary patterns, where each neu-
ron is either almost silent or fully active near saturation. The
restriction to binary memories can be overcome by introducing
model neurons that can saturate at multiple (more than 2) acti-
vation levels (22, 32–34). This class of models was inspired by the
Potts glass model in solid-state physics. Another model with mul-
tilevel neurons is the so-called “complex Hopfield network” (20,
35–42). Here, the model neurons are discretized phasors, and,
as a result, the states of the model are complex vectors whose
components have unity norm, and phase angles chosen from a
finite, equidistant set. For a discretization number of 2, complex
Hopfield networks degenerate to the real-valued bipolar
Hopfield network (15).
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Fig. 1. Venn diagram delineating different types of fixed-point attractor
networks. The boundaries represent the following distinctions: 1) complex-
valued versus real-valued neural states; 2) continuous-valued versus discrete-
valued neural states; and 3) dense versus sparse neural activity patterns.
Regions are labeled by key publications describing these models: Little ’74,
ref. 19; Hopfield ’82, ref. 15; Hopfield ’84, ref. 1; Farhat ’85, ref. 20; Tsodyks &
Feigelman ’88, ref. 21; Meunier ’89, ref. 22; Treves ’90, ref. 23; and Noest ’88,
ref. 24. Our research focuses on the uncharted areas, sparse complex-valued
models (TPAM).

A unique strength of a complex state space was highlighted
by “phasor networks” (24, 43, 44). In phasor networks, the neu-
ral transfer function is a phasor projection—i.e., each neural
state carries the continuous phase value of the postsynaptic sum,
but has normalized magnitude. Interestingly, even without phase
discretization, phasor networks can store arbitrary continuous-
valued phasor patterns. Patterns with arbitrary relative phase
angles can be stable because of the ring topology of normalized
complex numbers.

In existing phasor networks and complex Hopfield networks,
all neurons represent phases at every time step. To provide
models of greater computational versatility, here, we explore
relatively uncharted territory in Fig. 1: attractor networks with
complex-valued sparse activity states. These models can also
store phasor patterns, in which a fraction of components have
zero amplitude that correspond to silent or inactive neurons.
Specifically, we introduce and investigate an attractor network
model called the TPAM network. As will be shown, pattern spar-
sity in TPAM enables high memory capacity—as in real-valued
models (21)—and also corresponds to spike-timing patterns that
are neurobiologically plausible.

Hebbian Sequence Associative Memories. A first foray into tem-
poral neural coding was the development of networks of
threshold neurons with Hebbian-type heteroassociative learn-
ing that synaptically stores the first-order Markovian transitions
of sequential neural activity patterns (45–51). When initialized
at or near the first pattern of a stored sequence, the parallel-
update and discrete time dynamics of the network will produce
the entire sequence, with a pattern transition occurring each
time step. These networks have nonsymmetric synaptic matrices,
and, therefore, the dynamics are not governed by a Lyapunov
function (25). However, for networks that store cyclic pattern
sequences of equal lengths, Herz et al. (52, 53) have shown
that the network dynamics are governed by an energy function,
defined in an extended state space in which each entire sequence
is represented by a point.

We will show that sequence-associative networks are related
to phasor memory networks, whose fixed points are phase pat-
terns with equidistantly binned phase values (each phase bin
representing 1 position in the sequence), yet with a different
learning rule and algebra from TPAM networks.

Results
TPAM. We propose a memory model, the TPAM, which can store
sparse patterns of complex phasors as fixed-point attractors. The
network dynamics is governed by an energy function, which we
derive. Further, simulation experiments show that TPAM has
high memory capacity and provides an efficient error-correction
stage in a neural network for storing images.
Learning and Neural Dynamics. Phasor neural networks (24, 43)
were designed to store dense phase-angle patterns in which every
component represents a phase angle. Similar to auto-associative
outer-product Hebbian learning (54), like in the standard
Hopfield network (15), phasor networks employ a complex-
conjugate outer-product learning rule:

W = SS∗> , Wij =

M∑
m=1

S r
imS r

jme i(S
φ
im−S

φ
jm ), [1]

where S∈CN×M is a matrix of M phasor patterns of dimen-
sion N , and S∗ denotes the complex conjugate. A component of
one of the stored patterns is given by Sim =S r

ime iS
φ
im . The entries

along the diagonal of W are set to 0.
In each time step, the complex neural states of the phasor net-

work are multiplied by the complex weight matrix to give the
postsynaptic dendritic sum:
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ui(t) =
∑
j

Wij zj (t). [2]

The neural update is parallel, and the transfer function is a pha-
sor projection, with the complex value of each neuron set to unit
magnitude and preserving the phase angle of u(t): zi(t + 1) =
ui(t)/|ui(t)|.

In contrast to the described phasor memory network, the
TPAM network is designed for storing patterns in which only
a sparse fraction of components phot =K/N have unit magni-
tude, and the rest have zero amplitude—i.e., are inactive—with
K the number of neurons active in a single pattern and N the
total number of neurons. TPAM uses the same learning rule [1]
and postsynaptic summation [2] as the original phasor network,
but differs in the neural-transfer function. The neural-transfer
function includes a threshold operation on the amplitude of the
synaptic sum [2]:

zi(t + 1) = g(ui(t), Θ(t)) :=
ui(t)

|ui(t)|
H (|ui(t)| −Θ(t)), [3]

with H (x ) the Heaviside function. If the threshold Θ(t) is met,
the output preserves the phase of the sum vector and normalizes
the amplitude. Otherwise, the output is zero.

To maintain a given level of network activation, the threshold
setting needs to be controlled as a function of the global net-
work activity (55). Here, we set the threshold proportional to the
overall activity:

Θ(t) = θ
∑
i

|zi(t)|= θ|z(t)|, [4]

with θ a scalar between 0 and 1, typically slightly less than 1.
The memory recall in TPAM with N = 400 neurons is demon-

strated in Fig. 2. The network has stored M = 100 sparse random
phasor patterns with phot = 10% and phase values drawn inde-
pendently from a uniform distribution. The iterative recall is
initialized by a partial memory pattern—with some nonzero com-
ponents set to zero (Fig. 2, Upper) and with a superposition of
several stored patterns (Fig. 2, Lower). In both cases, the network
dynamics relaxes to one of the stored memories (approximately).
Energy Function of TPAM Networks. For traditional phasor mem-
ory networks (without threshold), Noest (24) showed that the
corresponding Lyapunov function is

E(z) =−1

2

∑
ij

Wij ziz
∗
j . [5]

Note that, because [1] results in a Hermitian matrix W, [5] is
a real-valued function. Further note that the dynamics in pha-
sor networks is a generalization of phase-coupled systems well
studied in physics, such as the Kuramoto model (56) and the
XY model (57), and for describing coherent activity in neural
networks (58–60). Those models are governed by a Lyapunov
function of the form [5], but in which W is real-valued and
symmetric (61).

To see how the inclusion of the threshold operation in the
TPAM update [3] changes the Lyapunov function, we follow the
treatment in ref. 1 by extending [5] to describe the dynamics of
phasor networks with arbitrary invertible transfer function f (z ):

E(z) =−1

2

∑
ij

Wij ziz
∗
j +

∑
i

∫ |zi |
0

f −1(v)dv . [6]

The neural-transfer function of TPAM, g(z ; Θ) in [3], is not
invertible. But it can be approximated by a smooth, invertible
function by replacing the Heaviside function in [3] with an invert-
ible function f (z )—for example, the logistic function. In the

Fig. 2. Memory recall in a TPAM network. Results of 2 retrieval exper-
iments, 1 initialized by a partial memory pattern (Upper) and 1 by a
superposition of 3 memory patterns (Lower), are shown. Both recalls were
successful, as indicated by the similarity between “converged” and “target”
patterns (phase values are color coded; black corresponds to zero ampli-
tude). Images on the right show that it takes only a few iteration steps until
only the overlap with the target memory is high (blue lines).

limit of making the approximation tight—i.e., f (z )≈ g(z ; Θ)—
the corresponding update is given by [3]. For a constant global
threshold Θ = Θ(t), the Lyapunov function [6] of TPAM is:

E(z) =−1

2

∑
ij

Wij ziz
∗
j + Θ‖z‖1, [7]

with ‖z‖1 the L1 norm of the vector, the sum of its compo-
nents’ amplitudes. According to Eq. 7, a positive constant global
threshold [3] has the effect of adding a L1 constraint term, which
encourages a lower activity in the network.

For the dynamic threshold control [4], the Lyapunov function
for TPAM becomes

E(z) =
∑
ij

(
−1

2
Wij + θI

)
ziz
∗
j , [8]

with I the identity matrix. According to Eq. 8, a positive coeffi-
cient θ in the dynamic threshold control, [3] and [4], adds a repul-
sive self-interaction between active phasors, thereby reducing the
activity in the network.

The derived Lyapunov functions help to clarify the differ-
ence between constant and linear threshold control. Consider
the case of low memory load. With constant threshold, not only
are the individual stored patterns stable fixed points, but also
their superpositions will be stable. In contrast, dynamic threshold
control introduces competition between active stored memory
patterns. The coefficient θ can be tuned so that only individual
patterns are stable (as done here). When lowered, superposi-
tions of 2 (or more) patterns can become stable, but competition
still only allows a limited number of active superpositions. This
may be useful behavior for applications outside the scope of this
paper.
Information Capacity of TPAM Networks. To understand the
function of TPAM, the impact of its different features on mem-
ory performance was studied through simulation experiments.
After storing M random patterns, we initialized the network to
one of the stored patterns with a small amount of noise. The net-
work ran until convergence or for a maximum of 500 iterations.
To assess the quality of memory recall, we then compared the
network state with the errorless stored pattern.

Fig. 3A displays on the y axes “cosine similarity” (i.e., correla-
tion) between the output of the memory and the desired target
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Fig. 3. Capacity of TPAM networks. (A) Recall performance of TPAM as
a function of stored patterns (green; darker green indicates higher spar-
sity, over range phot = [0.02, 0.05, 0.10, 0.15, 0.2, 0.25, 0.35, 0.5, 0.75, 1.0]),
in comparison with traditional associative memory models: bipolar Hopfield
networks (black) (15) and continuous phasor networks (orange) (24). Similar-
ity is the Pearson correlation between converged network state and target
state. (B) The memory capacity of the TPAM network in bits per synapse
(sparsity encoded by shading, as in A).

pattern. This normalized metric accounts for both disparity in
the phase offset and mismatch in the supports, but does not
directly reflect the mutual information between patterns, which
also depends on the sparsity level. Fig. 3A compares TPAM
with different levels of sparsity (green) to the traditional binary
Hopfield network (15) (black line) and to the continuous phasor
network (24) (orange line). As in the case of the ternary models
(22) (SI Appendix), the number of patterns that can be recalled
with high precision increases significantly with sparsity.

To assess how the memory efficiency of TPAM depends on
pattern sparsity, we empirically measured the information in the
random phase patterns that can be recalled from the memory (SI
Appendix). Dividing the recalled information by the number of
synapses yielded the “memory capacity” of a network in bits per
synapse (30, 31). Measuring the memory capacity in bits, rather
than by the number of stored patterns (15), has the advantage
that performances can be compared for memory patterns with
different sparsity levels.

The measurements of memory capacity in bits/synapse showed
that sparsity greatly increased memory capacity (Fig. 3B) over
dense associative memory networks. Interestingly, this result
parallels the increase of memory capacity in binary Hopfield net-
works with pattern sparsity (21, 29, 30). This holds up to a limit,
however, as the networks with the highest sparsity levels had a
slightly decreased maximum memory capacity in the simulation
experiments. The slow secondary increase of the information
capacity is due to a residual of small amounts of unusable
information across many patterns in a very-low-fidelity regime
(SI Appendix).
Indexing and Retrieving Data with TPAM Networks. One option
to storing real-world data in TPAM networks is to encode the
data in phasor patterns that can be stored in a recurrent TPAM
network, as described in the last section. A problem with this
approach is that data correlations cause interference in the
stored patterns, which is a known issue in traditional associative
memories with the outer-product learning rule that reduces the
information capacity quite drastically (2).

Here, we explored the ability of TPAM to perform error cor-
rection of random indexing patterns within a memory network
inspired by the sparse distributed memory (SDM) model (62).
The original SDM model consists of 2 feedforward layers of neu-
rons: an indexing stage with random synaptic weights, mapping
data points to sparse binary index vectors; and a heteroassocia-
tive memory, mapping index vectors back to data points. Our
memory architecture deviated from the original SDM model in
3 regards. First, it used complex-valued index patterns. Second,
synaptic weights in the indexing stage were learned from the

data. Third, it consisted of an additional third stage, an error-
correction stage using a recurrent TPAM, that sits between the
indexing stage and heteroassociative memory (similar to ref. 40;
Fig. 4A).

In the following, we denote the data matrix as P∈RD×M ,
where D is the dimensionality of the data and M is the num-
ber of data points. As in previous sections, the matrix of index
vectors (randomly chosen sparse phasor patterns) is S∈CN×M ,
where N is the number of neurons in the TPAM network.

The indexing stage maps incoming data vectors into index
patterns. It is a feedforward network of neurons with the synap-
tic matrix WI ∈CN×D . A simple Hebbian learning rule for
heteroassociation is W̃I = SP>. However, to reduce the level
of indexing errors due to inherent data correlations, we used
learning that involves the pseudoinverse (PINV) of the data,
P+ = VΣ−1U>, resulting from the singular value decomposition
P = UΣV>. Specifically, the synapses in the indexing stage are
formed according to:

WI = SVΣ−1U>= SP+. [9]

This linear transform performs “pattern separation” by amplify-
ing the differences between correlated data vectors. It thereby
produces decorrelated projections from the data space to the
index space.

The output stage is a heteroassociative memory of the data.
This is a feedforward network using simple Hebbian learning for
mapping an index pattern back into a data vector. To produce

A

B C

Fig. 4. Storage of natural images in a 3-layer architecture with com-
plex neurons. (A) Layered network architecture, consisting of 3 stages:
indexing stage with pattern separation, TPAM for error correction, and
heteroassociative memory. (B) Comparision of the performances of the full
architecture versus other heteroassociative memory models. The pattern-
separation stage for indexing (solid lines) and the TPAM network for error
correction significantly increase the retrieved information (bits per pixel).
The information in the noisy cue pattern is plotted for comparision (dashed
black line). (C) Examples of retrieved images for different models. Cue
pattern noise is 0.3 (cyan line in B).
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real-valued output patterns, the output neural-transfer function
projects each component to the real part.

In SDM and heteroassociative memories in general, if the
indexing or cue patterns are noisy, the quality of the returned
data suffers significantly. To improve the retrieval quality in
these cases, we stored the indexing patterns S in TPAM accord-
ing to [1]. The TPAM performed error correction on the patterns
produced by the indexing stage, and corrected index patterns
were decoded by the heteroassociative memory stage.

Empirical comparisons of image storage and retrieval using
a simple Hebbian heteroassociative memory, an SDM, and the
full network with pattern separation and TPAM for error cor-
rection (Fig. 4B; see SI Appendix for implementation details)
were performed with simulation experiments. The simple
Hebbian model and the SDM were also extended by incor-
porating pattern separation in the indexing stage (solid lines
in Fig. 4B include pattern separation). We stored M = 20
image patches of D = 12× 12× 3 pixels into the networks
and measured the Pearson correlation ρ (“Similarity”) of the
retrieved pattern with the true pattern, given a noisy input
cue. We computed the total information per pixel as IH =
− 1

2
log2(1− ρ2) (SI Appendix). The full network returned a

larger amount of information about the stored data than the
simpler models. Errors in retrieved TPAM patterns (Fig. 4C)
were due to spurious local minima, which are usually super-
positions of stored memories. Similarly, errors in SDM were
spurious activations of incorrect patterns, leading to readout
errors also as superpositions of stored memories. Including the
PINV for indexing improves the likelihood of avoiding such
superposition errors.

Relating TPAM Networks to Spiking Neural Networks. Here, we
exploit a natural link between a complex state and a spike
raster through a phase-to-timing mapping. We describe 2 mod-
els with spiking neurons that perform the key computations in
TPAM: complex synaptic multiplication, summation of complex
postsynaptic signals [2], and the neural-transfer function [3].
Phase-to-Timing Mapping. Each component of a complex state
vector in TPAM, zi(t)=: z r

i (t)e iz
φ
i (t), can be uniquely mapped

to a spike pattern in a population of neurons through a phase-to-
timing mapping. Specifically, in the context of a cycle with period
T , the timing of a spike s

(t)
i on a continuous time axis s repre-

sents the phase angle zφi (t), nominally with s
(t)
i =T (zφi (t)/2π+

t). Phasor values with magnitude zero are represented by silence
(Fig. 5). Thus, a fixed-point state in TPAM corresponds to a limit
cycle of precisely timed spiking activity, where neurons fire with
a period of T or are silent.

With this mapping, we can construct spiking neural net-
works evolving in continuous time that perform the operations
of TPAM. The complex multiplication between presynaptic
input and synaptic weight requires the addition of phases. The
phase-to-timing mapping also applies to the complex-valued

synapses, Wij=:W r
ij e

iW
φ
ij , in which synaptic phase-shift trans-

lates to synaptic delay by ζij =T (W φ
ij /2π). The synaptic delay

adds with the spike timing, which computes the complex product.
In TPAM with time-discrete parallel update scheme, a state

z (t) depends exclusively on the previous state z (t − 1). The spik-
ing network, however, evolves in continuous time, and there is
no special demarcation between time steps. To match the time-
discrete update in the spiking network, one could hypothetically
construct appropriate synaptic delays by adding or subtracting
multiples of T based on the demarcation of the zero phase
(Fig. 5). This can be done for 1 pattern, but if a neuron is partici-
pating in more than 1 pattern, then it is not possible to guarantee
that all fixed points perfectly mirror the discrete update. Neu-
rons will potentially have influence within the same time step

Fig. 5. Mapping states and synapses of TPAM to spiking networks. The
complex TPAM state vector can be mapped to a pattern of precisely
timed spikes by using the phase-to-timing mapping. Similarly, the complex
synapses can be mapped to synaptic delays. At any stable fixed point (as
shown), a cycle time T can be subtracted or added to individual synaptic
delays, so that the discrete time dynamics is obeyed. However, this cannot
be guaranteed simultaneously for multiple patterns. Deterministic spiking
above a threshold implements the TPAM transfer function [3].

or 2 time steps later. Importantly, however, at the fixed points
where every spike train is T -periodic, altering the delays by T
does not change the postsynaptic coincidence structure. There-
fore, the continuous time dynamics is similar to the discrete
time dynamics near fixed points, but will, in general, not be
exactly the same.
Complex Algebra with Resonate-and-Fire Neurons. The phase-
to-timing mapping illustrates how complex phases can be trans-
lated to delays and how this can be used to compute complex
multiply. To fully implement a spiking version of TPAM, one
needs to also perform the complex dendritic sum, which requires
more than just coincidence detection (63). In the temporal
domain, addition of complex inputs can be translated into the
addition of sine waves matched to the cycle period. A simple
mechanism that can achieve this uses resonate-and-fire neurons
that have subthreshold dynamics of damped oscillators (64):

Ż i(s) = (λ+ iω)Zi(s) +
∑
j

∑
k

Rij δ(s − (s
(k)
j + ηij )), [10]

with the Cartesian decomposition of the complex state Zi(s) =
Vi(s) + iUi(s), and where λ is an attenuation parameter and
the angular frequency is ω= 2π/T . This neuron model will
bandpass-filter the incoming spike train and enable it to
(approximately) compute the complex summation.

Our model differs in 3 regards from the network studied in
ref. 64: 1) A spike is elicited at time s

(k)
j if the internal vari-

ables cross 2 thresholds, on the real and imaginary axes: Vi >Vθ
and Ui > 0. 2) A refractory period after each spike prevents
more than 1 spike per cycle. 3) The weights R can be complex,
influencing both real and imaginary parts of the neuronal state,
and have delays ηij . The weights formed by the TPAM learn-
ing rule Wij [1] can be set through any combination such that
Wij =Rij e

i2πηij /T , in particular, with instantaneous synapses
R = W, ηij = 0 or with real-valued synapses: R = Wr , ηij = ζij .

Each presynaptic spike elicits a jump in the internal state
(determined by magnitude and phase of the synapse), kick-
starting the damped oscillation (Fig. 6A). If subsequent jumps
are coherent, they add up to increase the oscillation magnitude.
If they are decoherent, they generate a random walk with-
out systematically increasing the oscillation magnitude. Fig. 6B
demonstrates spiking TPAM (with fixed threshold [4]).
Biophysical Model. Some biological neurons behave as individual
oscillators, as in the model [10]. However, oscillatory mem-
brane voltages and periodic spike trains can also be created
through network effects, such as the interplay between excita-
tory and inhibitory populations (65, 66). We next constructed
a biophysical model with integrate-and-fire neurons (67, 68)
(Fig. 7A) and real-valued synaptic connections which obey Dale’s
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A B

Fig. 6. Complex algebra with resonate-and-fire neurons. (A) The spike-
timing pattern and the synaptic phase can combine coherently or
decoherently. (B) A spiking TPAM network with resonate-and-fire neurons,
the state initialized with a partial stored pattern. The network converges
close to the stored pattern. Internal states of an active (cyan) and inactive
(gray) neuron are shown.

principle (69). This model employs network mechanisms to com-
pute the complex dot product. The derivation of this model
starts by considering the solution of [10] in terms of a synaptic
convolution:

Zi(s) =
∑
j

∑
k

Rij

(
δ(s − (s

(k)
j + ηij ))∗H (s)e(λ+iωs)

)
. [11]

Rather than complex synapses and damped oscillators form-
ing the synaptic convolution kernels, one can use the trade-off
between phase shift and delay to make all synaptic connections
real-valued and positive:

Vi(s) =
∑
j

∑
k

W r
ij

(
δ(s − (s

(j)
k + ζij ))∗H (s)eλs cos(ωs)

)
.

[12]

Eq. 12 shows that the oscillation dynamics of each neuron
[10] can alternatively be implemented by oscillatory synaptic
transmission—e.g., each presynaptic spike is convolved with a
damped cosine function. Such balanced (zero mean) convolu-
tion kernels can be produced by polysynaptic propagation—for
example, if excitatory postsynaptic potentials are followed in a
stereotyped fashion by inhibition as has been observed (70).

A complex synapse in TPAM can then be implemented by
3 synapses between spiking neurons that follow Dale’s princi-
ple: direct excitation (E-E) and indirect inhibition (E-I plus I-E).
The collective action of each excitatory spike is to recombine in
the postsynaptic excitatory neuron and approximately create a
balanced oscillation in the input current.

The inhibitory pathway serves 2 purposes: to act as the neg-
ative current in the oscillation and to dynamically adjust the
threshold [4]. These operations can be achieved with the inhi-
bition acting linearly with nonspecific synaptic delays. A single
inhibitory neuron can be used for a population of excitatory neu-
rons, and the recurrent inhibition simply adjusts the offset of the
oscillation caused by the recurrent excitation.

When a neuron’s membrane potential reaches threshold Vθ ,
it fires a spike, and the membrane potential is set to the reset
potential Vr . After the synaptic delay, the spike causes postsy-
naptic channels to open. This is modeled as a jump in a synaptic
state variable gij that injects current proportional to the synap-
tic magnitude Ii =

∑
j W

r
ij gij , which then decays exponentially as

the channels close (SI Appendix).
The time constants of the neural membrane and synaptic

variables are tuned based on the cycle time T to create the

oscillation. The membrane charging time τRC = 0.5T acts as a
low-pass filter, helping to smooth out the input impulses into
approximately a sine wave. This charging time can also cause
extra delay, ∆RC = 1

ω
arctan

(
1

ωτRC

)
, but this charging delay can

be accounted for by adjusting delays of synapses. The inhibitory
synapses are slow, with a time constant τ Is = 2T , while the
excitatory synapses are fast, with a time constant τEs = 0.5T .
With these settings, the total postsynaptic current elicited by a
spike forms (approximately) a sine-wave oscillation with cycle
period of T . Depending on presynaptic spike times and synaptic
delays, the currents can sum either decoherently or coherently
(Fig. 7 B and C), estimating the complex dot product. Alto-
gether, the TPAM can be implemented with these mechanisms
(Fig. 7 D and F).

The recurrent inhibition can also implement the global nor-
malization needed for the dynamic threshold strategy [3], which
creates winner-take-all dynamics and keeps the activity sparse.
The inhibitory population integrates the activity from the exci-
tatory neurons and routes inhibition back into the population in
proportion to the overall activity. The magnitude of this feed-
back inhibition can be tuned so that only individual patterns are
stable fixed points. The gain of this inhibitory feedback is deter-
mined by multiple parameters. Each of these gain factors can be
computed analytically (with a linear approximation being useful
to understand the gain of the spiking neural-transfer function),
which is used to tune the parameters (SI Appendix).

The deterministic dynamics of the integrate-and-fire neuron
will cause the neuron to spike whenever the current drives the
voltage above threshold. If the magnitude of the input current
oscillation is large enough, then the neuron will fire at a consis-
tent phase (near the zero crossing of the oscillation). However, in
this model, the gain of the input oscillation can affect the precise
spike timing, but this is mitigated with high gain (SI Appendix).
For the excitatory neurons, a refractory period slightly over half
the cycle time (i.e., τref = 0.6T ) acts as the Heaviside function on
the magnitude. This implements the phasor projection of TPAM
by limiting the neuron to 1 spike per cycle, while preserving the
phase through the spike timing [3]. The parameter value Vθ sets
the threshold θ of whether the neuron will fire or not [4].

Here, we selectively incremented delays by T to confine the
synaptic delays to a range between 0.5T and 1.5T . This choice
maximizes interactions between subsequent time steps, but inter-
actions within and across 2 time steps persist. At the fixed points,
neither delays nor the attenuation λ affected the dendritic inputs.
Simulation Experiments with the Biophysical Model. For storing
a small collection of RGB images, a network architecture with
spiking neurons was implemented, as depicted in Fig. 4A. The
indexing stage transformed the real-valued input image into a
complex vector from the encoding matrix (SI Appendix). The
complex vector was mapped into a timed sequence of input
spikes (Fig. 7D, Init), which is the initial input to a spiking
TPAM network. The spiking TPAM network was decoded with
a Hebbian heteroassociative memory. This readout stage used
the same integrate-and-fire neurons and synaptic mechanisms to
implement the complex dot product for the readout matrix. How-
ever, the readout neurons responded proportionally to the input
magnitude rather than use a hard thresholding function (i.e., no
refractory period; SI Appendix).

The network was cued with several overlapping patterns and
noise. After initialization through the indexing stage, the spiking
activity in the TPAM network quickly settled into an oscilla-
tory pattern (Fig. 7D), which corresponded to the index of one
of the stored patterns. The global oscillation of the network
was generated intrinsically—it did not require any external driv-
ing mechanism or internal oscillatory dynamics. The output of
the heteroassociative memory stage during the convergence of
the TPAM dynamics (Fig. 7E) showed how the network rapidly
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Fig. 7. Biologically plausible TPAM with integrate-and-fire neurons. (A) Direct excitation and indirect inhibition produces a postsynaptic current oscillation.
Inhibition is nonspecific and acts to offset the oscillation. (B and C) The effect of a presynaptic spike raster (row 1) depends on the delay relationships of each
synapse. The resulting postsynaptic currents (row 2) can be rather small (decoherent; B), or quite large (coherent; C) (green, excitation; red, inhibition). If
the current is large and coherent, the neuron will reach threshold and fire a spike. (D) The spiking TPAM was incorporated into a data-indexing network for
images. The network is cued with a spiking pattern that encodes an overlap of 3 stored images (Init). After a short time, the network converges to a stored
attractor state, a sparse spiking pattern that persistently repeats. (E) Evolution of similarities between network state and index patterns of different images.
(F) Retrieved image as a function of time. (G) Retrieval performance of the spiking implementation of TPAM, measured by average similarity between
retrieved and target state as function of stored patterns (black x’s). The performance of the spiking model matches the performance of a similar TPAM
in the complex domain (green lines). The spiking network can store more patterns than the traditional Hopfield network (black) (15) or the dense phasor
network (orange) (24).

settled to one of the stored patterns superposed in the input,
outcompeting the other 2.

The capacity of the spiking network was examined in simu-
lation experiments (Fig. 7G). The spiking network tested was
robust even without careful parameter optimization. Retrieval
performance based on the number of stored patterns (Fig. 7G,
black x’s) easily exceeded the performance of a traditional bipo-
lar Hopfield network (Fig. 7G, black line). The performance
curve of the spiking model was predicted by the performance
curve of the complex TPAM with similar settings. However, the
spiking network did not reach the performance of the optimized
complex TPAM. Some of the approximations in the spiking net-
work added noise, which prevented it from reaching the full
capacity of the ideal complex model. Nonetheless, these exper-
iments show empirically that the spiking model behaves similarly
to the complex TPAM model.

Sequence-Associative Memories and Complex Attractor Networks.
Last, we investigated how complex fixed-point attractor net-
works can help to understand sequence-associative memories:
simple networks with binary threshold neurons and paral-
lel, time-discrete update dynamics for storing sequences of
patterns of fixed length (Background). Consider the storage
of closed sequences or limit cycles of fixed length L: ξ1→
ξ2→ . . .→ ξL→ ξ1→ . . ., with ξl ∈RN ∀l = 1, . . . ,L. In the
case of storing multiple sequences, an index is added to label
the different sequences: {ξµ,l ,µ= 1, . . . ,M }. The learning in
these models is also described by a Hebbian outer-product learn-
ing scheme (45). Here, we use a combination of Hebbian and
anti-Hebbian learning to produce a skew-symmetric interaction
matrix:

J =

M∑
µ=1

L∑
l=1

ξµ,l
(
ξ(µ,l−1) mod L− ξ(µ,l+1) mod L

)
>. [13]

Since the matrix J is skew-symmetric, there is no Lyapunov
function describing the dynamics in the network. However, we
can use the spectral properties of the weights to construct an
equivalent fixed-point attractor network.

Consider [13] for the simple example with L=N = 3, M = 1
and the stored patterns ξ being the cardinal basis vectors of R3.
One of the complex eigenvectors of J is v =

(
e i 2π

3 , e i 4π
3 , 1

)
>=:

(e iφ1 , e iφ2 , e iφ3)
>

, which is the (equidistant) phasor pattern that
represents the entire stored limit cycle in complex space. One can
now form a complex matrix W′ that possesses v as a fixed point—
i.e., has eigenvalue of 1—simply by dividing J by the eigenvalue
associated with v, which is λ= i

√
3:

W′ =
1

i
√

3
J =

1

i
√

3

 0 1 −1
−1 0 1

1 −1 0

. [14]

Since the eigenvalues of any skew-symmetric matrix have zero
real part (71), the interaction matrix W′ is always Hermitian in
general. Thus, the described construction is a recipe to translate
sequence memory networks into complex neural networks gov-
erned by a Lyapunov dynamics. In the resulting networks, the
synaptic matrix is W′, the neural nonlinearity is g(ui) = ui/|ui |,
and the Lyapunov function is [5].

One could now suspect that storing the pattern v in a pha-
sor network (24) would result in the same network-interaction
matrix W′. However, this is not the case. The weight matrix
resulting from learning the phase vector v with the conjugate
outer product learning rule [1] is

W = vv∗>− I =

 0 e i(φ1−φ2) e i(φ1−φ3)

e i(φ2−φ1) 0 e i(φ2−φ3)

e i(φ3−φ1) e i(φ3−φ2) 0

. [15]

The phase vector v is again an eigenvector of W.
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The takeaways from this example are the following points:

1) Outer-product sequence memories with skew-symmetric
weights can be mapped to continuous-valued phasor networks
with Hermitian weights W′, whose dynamics is described
by the Lyapunov function [5]. A similar idea of deriving
a Lyapunov function for M -periodic sequences of binary
patterns was proposed in refs. 52 and 53. Specifically,
these authors proposed to embed sequence trajectories in
a real-valued space, consisting of M copies of the original
state space.

2) Continuous-valued phasor networks derived from sequence
memories with outer-product rule [13] are different from
phasor networks using the conjugate complex outer-product
learning rule [1], such as TPAM networks.

3) Phasor networks derived from outer-product sequence mem-
ories have 2 severe restrictions. First, since the synaptic
weights are imaginary without real part, they only can rotate
the presynaptic signals by 90◦. Second, the first-order Markov
property of sequence memory networks translates into phasor
networks with interactions only between direct phase-angle
neighbors.

4) Phasor networks derived from sequence memories can, by
construction, only store phase patterns whose phase angles
are equidistantly dividing 2π. Because of symmetry reasons,
such equidistant phase patterns can be stabilized, despite the
restrictions described in the previous point.

Discussion
We present a theory framework for temporal coding with spik-
ing neurons that is based on fixed-point attractor dynamics in
complex state space. Although a coding scheme that uses spike
timing would seem to leverage the benefits of spiking neurons
(12), its use in neuroscience and neuromorphic applications is
still rather limited. Based on our results, we suggest that prob-
lems with spike-timing codes (72, 73) are not inherent, but are
due to our lack of understanding error-correcting properties of
spiking neural circuits.

Threshold Phasor Networks. A type of complex attractor net-
work is introduced, TPAM. TPAM inherits from previous pha-
sor networks (24) the Lyapunov dynamics and the capability
to store and error-correct arbitrary continuous-valued phasor
patterns.

The neural threshold mechanism added in TPAM signifi-
cantly increases the synaptic memory capacity and suppresses
the meaningless representation of flat or very noisy postsynap-
tic phase distributions. The capability of TPAM to store patterns
with arbitrary continuous-valued phases as attractor states per-
mits the processing of analog data directly. In contrast, the fixed
points of most attractor networks are discrete, and the patterns
to store have to first be discretized or even binarized. Even for
real-valued attractor networks, the stable states lie at satura-
tion points and are still discrete. Data correlations in real-world
sensor data pose a problem for all associative memory models,
including TPAM. Thus, for images, we propose a 3-layer archi-
tecture for data indexing and storage. The architecture includes
a TPAM for error correction and improves on similar previous
models, such as SDM (62).

We show that the dynamics of prominent traditional models
for sequence memory (45–47) can be described by a TPAM-
like model with a different learning rule. This phasor description
of sequence memory is similar to earlier work, which con-
structs a Lyapunov function in an enhanced (real-valued) state
space (53), but it has interesting implications. Specifically, the
TPAM learning rule can overcome limitations of traditional
Hebbian sequence learning—i.e., how to simultaneously mem-
orize distinct sequences that share some same states.

Mapping Complex Attractors into Periodic Temporal Codes. A state
of TPAM at a discrete time step can be translated by a sim-
ple phase-to-timing mapping into a spike-timing pattern within
a time interval T . A T -periodic spike raster then corresponds
to a fixed point in TPAM. By creating spiking neural net-
works that mirror the fixed-point dynamics of TPAM, the stored
T -periodic limit cycles exhibit robustness to perturbation and
pattern completion.

Earlier suggestions to compute with periodic spike patterns
have inspired our work. For example, Herz (citation details
available from the authors upon request)* used the enhanced
state-space approach to derive a Lyapunov function for networks
of nonleaky integrate-and-fire neurons with synaptic delays. As
in their earlier model without synaptic delays (74), such net-
works enable rapid (although not very robust) convergence to
stored periodic spike patterns. Further, networks were proposed
(75) for transducing rate-coded signals into periodic spike-timing
patterns. Other examples include “synfire braids” (76) and “poly-
chronization” (63) in networks with synaptic delays and neurons
that detect synchrony.

Complex Algebra with Spiking Neural Circuits. We describe 2 con-
crete models of spiking networks for implementing TPAM. The
simplest one, which provides direct insight, is a network with
resonate-and-fire neurons (64). Using the complex synapses and
a modified spiking mechanism, the resulting network dynamics
computes the complex dot product needed for TPAM quite natu-
rally. However, the update scheme becomes time-continuous and
event-driven—triggered by threshold crossings in individual neu-
rons. This fundamentally differs from the parallel update in the
time-discrete TPAM. However, even though they are not equiva-
lent in the entire state space, they become equivalent at the fixed
points.

From our model with oscillatory neurons, we were able to
derive a second network model with stronger resemblance to
neurobiological circuits, featuring ordinary integrate-and-fire
neurons and circuit connections that obey Dale’s principle (69).
The complex-valued synapses are replaced with real-valued
synapses that have time delays. Network effects are used to gen-
erate oscillatory postsynaptic currents in neurons that do not
oscillate by themselves. The approximately correct shaping of the
convolution kernels of synaptic transmission is achieved by using
a combination of standard biologically plausible mechanisms:
dendritic filtering, synaptic time constants, synaptic delays, and
additional inhibitory neurons that balance excitation. Interest-
ingly, the model implements complex algebra relying on a num-
ber of mechanisms observed in neuroscience. “Periodic firing
and synchrony”: Action-potentials in the brain are often peri-
odic, synchronized with intrinsic rhythms visible in local field
potentials (14, 77, 78). “Delayed synaptic transmission”: Due
to variability in axon length and myelination, the distribution
in measured delay times in monosynaptic transmission is broad,
easily spanning the full cycle length of gamma and even theta
oscillations (79). However, our model does not exclude other
circuit mechanisms (for example, a thalamo-cortical loop) as
possible mechanisms for longer delays. “Balance between exci-
tation and inhibition”: Excitation/inhibition balance is widely
seen throughout cortex (80–82), and inhibitory feedback onto
pyramidal cells is a major feature of the canonical cortical
microcircuit (83, 84).

Note that the parameter setting in our biophysical network is
generic; we did not attempt to model a particular brain region,
and other alternative mechanisms are possible. In the simula-
tions demonstrated, T = 200 ms was chosen as the cycle period,

*A. V. Herz, Do signal delays change rapid phase locking of pulse-coupled oscillators?
Preprint (25 January 1996).
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but a frequency in the gamma range with T = 20–25 ms may
be more appropriate for directly comparing to biological mea-
surements. We discuss ideas for biological realism further in
SI Appendix.

Learning Limit Cycles in a Spiking Network. The conjugate outer-
product learning rule in TPAM requires either complex synaptic
connections or tunable synaptic delays. If complex synaptic
connections are possible, then Hebbian learning requires cotun-
ing the real and imaginary weights. Delay learning has been
suggested in previous models (85), but without compelling
biological evidence. Alternatively, spike-timing–dependent plas-
ticity (86) could be used to shape synapses for TPAM, by
strengthening and pruning synapses from a pool with fixed
synaptic delays.

Model Extensions. The presented TPAM models can be extended
to combine aspects of spike timing and rate coding. Complex
numbers with variable magnitudes can be represented by rapid
bursts of multiple spikes or by probabilistic spiking. As in the
real-valued Hopfield model (1), the hard threshold in the trans-
fer function of TPAM can be exchanged by a sigmoidal trans-
fer function. In the spiking models, this means removing the
refractory mechanism preventing more than 1 spike per cycle.
Attractors would lie near saturation points in the magnitudes, as
in the real-valued Hopfield model (1), but phase relationships

could still be arbitrary. In such a model, spike patterns would
have periodically modulated spike rates, as seen in hippocampal
place cells (13).

Further, TPAM-like networks with modified learning rules
and threshold strategy could be used to construct line attractors
with spike timing—useful for understanding place coding in hip-
pocampus (87, 88) or for modeling/predicting dynamical systems
(4, 89).

Neuromorphic Computing. The presented theory has direct impact
on “neuromorphic computing,” which has recently been redis-
covered as a promising paradigm for computation—for exam-
ple, Braindrop (90) and IBM’s True North (91). Recently, Intel
released the neuromorphic chip Loihi (16), which features indi-
vidual synaptic delays and on-chip learning. Our theory offers
a principled way of “programming” spiking-neuron hardware,
leveraging the speed of temporal codes, and providing straight-
forward connections to complex matrix algebra and error
correction.

Materials and Methods
Detailed methods can be found in SI Appendix.
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